Threshold resummation in SCET vs pQCD: an analytic comparison

Marco Bonvini

DESY Hamburg

University of Münster, May 6, 2013

Work in collaboration with: Stefano Forte, Margherita Ghezzi, Giovanni Ridolfi

Disclaimer

I'm not a Soft-Collinear Effective Theory expert.

MB, Forte, Ridolfi, NPB 847 (2011) 93-159 (arXiv:1006.5918) Threshold resummation for Drell-Yan pair production (inclusive invariant-mass and rapidity distributions) Framework: *perturbative QCD*

Becher, Neubert, Xu, JHEP 0807 (2008) 030 (arXiv:0710.0680) Threshold resummation for Drell-Yan pair production (inclusive invariant-mass and rapidity distributions) Framework: *SCET*

MB, Forte, Ghezzi, Ridolfi NPB 861 (2012) 337-360 (arXiv:1201.6364) arXiv:1301.4502

- 2 Threshold resummation in QCD
- Threshold resummation in SCET

4 Comparison

Factorization theorem

Production of a system with high invariant mass M (Higgs, Drell-Yan pair, top pair, ...) at a collider with center of mass energy \sqrt{s}

Inclusive cross-section:

$$\sigma(\tau, M^2) = \int dz \int dx_1 \int dx_2 f_1(x_1) f_2(x_2) C\left(z, \alpha_s(M^2)\right) \delta(x_1 x_2 z - \tau)$$
$$= \int_{\tau}^{-1} \frac{dz}{z} \mathscr{L}\left(\frac{\tau}{z}\right) C\left(z, \alpha_s(M^2)\right), \qquad \tau = \frac{M^2}{s}$$

parton luminosity [long distance, *universal*]:

$$\mathscr{C}(x) = \int_x^1 \frac{dy}{y} f_1\left(\frac{x}{y}\right) f_2(y)$$

partonic coefficient function [short distance, computable in pQCD]:

$$C(z, \alpha_s) = \delta(1-z) + \alpha_s C^{(1)}(z) + \alpha_s^2 C^{(2)}(z) + \dots$$

Hadronic vs Partonic Threshold

$$\sigma(\tau, M^2) = \int dz \int dx_1 \int dx_2 f_1(x_1) f_2(x_2) C(z, \alpha_s(M^2)) \delta(x_1 x_2 z - \tau)$$
$$= \int_{\tau}^{-1} \frac{dz}{z} \mathscr{L}\left(\frac{\tau}{z}\right) C(z, \alpha_s(M^2))$$

 $s = (p_1 + p_2)^2$ hadronic c.m.e. $\hat{s} = (x_1p_1 + x_2p_2)^2$ partonic c.m.e. $= x_1x_2s$

hadronic (physical) threshold:

```
partonic threshold:
```


Threshold (soft) logarithms

Multiple gluon emissions contribute to the partonic coefficient function

They induce terms

$$C(z,\alpha_s) \ni \alpha_s^n \left[\frac{\ln^k (1-z)}{1-z} \right]_+, \qquad 0 \le k \le 2n-1$$

In the partonic threshold limit $\hat{s} \sim M^2$,

$$z = \frac{M^2}{\hat{s}} \to 1$$

the remaining available energy for gluon radiation is low (soft gluons).

In this limit, these logs become large, spoiling the perturbativity of the series.

Threshold resummation

In the *partonic* threshold limit $z \rightarrow 1$, any finite-order truncation of the *partonic* coefficient function is meaningless.

The threshold logarithms must be resummed

In real life, when is threshold resummation needed?

$$\sigma(\tau) = \int_{\tau}^{1} \frac{dz}{z} \mathscr{L}\left(\frac{\tau}{z}\right) C(z, \alpha_s), \qquad \tau = \frac{M^2}{s}$$

- $\tau \sim 1$ (hadronic threshold limit): $z \in [\tau, 1]$ always in the threshold region \Rightarrow Resummation is mandatory
- $\tau \ll 1$ (the typical case at LHC!!): $z \sim 1$ always included in the integration region, but is the contribution from that region relevant/dominant? \Rightarrow **Resummation might be advisable**

[MB, Forte, Ridolfi, NPB 847 (2011) 93-159] [MB, Forte, Ridolfi, PRL 109 (2012) 102002]

Threshold resummation in QCD

Consider only soft (=threshold) terms

$$C_{\text{soft}}(z,\alpha_s) = \delta(1-z) + \sum_{n=1}^{\infty} \alpha_s^n \left(a_n \delta(1-z) + \sum_{k=0}^{2n-1} c_{nk} \left[\frac{\ln^k (1-z)}{1-z} \right]_+ \right)$$

and take the Mellin transform ($z \sim 1 \Rightarrow \text{large } N$)

$$C_{\text{soft}}(N,\alpha_s) = \int_0^1 dz \, z^{N-1} C_{\text{soft}}(z,\alpha_s)$$
$$= 1 + \sum_{n=1}^\infty \alpha_s^n \sum_{k=0}^{2n} \hat{c}_{nk} \ln^k N$$

The series can be resummed, up to some finite logarithmic accuracy.

[Catani, Trentadue, NPB 327 (1989) 323] [Sterman, NPB 281 (1987) 310]

Example: leading logarithmic accuracy (LL) and fixed coupling

Threshold resummation in QCD

$$C_{\text{soft}}(N, \alpha_s) = 1 + \sum_{n=1}^{\infty} \alpha_s^n \sum_{k=0}^{2n} \hat{c}_{nk} \ln^k N$$

$$\hookrightarrow \quad \text{LL, fixed coupling } \alpha_s$$

$$C_{\text{soft}}^{\text{LL,fc}}(N,\alpha_s) = 1 + \sum_{n=1}^{\infty} \hat{c}_{n,2n} \left(\alpha_s \ln^2 N\right)^n$$

One can prove that multiple emissions factorize

$$(n\text{-emissions}) \stackrel{\text{LL,fc}}{=} \frac{(\text{single-emission})^n}{n!} \implies \hat{c}_{n,2n} = \frac{(\hat{c}_{1,2})^n}{n!}$$

Therefore we get

$$C_{\text{soft}}^{\text{LL,fc}}(N, \alpha_s) = \exp\left[\alpha_s \, \hat{c}_{1,2} \ln^2 N\right]$$

 $\label{eq:crucial-ingredient: factorization of soft radiation} Factorization takes place in N space!$

Beyond LL and including running-coupling effects:

$$C_{\text{soft}}(N,\alpha_s) = g_0(\alpha_s) \exp \int_0^1 dz \, \frac{z^{N-1} - 1}{1 - z} \\ \times \left[\int_{M^2}^{M^2(1-z)^2} \frac{d\mu^2}{\mu^2} 2A\left(\alpha_s(\mu^2)\right) + D\left(\alpha_s([1-z]^2M^2)\right) \right] \\ = g_0(\alpha_s) \exp \left[\underbrace{\frac{1}{\alpha_s}g_1(\alpha_sL)}_{\text{LL}} + \underbrace{g_2(\alpha_sL)}_{\text{NLL}} + \underbrace{\alpha_sg_3(\alpha_sL)}_{\text{NNLL}} + \dots \right]$$

with $L = \ln N$.

Logarithmic counting at the exponent, assuming $\alpha_s L \sim 1$.

4

Finally, we have to go from N space back to z space.

The inverse Mellin transform does not exist, because of the Landau pole of the running coupling $\alpha_s.$

Alternatively, expand in α_s and invert term by term: divergent series.

A prescription is needed...

Summary:

- Resummation is based on factorization of soft emissions
- Factorization (and hence resummation) takes place in N space
- Due to the Landau pole, going back to z space requires extra work
- The *partonic* logarithms in the *partonic* coefficient function are resummed

Threshold resummation in SCET

General idea of effective theories: at low energy scales, degrees of freedom associated with higher scales are no longer dynamical and can be integrated out.

Factorization in SCET:

$$C_{\text{SCET}}(z, M^2, \mu_s^2) = H(M^2) U(M^2, \mu_s^2) S\left(\mu_s^2, \frac{M^2(1-z)^2}{\mu_s^2}\right)$$

 $H(M^2)$:hard function (matching at the hard scale $\mu_H = M$) $U(M^2, \mu_s^2)$:RG evolution from $\mu_H = M$ down to μ_s $S\left(\mu_s^2, \frac{M^2(1-z)^2}{\mu_s^2}\right)$:soft function (matching at the soft scale μ_s) μ_s :soft scale

The soft scale μ_s should be of the order of M(1-z).

Formally, $C_{\rm SCET}(z, M^2)$ does not depend on μ_s . However, this is a perturbative statement, so a residual dependence on μ_s remains.

3

[Becher, Neubert, Xu, JHEP 0807 (2008) 030]

$$U(M^2, \mu_s^2) = \exp\left\{-\int_{M^2}^{\mu_s^2} \frac{d\mu^2}{\mu^2} \left[\Gamma_{\text{cusp}}\left(\alpha_s(\mu^2)\right) \ln \frac{\mu^2}{M^2} - \gamma_W\left(\alpha_s(\mu^2)\right)\right]\right\}$$

resums $\ln \frac{\mu_s^2}{M^2}$, and produces single and double logs.

$$\begin{split} S\left(\mu_{s}^{2}, \frac{M^{2}(1-z)^{2}}{\mu_{s}^{2}}\right) &= (1-z)^{2\eta-1} \,\tilde{s}_{\mathrm{DY}}\left(\ln\frac{M^{2}(1-z)^{2}}{\mu_{s}^{2}} + \partial_{\eta}, \, \alpha_{s}(\mu_{s})\right) \frac{e^{-2\gamma\eta}}{\Gamma(2\eta)} \\ \eta &= \int_{M^{2}}^{\mu_{s}^{2}} \frac{d\mu^{2}}{\mu^{2}} \Gamma_{\mathrm{cusp}}\left(\alpha_{s}(\mu^{2})\right) \end{split}$$

resums both $\ln \frac{\mu_s^2}{M^2}$ and $\ln(1-z)$, and produces single logs and *mixed* double logs.

The choice of the soft scale μ_s determines what is being resummed

 $C_{\rm SCET}(z,M^2,\mu_s^2)$ leads to many different results depending on μ_s :

- $\mu_s \sim M$: nothing is resummed, fixed-order result in the soft limit is reproduced (by construction of SCET)
- $\mu_s \sim M(1-z)$: natural partonic choice, resums $\ln(1-z)$
- $\mu_s \sim M/N$: natural partonic choice in N space, resums $\ln N$
- $\mu_s \sim M(1-\tau)$: hadronic choice suggested by Becher, Neubert, Xu

Comparison: $\mu_s \sim M(1-z)$

 $C_{\rm QCD}(N,M^2)$ $(C_{\rm soft})$ has no inverse Mellin because of the Landau pole. We could expand in α_s and invert order by order, but the resulting series is divergent.

Conversely, $C_{\text{SCET}}(z, M^2, \mu_s^2 = M^2(1-z)^2)$ is formally defined.

Does SCET provide a valid *z*-space expression? No.

Order by order in $\alpha_s,$ and away from the endpoint z = 1, QCD and SCET expressions coincide.

However, the Landau pole problem is still there: $\alpha_s \left(M^2 (1-z)^2 \right)$

Moreover, the SCET expression is not defined in z = 1

Possible way out: cutoff the convolution integral at $z = \overline{z} < 1$ [Beneke, Falgari, Klein, Schwinn, NPB 855 (2012) 695-741]

Comparison in Mellin space

The QCD resummed expression is in Mellin space, therefore a comparison is appropriate in Mellin space.

Taking the Mellin transform of the SCET result at μ_s fixed:

 $C_{\text{SCET}}(N, M^2, \mu_s^2) = C_r(N, M^2, \mu_s^2) C_{\text{QCD}}(N, M^2)$

with $(\overline{N} = Ne^{\gamma})$ [arXiv:1301.4502]

$$C_r(N, M^2, \mu_s^2) = \frac{E\left(\frac{M^2}{N^2}, \mu_s^2\right)}{E(M^2, M^2)} \exp \hat{S}\left(\mu_s^2, \frac{M^2}{\bar{N}^2}\right)$$

To NNLL, we have

$$\begin{split} \hat{S}\left(\mu_s^2, \frac{M^2}{\bar{N}^2}\right) &= \int_{M^2/\bar{N}^2}^{\mu_s^2} \frac{d\mu^2}{\mu^2} \left[\Gamma_{\text{cusp}}\left(\alpha_s(\mu^2)\right) \ln \frac{M^2}{\mu^2 \bar{N}^2} + \hat{\gamma}_W\left(\alpha_s(\mu^2)\right) \right] \\ &= \left(\frac{M^2}{\bar{N}^2}, \mu_s^2\right) = \tilde{s}_{\text{DY}}\left(\ln \frac{M^2}{\mu_s^2 \bar{N}^2}, \alpha_s(\mu_s^2)\right) \exp\left[-\frac{\zeta_2}{2} \frac{C_F}{\pi} \alpha_s(\mu_s^2)\right] \end{split}$$

Comparison: $\mu_s \sim M/N$

Notice that for $\mu_s = M/\bar{N}$

$$C_r\left(N, M^2, \mu_s^2 = \frac{M^2}{\bar{N}^2}\right) = \frac{E\left(\frac{M^2}{\bar{N}^2}, \frac{M^2}{\bar{N}^2}\right)}{E(M^2, M^2)} = 1 + \mathcal{O}\left(\alpha_s^3 \ln N\right) \quad \text{(at NNLL)}$$

leading difference = $\alpha_s^3 L \times \alpha_s^n L^{2n} = \alpha_s^{(n+3)} L^{2(n+3)-5} = \alpha_s^m L^{2m-5} = \text{NNNLL*}$

For $\mu_s = M/\bar{N}$, SCET and QCD coincide

$$C_{\text{SCET}}\left(N, M^2, \mu_s^2 = \frac{M^2}{\bar{N}^2}\right) = C_{\text{QCD}}(N, M^2) + \text{higher logarithmic orders}$$

But they also share the same Landau pole problem...

This result has been already proved before to all logarithmic orders: DIS: [Becher, Neubert, Pecjak, JHEP 0701 (2007) 076] DY: [Becher, Neubert, Xu, JHEP 0807 (2008) 030]

SCET as an alternative way to obtain the same result as in QCD

Choose μ_s to be related to hadron-level kinematics

[Becher, Neubert, Xu, JHEP 0807 (2008) 030]

 $\mu_s = M(1-\tau)$

Remarks:

• meaningful at hadron-level only (partonic comparison not possible)

$$\sigma_{\text{SCET}}(\tau, M^2) = \int_{\tau}^{1} \frac{dz}{z} \mathscr{L}\left(\frac{\tau}{z}\right) C_{\text{SCET}}\left(z, M^2, \mu_s^2 = M^2(1-\tau)^2\right)$$

- resums $\ln \frac{\mu_s}{M} = \ln(1-\tau)$: useful only at large τ
- provided τ is not too close to 1 (so that $\mu_s > \Lambda_{\rm QCD}),$ the Landau pole is avoided

Factorization is violated

 τ dependence in contrast with the factorization theorem

$$\sigma_{\text{SCET}}(\tau, M^2) = \int_{\tau}^{1} \frac{dz}{z} \mathscr{L}\left(\frac{\tau}{z}\right) C_{\text{SCET}}\left(z, M^2, M^2(1-\tau)^2\right)$$
$$= \int dx \int dz \,\mathscr{L}(x) \, C_{\text{SCET}}\left(z, M^2, M^2(1-\tau)^2\right) \,\delta(xz-\tau)$$

For instance, in N space it does not become a product.

Objection from the SCET community:

in $\mu_s = M(1 - \tau)$, τ is just a label, and it has not to be considered as a dynamical variable.

Nevertheless, it's a fact that the *partonic* coefficient function depends on *hadron-level* physics, while it should not.

Hadronic comparison

In this case, we should count powers of $\ln(1-\tau)$ at the level of σ .

$$C_{\text{SCET}}(N, M^2, \mu_s^2) = C_r(N, M^2, \mu_s^2) C_{\text{QCD}}(N, M^2)$$
$$C_{\text{SCET}}(z, M^2, \mu_s^2) = \int_z^1 \frac{dz'}{z'} C_r(z', M^2, \mu_s^2) C_{\text{QCD}}\left(\frac{z}{z'}, M^2\right)$$

(formal expression, valid only order by order)

$$\sigma_{\rm SCET}(\tau, M^2, \mu_s^2) = \int_{\tau}^{1} \frac{dz}{z} C_r(z, M^2, \mu_s^2) \sigma_{\rm QCD}\left(\frac{\tau}{z}, M^2\right)$$

Strategy:

Expanding the NNLL expression of C_r in powers of α_s and plugging it into the previous equation

$$C_r(N, M^2, \mu_s^2) = \left[1 + \mathcal{O}\left(\alpha_s^3 \ln \frac{\mu_s^2}{M^2}\right)\right] \times \left[1 + F_r\left(\alpha_s(\mu_s), \ln \frac{M^2}{\mu_s^2 \bar{N}^2}\right)\right]$$

$$\sigma_{\text{SCET}}(\tau, M^2, \mu_s^2 = M^2 (1 - \tau)^2) = \left[1 + \mathcal{O}\left(\alpha_s^3 \ln(1 - \tau)\right)\right] \times \sigma_{\text{QCD}}(\tau, M^2)$$

At large $\tau,$ the largest logarithmic content of σ is

$$\sigma_{\text{QCD}}(\tau, M^2) \sim \sum_n \alpha_s^n \sum_p \ln^{2n+p} (1-\tau)$$

where $\ln^p(1-\tau)$ is a PDF contribution.

Therefore, the largest contribution to the difference QCD-SCET is (m = n + 3)

$$\sigma_{\text{SCET}}(\tau, M^2, M^2(1-\tau)^2) - \sigma_{\text{QCD}}(\tau, M^2) \sim \sum_m \alpha_s^m \sum_p \ln^{2m-5+p}(1-\tau)$$

If we neglect p, we can say that the difference is NNNLL*. (Argument valid to all orders)

However, this conclusion is spoiled by the PDF dependent contribution: the discrepancy can become arbitrarily large depending on p.

What about small τ ?

Remember: Higgs at LHC $\tau \sim 10^{-4}$

```
M(1-\tau) \simeq M is a hard scale!
```

We are back in a situation in which $\sigma_{\rm SCET}$ reproduces a fixed order result in the soft limit.

What do Becher-Neubert-Xu exactly do in the small- τ case?

Becher, Neubert, Xu suggest a soft scale determined by minimization of perturbative contributions of $\tilde{s}_{\rm DY}$ to the cross-section; they propose

$$\mu_s = \frac{M(1-\tau)}{1+7\tau} \sim M$$
 or $\mu_s = \frac{M(1-\tau)}{\sqrt{6+150\tau}} \sim \frac{M}{\sqrt{6}}$

In the second case, they resum $\ln \sqrt{6}$ and single logs $\ln(1-z)$. However, this is not threshold resummation (double logs).

Conclusions

- SCET provides an interesting and possibly powerful framework for computations valid in the soft (threshold) limit
- the result of a SCET computation, $C_{\text{SCET}}(z, M^2, \mu_s^2)$, depends in fact on a soft scale μ_s , which is not fixed by the formalism
- different choices of the soft scale lead to different results
- $\mu_s = M$: coincides with fixed-order QCD in the soft limit
- $\mu_s = M(1-z)$: resums $\ln(1-z)$, coincides with QCD order by order, but is not defined in z = 1 and has the Landau pole problem
- $\mu_s = M/\bar{N}$: resums $\ln N$, coincides with QCD (same Landau pole problem)
- $\mu_s = M(1 \tau)$:
 - $\tau \sim 1$: resums $\ln(1 \tau)$, no Landau pole, PDF dependence
 - $\tau \ll 1$: nothing is resummed

general comment: this is not threshold resummation in the usual sense.

Backup slides

Logarithmic accuracy

$C(N,M^2) = 1 + \sum_{n=1}^{\infty} \alpha_s^n \sum_{k=0}^{2n} \hat{c}_{nk} L^k \qquad \ln C(N,M^2) = \sum_{n=1}^{\infty} \alpha_s^n \sum_{k=0}^{n+1} \hat{b}_{nk} L^k$					
QCD: SCET:	$A(lpha_s)$ $\Gamma_{ m cusp}(lpha_s)$	$D(lpha_s) \ \gamma_W(lpha_s)$	$g_0(lpha_s)$ H , $ ilde{s}_{ m DY}$	$L = \ln N$ $L = \ln(\mu_s/M)$	
				accuracy: c_{nk}	o_{nk}
LL	1-loop	—	tree-level	k = 2n	k = n + 1
NLL*	2-loop	1-loop	tree-level	$2n-1 \leq k \leq 2n$	$n \leq k \leq n+1$
NLL	2-loop	1-loop	1-loop	$2n-2 \le k \le 2n$	$n \leq k \leq n+1$
NNLL*	3-loop	2-loop	1-loop	$2n-3 \le k \le 2n$	$n-1 \leq k \leq n+1$
NNLL	3-loop	2-loop	2-loop	$2n-4 \leq k \leq 2n$	$n-1 \leq k \leq n+1$

Starred counting: appropriate for $\ln C(N, M^2)$, assumes $\alpha_s L \sim 1$ Un-starred counting: more appropriate for $C(N, M^2)$, assumes $\alpha_s L^2 \sim 1$

Comparison: $\mu_s \sim M(1-z)$

Example: LL, fixed coupling:

In QCD we have

$$C_{\rm QCD}^{\rm LL,fc}(N,M^2) = \exp\left[\alpha_s \,\hat{c}_{1,2} \,\ln^2 N\right]$$

whose inverse Mellin is

$$C_{\text{QCD}}^{\text{LL,fc}}(z, M^2) = \delta(1-z) + \left[\frac{1}{1-z} \exp\left(\alpha_s \, \hat{c}_{1,2} \, \frac{\partial^2}{\partial \xi^2}\right) \frac{(1-z)^{\xi}}{\Gamma(\xi)} \bigg|_{\xi=0} \right]_+$$

In SCET we have

$$C_{\text{SCET}}^{\text{LL,fc}}\left(z, M^2, M^2(1-z)^2\right) = 2\alpha_s \hat{c}_{1,2} \frac{\ln(1-z)}{1-z} \exp\left[\alpha_s \,\hat{c}_{1,2} \ln^2(1-z)\right]$$

The two expression coincide (for $z \neq 1$) at leading $\ln(1-z)$. However, even the QCD expression with plus-distribution leads to a divergent integral with any test function.

[Catani, Mangano, Nason, Trentadue, NPB 478 (1996) 273]

$$C_{r}(N, M^{2}, \mu_{s}^{2}) = \frac{E(\mu_{s}^{2}, \mu_{s}^{2})}{E(M^{2}, M^{2})} \left[1 + F_{r}\left(\alpha_{s}(\mu_{s}), \ln \frac{M^{2}}{\mu_{s}^{2}\bar{N}^{2}}\right) \right]$$
$$C_{r}(z, M^{2}, \mu_{s}^{2}) = \frac{E(\mu_{s}^{2}, \mu_{s}^{2})}{E(M^{2}, M^{2})} \left[\delta(1-z) + F_{r}\left(\alpha_{s}(\mu_{s}), 2\frac{\partial}{\partial\xi}\right) \frac{(1-\tau)^{-\xi} \ln^{\xi-1} \frac{1}{z}}{e^{\gamma\xi}\Gamma(\xi)} \right|_{\xi=0} \right]$$

Plugging into $\sigma_{\rm SCET}$ = $C_r \otimes \sigma_{\rm QCD}$ we get

$$\sigma_{\text{SCET}}(\tau, M^2, \mu_s^2) = \frac{E(\mu_s^2, \mu_s^2)}{E(M^2, M^2)} \left[\sigma_{\text{QCD}}(\tau, M^2) + F_r\left(\alpha_s(\mu_s), 2\frac{\partial}{\partial\xi}\right) \Sigma\left(\tau, M^2, \xi\right) \Big|_{\xi=0} \right]$$

with

$$\Sigma\left(\tau, M^{2}, \xi\right) = \frac{(1-\tau)^{-\xi}}{e^{\gamma\xi}\Gamma(\xi)} \int_{\tau}^{1} \frac{dz}{z} \left(\ln\frac{1}{z}\right)^{\xi-1} \sigma\left(\frac{\tau}{z}, M^{2}\right)$$
$$= \sum_{k=0}^{\infty} c_{k}(\xi) \frac{d^{k}\sigma(\tau, M^{2})}{d\ln^{k}(1-\tau)} \left[1 + \mathcal{O}(1-\tau)\right]$$