How *strange* is the nucleon ? -Hadronic uncertainties in direct Dark Matter detection -

Vincent Drach

in collaboration with C. Alexandrou, M. Constantinou, K.Hadjiyiannakou K. Jansen, G. Koutsou and A. Vaquero.

Institute for Theoretical Physics, Münster, Germany, 13th June 2016

and the state of the state of the second to the second to the second

- Introduction
 - **\star** Why DM ?
 - \bigstar How to detect DM ?
 - \star Main assumptions
- Nucleon mass origins :
 - \star Energy momentum tensor
 - ★ Heavy quark contribution
 - \star Effective theory and phenomenological results
- Lattice techniques :
 - ★ Setup
 - ★ Indirect approach
 - ★ Challenges of *disconnected* diagrams
- Lattice results :
 - \star Our setup
 - \star New Results
 - ★ Comparison with other methods and collaborations
- •Summary/Outlook

Standard Model and beyond...

Standard Model successful « Gauge Yukawa theory »

BUT

- Theoretical Issues :
 - ★ Naturalness/Fine-tuning
 - ★ Hierarchy
- + Experimental evidences :
 - ★ Dark Matter
 - \star Neutrino masses
 - ★ Not enough CP violation★ Hint(s) @ CERN ...

Dark matter in a nutshell

Planck 2015 results. XIII. Cosmological parameters [1502.01589]

- Consistent and accumulating evidences for a large amount of Dark Matter component in the Universe
 - ★ Cosmology
 - ★ Astrophysics (Rotation of spiral galaxies, velocity dispersion of Galaxies, Galaxy clusters and gravitational lensing)
- + What do we know :
 - \star Gravitationally interacts
 - \star Electrically neutral
- + Questions :
 - **\star** Relation with EW scale ?
 - **\star** Cold or Warm ?
 - \star size of the self interaction ?
 - ★ Coupled to Higgs boson?
 - ★ Spin ?
 - \star Is it only one state ?
 - \star Can it be composite ?

Energy budget of the universe (Planck)

Dark Matter searches

- •Types of searches:
 - Indirect detection
 - Direct searches
 - Colliders

Complementary searches

Direct detection - the LUX experiment

LUX Collaboration, Phys.Rev.Lett. 116 (2016) no.16

Direct detection experiments constrain the nuclei-DM cross section

Direct detection

+ Assumptions:

- Interaction through Higgs exchange
- zero momentum transfer limit
- + Collective effects in the nuclei are neglected
- + Here : spin-independent
- Many on-going experiments:
 - + LUX
 - Xenon
 - + CREST
 - + ...

Hadronic uncertainties

7

From nuclear to nucleon σ -terms

Ellis et al. Phys.Rev. D77 (2008) 065026

+ Assumptions:

- Interaction through scalar mediator
- zero momentum transfer limit
- + Collective effects in the nuclei are neglected
- + Here : spin-independent

• Cross section:
$$\sigma_{\rm SI} = \frac{4m_r^2}{\pi} \left(Z f_p + (A - Z) f_n \right)^2, \quad m_r = \frac{m_{\rm DM} m_{\rm at.}}{m_{\rm DM} + m_{\rm at.}}$$

- + Characterized by atomic and mass number of the nuclei
- + f_{Tq} : scalar coupling of individual nucleons with flavor q
- + a_q : depends on underlying DM model and on the EW scale

$$\frac{f_{N=n,p}}{m_N} = \sum_{\substack{q=u,d,s,c,b,t}} f_{T_q} \frac{\alpha_q}{m_q}, \quad f_{T_q} = \frac{m_q \langle N | \bar{q}q | N \rangle}{m_N}$$
Non perturbative property of the Nucleon

Spin independent case

CREST collaboration, Eur.Phys.J. C76 (2016) no.1, 25

Input to constrain New Physics

Origin of the Nucleon mass

Neglect isospin breaking effect mu=md=ml

The energy momentum tensor :

Rigorous decomposition of the Nucleon mass
 X.-D. Ji, Phys.Rev.Lett. 74 (1995) 1071-107479

$$m_X = \langle X, \vec{0} | T^0_0 | X, \vec{0} \rangle = \sum_q \underbrace{m_q \langle X, \vec{0} | \bar{q}q | X, \vec{0} \rangle}_{\sigma_q^X} + \text{gauge contribution}$$

+ Feynman-Hellman theorem :

$$\star \sigma_q^X \equiv m_q \frac{\partial}{\partial m_q} m_X$$

Indirect method to compute the σ -terms !

+ Equivalent to
$$f_{T_q} = \frac{\sigma_q^X}{m_N}$$

+ Other quantities of interests :

$$\sigma_{\pi N} = \sigma_l = m_l \langle N | \bar{u}u + \bar{d}d | N \rangle, \quad m_l = \frac{m_u + m_d}{2}$$

$$\sigma_{0} = m_{l} \langle N | \bar{u}u + \bar{d}d - 2\bar{s}s | N \rangle$$

$$y_{N} = \frac{2 \langle N | \bar{s}s | N \rangle}{\langle N | \bar{u}u + \bar{d}d | N \rangle}$$
the « strangeness » of the nucleon
10

Origin of the Nucleon mass : heavy quarks

Shifman, Vainshtein and Zakharov, Phys.Lett. B78 (1978) 443-446

/0

+In the static limit :

+ σ_h in terms of the sum of the σ -terms for which $m_q < m_h$

$$\sigma_h^X = \frac{2}{27} \left(m_X - \sum_{q=u,d,s} \sigma_q^X \right)$$

- + gluon contribution and heavy quark contributions are related !
- + Radiative corrections Hill and Solon, Phys.Rev. D91 (2015) 043505 Vecchi [1312.5695]

• Explain why
$$\frac{f_N}{m_N} \approx \sum_{q=u,d,s} f_{T_q} \frac{\alpha_q}{m_q} + \frac{2}{27} f_{T_G} \sum_{q=c,b,t} \frac{\alpha_q}{m_q}$$

• Cross section proportional to f_N^2
• Assuming $\sigma_l \sim 38$ MeV, $\sigma_s \sim 87$ MeV, $\sigma_h \sim 60$ MeV

Heavy quark contribution should confirmed by a lattice calculation

Phenomenological estimates

+ σ_I determination :

- π-N scattering data
- extrapolation at the unphysical Cheng-Dashen point
- + σ_s determination :
 - + SU(3) breaking in the spectrum : σ_0

$$\sigma_s = \frac{1}{2} \frac{m_s}{m_l} \left(\sigma_l - \sigma_0 \right) \qquad y_N = 1 - \frac{\sigma_0}{\sigma_l}$$

- + Examples:
 - + GLS : $\sigma_l = 45(8)$ MeV J. Gasser, H. Leutwyler, and M. Sainio, Phys. Lett. B 253, 252 (1991)
 - + GWU : σ_I = 64(7) MeV M. M. Pavan *et al*, PiN Newsl. 16, 110 (2002).
 - + AMO : $\sigma_l = 59(7)$ MeV J. Alarcon, J. Martin Camalich, and J. Oller, Phys. Rev. D85, 051503 (2012)
 - + $\sigma_0 = 36(7)$ MeV B. Borasoy and U.-G. Meissner, Ann. Phys. (Berlin) 254, 192 (1997).
 - ⋆ σ₀ = 58(8) MeV
 J. M. Alarcon, *et al*, Phys. Lett. B 730, 342 (2014)

First principles answers are needed

Lattice techniques

Lattice calculations in a nutshell

• LGT : Compute non perturbatively euclidean correlation functions:

$$\langle O[\bar{\psi},\psi,A_{\mu}]\rangle = \frac{\int D[\bar{\psi}]D[\psi]D[A_{\mu}]e^{-S[\bar{\psi},\psi,A_{\mu}]}O[\bar{\psi},\psi,A_{\mu}]}{Z}$$

- Strategy :
 - Discretize : lattice spacing a, volume V, mass m_f
 - Boltzmann weight: probability distribution
 - Sample : HMC algorithm
 - Compute correlations functions at finite V, a, and m_f.
 - Renormalize if needed
 - Extrapolate to $V=\infty$, a=0 and m_f=0

Theoretically well defined framework ! Errors can be systematically controlled

Lattice calculations in a nutshell

Gauge configuration generation typically run on ~ 10 000 cores !

• Compute non perturbatively euclidean correlation functions:

$$C_{2\text{pts}}^X(t) = \sum_{\vec{x}} \mathcal{P}\langle J(x)J^{\dagger}(0)\rangle \propto e^{-M_X t} + \mathcal{O}(e^{-M_X t}), \quad M_{X^*} > M_X$$

- Sketch of the strategy :
 - Choose J : to give the right quantum numbers,
 - Study the asymptotic behavior

No assumptions on the quark and glue content.

Extracting (bare) Matrix elements

• Compute non perturbatively euclidean correlation functions:

$$R(t,t_s) = \frac{\sum_{\vec{x},\vec{y}} \operatorname{Tr} \left\{ \Lambda \langle J(x)O(y)J^{\dagger}(0) \rangle \right\}}{C_{\text{opts}}^X(t_s)} = \langle X|O(0)|X\rangle + \mathcal{O}(e^{-\Delta M_X(t-t_s)}) + \mathcal{O}(e^{-\Delta M_X t_s})$$

- Sketch of the strategy :
 - Choose Ο, Λ
 - Extract the asymptotic behavior in a 2D plane (t,t_s)
 - Obtain the bare matrix element

Asymptotically exact

Disconnected contributions

• Jargon :

- «Connected» correlation functions only involve quark propagator from different space time points.
- «Disconnected» correlation functions involve quark propagators from the same space time point.
- Examples
 - Connected :

$$\langle \dots \left[\bar{u} \Gamma u - \bar{d} \Gamma d \right] (x) \dots \rangle$$

• Disconnected :

$$\langle \dots \left[\bar{u}\Gamma u + \bar{d}\Gamma d \right] (x) \dots \rangle$$

Why are they fundamental?

- Some relevant observables:
 - Hadronic contribution to the vacuum polarization
 - η, η', σ fermionic operators
 - flavour singlet quantities
 - Isospin breaking quantities (from QED or from mass difference)
 - matrix elements of operator containing only one flavor
- Remark :
 - they are an issue both to compute masses and matrix element

Why are they difficult to estimate?

- Example:
 - Strange σ -term of the Nucleon

$$\sim \langle C_{2\text{pt}}(0 \to y) D_s^{-1}[U](x \to x) \rangle$$

Measures correlations between one object and a UV sensitive quantity !

Twisted mass fermions

Frezzotti, Grassi, Sint, Weisz 1999

• Action:

$$S_{(m_0,\mu)}^{\rm tm} = a^4 \sum_x \bar{\chi}(x) \Big[\gamma_\mu \tilde{\nabla}_\mu + m_0 - r \frac{a}{2} \nabla^*_\mu \nabla_\mu + i\mu \gamma_5 \tau_3 \Big] \chi(x)$$

- m_0 : bare Wilson mass, μ : bare twisted mass
- X : doublet of Dirac spinors
- τ₃: Pauli Matrix
- Wilson fermions : $\mu=0$
- Properties:
 - Break flavor symmetry and parity at finite lattice spacing
 - automatic O(a) improvement if m₀ is properly tuned
 - non degenerate doublet can be added

Theoretically well defined framework ! Errors can be systematically controlled

Twisted mass variance reduction: idea

S. Dinter, VD, R. Frezzotti, G. Herdoiza, K. Jansen, G. Rossi JHEP 1208 (2012) 037

• Twisted Mass doublet Dirac operator :

 $D_{\pm}|U| = D_{\mathrm{W}}|U| + am_0 \pm ia\mu_q\gamma_5$

$$D[U] = \begin{pmatrix} D_+[U] & 0\\ 0 & D_-[U] \end{pmatrix}$$

• Properties :

• We have shown that Bare mass Bare matrix element
$$\label{eq:aremass} \begin{split} \mathbf{\hat{\mu}}_{q} \langle N, \vec{0} \big| \bar{\chi} \gamma_{5} \tau_{3} \chi \big| N, \vec{0} \rangle = \sigma_{\pi N} \end{split}$$

Renormalization group invariant!

• Numerically : exploit the fact that the difference is proportional to the product

twisted mass variance reduction: performances

S. Dinter, VD, R. Frezzotti, G. Herdoiza, K. Jansen, G. Rossi JHEP 1208 (2012) 037

$$\frac{R(t_{\rm op}) = 6a, t_s = 12a)}{dR(t_{\rm op} = 6a, t_s = 12a)} (N_{\rm conf})$$

Huge improvement at fixed numerical cost with twisted mass fermions !

Generalisation to the strange sector

- Trick : introduce at the *valence* level a doublet of strange quark ! They differ by O(a)
- The proof goes through
- Recipe :
 - * Tune mass (μ_s) such that $m_K^{\text{valence}} = m_K^{\text{sea}}$
 - * Write the corresponding Ward-Identities to proof renormalizability

effects

* Deduce that

$$\frac{\mu_s}{2} \langle N, \vec{0} \Big| \bar{\chi}_s i \gamma_5 \tau_3 \chi_s \Big| N, \vec{0} \rangle = \sigma_s$$

$$\text{Idem for } \sigma_c \,!$$

ETMC setup (old)

Frezzotti, Grassi, Sint, Weisz, 1999

- Properties :
 - N_f=2+1+1 simulations : degenerate light flavors (u,d), strange (s) and charm(c) bare Wilson mass, µ : bare twisted mass
 - Lightest pion mass : 230 MeV
 - 3 lattice spacings
 - multiple volumes
- Many results :
 - baryon spectrum and structure
 - flavour physics
 - Hadronic contribution to the g-2
 -

Frezzotti, Grassi, Sint, Weisz 1999

- Properties :
 - $N_f=2$ simulations : degenerate light flavors (u,d) (with clover term)
 - Physical pion mass : ~140 MeV
 - One lattice spacing
 - One volume
- Many results :
 - baryon spectrum and structure
 - flavour physics
 - Hadronic contribution to the g-2
 -

N_f=2+1+1 simulations at the physical pion mass are underway !

Numerical results & systematics

More problems....

- Example σ_l:
 - $N_f=2+1+1$ simulations
 - pion mass : 380 MeV
 - Large statistics
- Technicalities_I:
 - Both connected and disconnected contributions
 - large excited states contamination !!!
 - similar in the strange sector

Alternative : the strangeness

S. Dinter, VD, R. Frezzotti, G. Herdoiza, K. Jansen, G. Rossi JHEP 1208 (2012) 037

- Example y_N:
 - $N_f=2+1+1$ simulations
 - pion mass : 380 MeV
 - Large statistics
- Technicalities
 - Both connected and disconnected contributions
 - Excited states contamination cancels out
 - First 5σ away from 0 results for y_N

Excited states under control ! But what about the other systematics ?

Heavy Baryon Chiral Perturbation Theory

Chiral perturbation theory :

$$m_{\rm PS}^2 = 2Bm_l + \mathcal{O}(m_l^2)$$

- Heavy baryon χPT:
 - + EFT describing interactions of nucleons and pions
 - Expansion in m_{pions /} m_B
- +LO in m_{pions / m_B $m_N(m_{\rm PS}) = m_N^{(0)} - 4c^{(1)}m_{\rm PS}^2 - \frac{3g_A^2}{32\pi f_\pi^2}m_{\rm PS}^3 + \mathcal{O}(m_{\rm PS}^4)$ + FH theorem : + $\sigma_q^X \equiv m_q \frac{\partial}{\partial m_q} m_X$}

+Chiral expansion of $\sigma_{L_{2}}$

$$\sigma_l(m_{\rm PS}) = m_{\rm PS}^2 \left(-4c^{(1)} - \frac{3}{2} \frac{3g_A^2}{16\pi f_\pi^2} m_{\rm PS} + \mathcal{O}(m_{\rm PS}^2) \right)$$

-4 c⁽¹⁾ must be strictly positive

What about the strangeness ?

- + Chiral perturbation theory : $m_{\mathrm{PS}}^2 = 2Bm_l + \mathcal{O}(m_l^2)$
- + Heavy baryon xPT: $m_N(m_{\rm PS}) = m_N^{(0)} - 4c^{(1)}m_{\rm PS}^2 - \frac{3g_A^2}{32\pi f_\pi^2}m_{\rm PS}^3 + \mathcal{O}(m_{\rm PS}^4)$

+ σ_s ansatz :

$$\sigma_s(m_{\rm PS}) = m_s \left(d_0 + d_1 m_{\rm PS}^2 + \mathcal{O}(m_{\rm PS}^3) \right)$$

+y_N expansion : (neglecting the strange quark mass depend of m_{PS})

$$y_N = 2 \frac{\partial m_N}{\partial m_s} \left(\frac{\partial m_{\rm PS}^2}{\partial m_l} \frac{\partial m_N}{\partial m_{\rm PS}^2} \right)^{-1}$$

 $y_N = y_N^{(0)} + y_N^{(1)} m_{\text{PS}} + \mathcal{O}(m_{\text{PS}}^2)$, with $y_N^{(0)} = \frac{d_0}{-4Bc^{(1)}}$, $y_N^{(1)} = \frac{9d_0g_A^2}{64\pi B(4c^{(1)})^2 f_{\text{PS}}^2}$

y_N should be an increasing function of m_{PS}!

Chiral behavior y_N

- Setup:
 - $N_f=2+1+1$ simulations
 - Several lattice spacings

0.05

0.00

0.1

- Several volumes
- Chiral extrapolation

ETM Collaboration, Phys.Rev. D91 (2015) no.9, 094503

0.2

0.3

m_{PS} [GeV]

0.4

Chiral behavior y_N

- Setup:
 - $N_f=2+1+1$ simulations
 - Several lattice spacings
 - Several volumes
 - y_N=0.17(5)

ETM Collaboration, Phys.Rev. D91 (2015) no.9, 094503

New setup :

European Twisted Mass Collaboration

ETM Collaboration, [1601.01624]

Setup:

 ${\color{black}\bullet}$

- N_f=2 simulations
- Physical pion mass
- s and c are «quenched»
- σ_I=37(3)(10) MeV
- σ_s=41(8)(10) MeV
- σ_c=79(21)(2) MeV

RQCD collaboration

BMW collaboration

- Setup:
 - N_f=2+1 simulations
 - Physical pion mass
 - FH approach
 - σ_l=38(3)(3) MeV
 - σ_s=105(41)(37) MeV
 - y_N=0.20(8)(8)

BMW Collaboration, [PRL 116 (2016) no. 17, 172001]

- Hadronic uncertainties to interpret direct detection constraints
- Cross section controlled by the σ -terms for each quark flavors
- Theoretical interest : Dynamical origin of the nucleon's mass
- Lattice calculations are challenging :
 - Disconnected diagrams
 - Systematics are difficult to control
 - Heavy quark content should be addressed...

- ETM Collaboration :
 - First results of a direct calculation of y_N
 - ◆ Results for o₁ encouraging @ the physical point
 (N_f=2)
 - ◆ Looking forward for N_f=2+1+1 simulations
- Other group :
 - light sector : $\sigma_1 \sim 38 \text{ MeV}$
 - strange sector : $35 \text{ MeV} < \sigma_s < 150 \text{ MeV}$