Generating Functionals for Stochastic Differential Equations (Burgers Equation)

Dirk Homeier

19.05 .2008
(1) Motivation - from Navier-Stokes- to Burgers Equation

Dirk Homeier

Content
Motivation - from Navier-Stokes- to Burgers Equation

MSR-Functional of Burgers Equation (Except Determinant)

The Determinant
MC-Calculations
Summary and Outlook
(2) MSR-Functional of Burgers Equation (Except Determinant)
(3) The Determinant
(4) MC-Calculations
(5) Summary and Outlook

Navier-Stokes-Equation 1/3

Classical, newtonian, incompressible fluid to be described by:

- Navier-Stokes-Equation:

$$
\begin{equation*}
\partial_{t} v_{\alpha}+v_{\beta} \partial_{\beta} v_{\alpha}-\nu \nabla^{2} v_{\alpha}+\frac{1}{\rho} \partial_{\alpha} p=0 \tag{1}
\end{equation*}
$$

- Condition of Incompressibility:

$$
\begin{equation*}
\partial_{\alpha} v_{\alpha}=0 \tag{2}
\end{equation*}
$$

We are looking for the statistical properties of the (turbulent) 3-dimensional velocity field v.

Navier-Stokes-Equation 2/3

Why is the NSE an open problem? The equation is

- nonlinear: The term $v_{\beta} \partial_{\beta} v_{\alpha}$ leads to chaotic and turbulent behaviour, huge mathematical problems!
- nonlocal: Incompressibility, which enters the NSE via the pressure, renders the equation nonlocal, huge technical problems!
\rightarrow In general, the full NSE is hard (impossible) to deal with.
\rightarrow Opposing opinions concerning the nature of turbulence
\rightarrow Need for simplifications, test systems

Content

Motivation - from Navier-Stokes- to Burgers Equation

Navier-Stokes-Equation 3/3

Possible simplications:

- Concerning Nonlinearity: Look only at systems, in which the diffusion term is much larger than the convection term,

$$
\begin{equation*}
R=\frac{(v \nabla) v}{\nu \nabla^{2} v} \propto \frac{L V}{\nu} \ll 1 \tag{3}
\end{equation*}
$$

\rightarrow laminar regime, very realistically describes slow flows with small disturbancies.

- Concerning Nonlocality: Drop the pressure term. \rightarrow Completely compressible fluid, Burgers Equation

Burgers Equation 1/3

$$
\begin{equation*}
\partial_{t} v_{\alpha}+v_{\beta} \partial_{\beta} v_{\alpha}-\nu \nabla^{2} v_{\alpha}=0 \tag{4}
\end{equation*}
$$

- Shock wave turbulence
- Not believed to be a good model for hydrodynamic turbulence, but can be seen as a toy model for testing methods!
- Related to KPZ-Equation (Surface Growth)

$$
\partial_{t} \psi=\frac{1}{2}|\nabla \psi|^{2}+\nu \nabla^{2} \psi+F
$$

- Also used in cosmology (Zel'dovich approximation), polymers,...

Burgers Equation 2/3

Solutions exist and are well known, in 1D for vanishing viscosity:

Kink solutions at arbitrary position and slope $\frac{1}{t}$ in periodic boundary conditions in x

Burgers Equation 3/3

Statistics are still intermittent (but in a very different way, compared to NSE):

Scaling Exponents of the structure functions

$$
\begin{equation*}
S_{p}(x):=\left\langle\left[\left(\vec{v}\left(\vec{r}+x \overrightarrow{l_{0}}\right)-\vec{v}(\vec{r})\right) * \vec{l}_{0}\right]^{p}\right\rangle=C_{p} x^{\xi_{p}} \tag{5}
\end{equation*}
$$

Stochastic Force

Due to viscosity, the system is nonconservative \rightarrow Conversion of kinetic energy to heat
\rightarrow any field configuration reduces to a trivial one in the long time limit
Non-trivial, statistically static configurations only with an external source of energy
\rightarrow driving gaussian random force!

$$
\begin{equation*}
\partial_{t} v_{\alpha}+v_{\beta} \partial_{\beta} v_{\alpha}-\nu \nabla^{2} v_{\alpha}=f_{\alpha} \tag{6}
\end{equation*}
$$

write that as:

$$
\begin{equation*}
\mathbf{N}_{\alpha}[v]=f_{\alpha} . \tag{7}
\end{equation*}
$$

Sum of States $1 / 4$

Counting the solutions of the stochastically driven Burgers Equation, we get the corresponding sum of states Z :

$$
\begin{align*}
Z & \propto\left\langle\int D v \delta\left(v-\mathbf{N}^{-\mathbf{1}}[f]\right)\right\rangle_{f} \tag{8}\\
& \propto \int D f D v \delta\left(v-\mathbf{N}^{-\mathbf{1}}[f]\right) e^{-\frac{1}{2} \int f A f} \tag{9}\\
& \propto \int D f D v \delta(\mathbf{N}[v]-f) * \operatorname{DET} * e^{-\frac{1}{2} \int f A f} \tag{10}
\end{align*}
$$

with the functional determinant

$$
\begin{equation*}
\mathrm{DET}=\left|\frac{\delta \mathbf{N}_{\alpha}[v](x)}{\delta v_{\beta}(y)}\right| \tag{11}
\end{equation*}
$$

Sum of States 2/4

The δ-function can be rewritten by means of a functional Fourier-transformation:

$$
\begin{equation*}
\delta(\mathbf{N}[v]-f)=\int D u e^{i \int u(\mathbf{N}[v]-f)} . \tag{12}
\end{equation*}
$$

The new field u can be looked at as

- Lagrange-multiplicator forcing the Burgers Equation to be valid, or as
- book-keeping field picking up the contributions to the energy which otherwise would be converted to heat (original ansatz followed by MSR).

Content
Motivation - from Navier-Stokes- to Burgers Equation

MSR-Functional of Burgers Equation (Except
Determinant)

The Determinant

MC-Calculations
Summary and Outlook

Sum of States 3/4

The gaussian random force is integrated out now, in 1D leading to:
$Z \propto \int D u D v * \operatorname{DET} * e^{i \int u\left(\partial_{t} v+v \partial_{x} v-\nu \nabla^{2} v\right)-\frac{1}{2} \int u A^{-1} u}$.

- uu-Propagator: $-\frac{1}{2} \int u A^{-1} u$
- $u v$-Propagator: $i \int u\left(\partial_{t}-\nu \nabla^{2}\right) v$
\rightarrow diffusion propagator, only causal solution!
$\rightarrow \propto \theta(t)$
- uvv-Vertex: $i \int u v \partial_{x} v$

Sum of States 4/4

We might even integrate out the field u :
$Z \propto \int D v * D E T * e^{-\frac{1}{2} \int\left(\partial_{t} v+v \partial_{x} v-\nu \nabla^{2} v\right) A\left(\partial_{t} v+v \partial_{x} v-\nu \nabla^{2} v\right)}$.

- $v v$-Propagator: Can be read off the quadratic term, only Feynman-solution!
\rightarrow Pertubation theory possible in the standard way.
- various interactions

Determinant - Version 1/2
writing the determinant as

$$
\begin{equation*}
\mathrm{DET}=e^{\ln \operatorname{det}(O)}=e^{\operatorname{Tr} \ln (O)} \tag{15}
\end{equation*}
$$

permits to calculate it explicitly, we get for a general stochastic differential equation of first order in the time derivative

$$
\begin{align*}
& \left(\partial_{t}-D_{0}(\nabla)\right) v-F[v]=f \tag{16}\\
& \quad \rightarrow \mathrm{DET} \propto e^{-\theta(0) \operatorname{Tr}\left[\frac{\delta F}{\delta v}\right]} \tag{17}
\end{align*}
$$

what is $\theta(0)$??? why this ambiguity?

Parenthesis - the $\theta(0)$-Problem $1 / 4$
Also is known from path integral quantization of a charge in a magnetic field,

$$
\begin{equation*}
H=\frac{1}{2 m}[p+e A(q)]^{2}+V(q), \tag{18}
\end{equation*}
$$

leading to the hermitic quantum hamiltonian

$$
\begin{equation*}
\hat{H}=\frac{1}{2 m}\left[\hat{p}^{2}+e \hat{p} \hat{A}(\hat{q})+e \hat{A}(\hat{q}) \hat{p}+e^{2} \hat{A}(\hat{q})^{2}\right]+V(\hat{q}) . \tag{19}
\end{equation*}
$$

If V is not altered, this is dictated by hermiticity. But also any non-hermitic hamiltonian will naively lead to the same continuum limit of the generating functional with the action

$$
\begin{equation*}
\left.S(q)=\int \frac{1}{2} \dot{(q)^{2}}+i e A(q) \dot{(} q\right)+V(q)!?! \tag{20}
\end{equation*}
$$

Parenthesis - the $\theta(0)$-Problem 2/4

Hermiticity is invariance of S under complex conjugation and inversion of time.
Another ordering of \hat{p} and \hat{A} in \hat{H} corresponds to a non-symmetric definition of the time derivation, and is compensated by a term proportional to the commutator:

$$
\begin{equation*}
-\frac{1}{2} i e \epsilon(0) \hbar \nabla A(q) \tag{21}
\end{equation*}
$$

This term exactly cancels the direct $\dot{q} q$-loops!
The choice $\epsilon(0)=0$ lets time differentiation and averaging commute.

Parenthesis - the $\theta(0)$-Problem 3/4

Analogy between quantization of a charge in a magnetic field and our problem with Burgers Equation:

- DET exactly cancels the direct $u v$ loops, and
- corresponds to different discretizations of the time derivative.

But - why can there be an operator ordering problem in a classical theory?

Parenthesis - the $\theta(0)$-Problem 3/4

Analogy between quantization of a charge in a magnetic field and our problem with Burgers Equation:

- DET exactly cancels the direct $u v$ loops, and
- corresponds to different discretizations of the time derivative.

But - why can there be an operator ordering problem in a classical theory?

(later!)

Parenthesis - the $\theta(0)$-Problem 4/4

Which $\theta(0)$ shall we choose?

- The symmetric choice $\theta(0)=\frac{1}{2}$ (Stratanovich convention) is easiest, and leads to commutation of time derivatives and averaging.
- The pure backward definition is sometimes said to be more physically justified, but leads to complicated results for means.
\rightarrow no general answer

Determinant - Version 2/2

We could also write Z as

$$
\begin{equation*}
Z \propto \int D v D u D \psi D \psi^{*} e^{-S\left[u, v, \psi, \psi^{*}\right]} \tag{22}
\end{equation*}
$$

with the action

$$
\begin{align*}
S= & -i \int u\left(\left(\partial_{t}-D_{0}\right) v+F[v]\right)+\frac{1}{2} \int u A^{-1} u \\
& +\int \psi\left(\partial_{t}-D_{0}+\frac{\delta F}{\delta v}\right) \psi^{*} \tag{23}
\end{align*}
$$

by insertion of anticommuting ghost fields ψ, ψ^{*}.

The Ghosts

- Ghost fields can be integrated graph by graph, showing (of course) the above result on a perturbative level.
- The action is BRS-invariant under the changes:

$$
\begin{align*}
\delta u & =0, \tag{24}\\
\delta \psi^{*} & =0, \tag{25}\\
\delta v & =\epsilon \psi^{*}, \tag{26}\\
\delta \psi & =i \epsilon u . \tag{27}
\end{align*}
$$

This gives the desired result on a non-perturbative way!

$$
\begin{equation*}
\left\langle\psi \frac{\delta F}{\delta v} \psi^{*}\right\rangle=i\langle u F\rangle \tag{28}
\end{equation*}
$$

Generating Functionals for Stochastic Differential Equations (Burgers Equation)

Dirk Homeier

Content

Motivation - from Navier-Stokes- to Burgers Equation

MSR-Functional of Burgers Equation (Except
Determinant)
The Determinant
MC-Calculations
Summary and Outlook

Back to Burgers Equation

But first - the operator ordering - where can it come from? Only possibility in a classical theory:

Back to Burgers Equation

But first - the operator ordering - where can it come from? Only possibility in a classical theory:

$$
\text { Interaction } u F[v] \text { can be non-local! }
$$

Burgers Equation is local...

Back to Burgers Equation

But first - the operator ordering - where can it come from? Only possibility in a classical theory:

$$
\text { Interaction } u F[v] \text { can be non-local! }
$$

Burgers Equation is local...
\rightarrow we can safely forget about DET

Back to Burgers Equation

But first - the operator ordering - where can it come from? Only possibility in a classical theory:

$$
\text { Interaction } u F[v] \text { can be non-local! }
$$

Burgers Equation is local...
\rightarrow we can safely forget about DET :-)

Back to Burgers Equation

But first - the operator ordering - where can it come from? Only possibility in a classical theory:

$$
\text { Interaction } u F[v] \text { can be non-local! }
$$

Burgers Equation is local...
\rightarrow we can safely forget about DET :-)
\rightarrow bad news for NSE...

Back to Burgers Equation

But first - the operator ordering - where can it come from? Only possibility in a classical theory:

$$
\text { Interaction } u F[v] \text { can be non-local! }
$$

Burgers Equation is local...
\rightarrow we can safely forget about DET :-)
\rightarrow bad news for NSE... :-(

Content

Motivation - from Navier-Stokes- to Burgers Equation

MSR-Functional of
Burgers Equation (Except Determinant)

The Determinant
MC-Calculations
Summary and Outlook

Generating Functional for Burgers Equation
Two ways (at least) of writing it:

$$
\begin{equation*}
Z[J]=\int D u D v e^{-S[u, v]+\int J v} \tag{29}
\end{equation*}
$$

with

$$
S[u, v]=-i \int u\left(\partial_{t} v+v \partial_{x} v-\nu \nabla^{2} v\right)+\frac{1}{2} \int u A^{-1} u
$$

or

$$
\begin{equation*}
Z[J]=\int D v e^{-S[v]+\int J v} \tag{31}
\end{equation*}
$$

with

$$
\begin{equation*}
S[v]=\frac{1}{2} \int\left(\partial_{t} v+v \partial_{x} v-\nu \nabla^{2} v\right) A\left(\partial_{t} v+v \partial_{x} v-\nu \nabla^{2} v\right) \tag{32}
\end{equation*}
$$

- Search for Instanton-Solutions (Falkovich et al.)
- Operator Product Expansion and Fusion Rules for Structure Functions (Polyakov)
perhaps also
- Renormalization Group Analysis

MC-Considerations $1 / 2$

For the identification of a physical theory, the lattice quantities are related to the continuum ones:

- Viscosity:

$$
\nu=2 * \frac{N T}{N X^{2}}
$$

- Reynolds-Number:

$$
\chi_{0}=\mathbf{R e}^{3} \nu^{3} L^{-4}
$$

These relations tell us how to perform the continuum limit.

MC-Considerations 2/2

Physics implies a smallest length scale λ, given by

$$
\lambda=\left(\frac{\nu^{3}}{\chi_{0}}\right)^{\frac{1}{4}},
$$

that has to be resolved (or else the simulations become unstable) \rightarrow viscosity as regularization of singular structures!

MC-Simulations (so far)

Codes:

- (Metropolis single node and multiple node)
- Heat Bath single node and multiple nodes

Runs:

- Varying lattice sizes at constant viscosity / Reynolds-number
- Varying Reynolds-numbers at constant lattice size
- Varying viscosity at constant Reynolds-number

MC-Simulations (so far)

Architecture:

- in $1+1$ dimension: single CPU sufficient for lattices up to 256×256
- tested also on the Cluster, and on
- nVidia graphics card using CUDA (not suitable for Heat Bath Algorithms)
- hopefully soon: JuMP

MC-Simulations (first results)

Configurations:

- Burgers solutions can be reproduced
- Kinks can be observed, and their movements observed
- Changing viscosity has dramatic impact on stability of calculations, as said above $\rightarrow \lambda$ can be "measured"
- Reynolds-number determines length / number of ramps (see plots)

Generating Functionals for Stochastic Differential Equations (Burgers Equation)

Dirk Homeier

Content

```
Motivation - from Navier-Stokes- to Burgers Equation
MSR-Functional of Burgers Equation (Except
Determinant)
The Determinant
MC-Calculations
Summary and
Dirk Homeier
Content
Motivation - from
Navier-Stokes-
```


Outlook

MC-Simulations first results)

Statistics:
first hints on linear scaling of the structure functions! (see plots)

Content

Motivation - from Navier-Stokes- to Burgers Equation

MSR-Functional of Burgers Equation (Except
Determinant)
The Determinant
MC-Calculations
Summary and Outlook

Summary

- MC-Calculations can give very direct insights into turbulence and the origin of intermittency
- Burgers equation can be studied in detail, shocks and intermittent exponents reproduced
- Results seem to be universal (not dependend on ν or Re)
- Problems with finding a suitable discretization for derivatives close at the shocks

Outlook (1/2)

Concerning Burgulence:

- Measurement of more observables (energy spectrum, energy decay, prob. distr. for small velocity increments,...)
- $\mathrm{D}=2,3$ (with constraint)
- (Localization of structures)

Summary and Outlook

Outlook (2/2)

Concerning NSE:

- Non-local interactions
- Structure formation?
- Fundamentals of intermittency?

