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1. The field-theory bound-state problem

Scalar fields a(z), b(y) ; particle masses mg, my.
Two-body bound state | B)

(0]a(z)b(y) | B) # O.
signalled by pole in 4-point correlation fn.
/ d4a;1 o d4x4ei (p1-x1+p2-xo+p3-23+ps-xa )
(0| T{a(z1) b(z2) b(x3)a(za) }|0)

= (2m)*6%(p1 + po +p3 +pa) Ga (p’, g, p)

q = p1-+po — (p3 +p4g),
/ —

P — P2—P1, P— P4 —P3
at timelike total momentum
0 < ¢° = Mz < (mg+my)2.

“Binding energy”
E = MB — (ma—l—mb).



Standard approach:
Bethe-Salpeter (B.-S.) equation:

Formally linear integral equation for either full 4-point
function G4 (“inhomogeneous” eq.) or B.-S. ampli-
tude (“homogeneous” eq.), using as inputs noninter-
acting G> ® G> and interaction term K, (“1- and 2-
particle-irreducible kernel”) with respect to one of the
3 channels. But K4 only definable as functional of G,
G3, and G4 itself = nonlinearity. Problems:

e Derivable only as member of a whole system of
integral eqgs., in which G4 gets coupled to G», G3,
itself, and higher functions. All known approxima-
tions replace G», G3 by zeroth-order perturbative
forms or simplified ansatze to force closed form
of G4 — not justifiable.

o Kernel K4 formally accounts for coupling to higher
fns. exactly, but at price of becoming extremely
complicated, infinite series ( “dressed-skeletons ex-
pansion’ ). Approximations studied — usually “lad-
der approximation” ( K4 = l1-—particle-exchange
graph = lowest-order term ) or at most “ladder-
plus-singly-crossed-" approximation — usually jus-
tified as long-distance approxs., but unconvincing
for e.g. s-wave bound states.

e Combined approximations suffer from all sorts of
defects : violation of crossing principle, families
of unphysical states with negative probabilities,
wrong one-heavy-particle limit and/or nonrelativis-
tic limit, ....

e = Good reasons for exploring alternatives.



Testing ground for bound-state theories:
Wick-Cutkosky (W.-C.) model:

b1, P, : complex scalar fields ( “baryons’” )
X . real scalar field ( “meson’ )
4 2
S[P1, P2, x] = /d (5uX) - m?x?|

2
+ > [|a.ucbi|2_M752|¢i|2+gi|¢i|2X] |
i=1

My, M>,m : bare masses ( later: M1 = M, = My )
g1, g2 . coupling constants

[¢] = +1 == Superrenormalizable theory
( only 1-loop 2-point function UV-divergent )

Coupling term indefinite ——= Instability ( G. Baym )

Nonrelativistic limit:
“Baryons’” interacting through Yukawa potential

< gigj exp(—mrg;) /7y

= expect d;P, bound state(s) for g; sufficiently large.



2. Baryon-current correlation function

Current-correlation function, or polarization propaga-
tor :

Ni(q?) = —i /d% e (0|T{ Cy(z) CF;(0) }0) conn

“Current” ( interpolating ) operators :
Cli(x) = ®(2)®](x)
( Note: Same starting point as in sum-rule & lattice

approaches )

Insert complete set of 4-momentum eigenstates :

1 =Y |P){(Py (P - P, = M2 for discrete n).

n

= Spectral representation :

1
Nii(g®) = (2m)> %j 2+ i0 — M2
<{8%(a—Pn) (¢° + P) [(PalCJ;(0)[0) 2

—53(a+Pn) (¢° — P9) [(Pn|C3;(0)[0) |}

Scalar ®;®; bound state < pole at timelike ¢°.



Generating functional:

2
210 0] = & Db, D! D
Y ] N H 1 7) X
1=1

ST+ 32, [ (7@ )+ (@5,T)]}

Integrate out bilinearly occurring baryon fields:

1

1 iSO ©
/ = — D X
v | Pxe I aero,00
(oL A T () (2107 C0ly) S| |

Notation :
(0) 1 [ 2 2 2
SO = < [d*a [(002 - m?x?],
Oi(x) 1= —0% — M? + g; x

Generate 1 by functional differentiations :

4 InZ

M;; = —1 /d4a: el

(5J7;(:I:)5J,;"(ar:)(SJj(O)(SJ‘;-k

(0) |J:J*=O



Notation for functional averages

(A) 1= JDX [Hi:% detOz'(X)] ' ([X)]A[X]
. 1= 1 1S (0
1Px [I27 et Oi(x)} et

Result current correlation :

Ny =i [d*@e*{ { (210;1(010) (0} 1 (:)[0) )
— ( (210;710010) ) { (=107 (0)10) ) |

For bound-state pole, 2nd line can be omitted



3. Worldline representation

“Quenched” approximation :

det O;(x) = det(—0% — M7) det (1 + _829_7; MQX(;U)>
Z -

dropg out ~

—1 forBrge M,;

Physics : suppression of closed baryon loops;
good for heavy baryons.

o eSOV Ay

Ay — (A —
< > < >quench fDxeiS(o)[X]

M =i /d“x e (207 (x)10) (205 1 (x)[0))

quench
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Schwinger-parameter (“proper-time” ) representation:

(—0°—MZ+i0+g;x)|

07 x) = Bir /O dT 6[2’“’“0

Choice of kg arbitrary ( “reparametrization invariance").

Change to Euclidean (real) formally through kg — ikg
(and —92 — 92 ) . O. k. for stable theory.

Here: need complex form because g;x indefinite.

Dynamical egs. will allow kg — itk , become real.
But real solutions may exist only in limited domains.

_ 1 o0 —iT@ —iT 82 —g;x
510, 10010) = oo [ are "= @l ") o)
0
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In analogy to quantum-mechanical path integral

x(t,)=mx .
< xp| exp [—z’H(tb — ta)/h] |zq >= / Dz (t) SleWl/h
x(t,) =z,

over 3-dimensional paths x(t) , use
integral over 4-dim. paths z#(t) (“worldlines”) :
( only 2 baryon worldlines because of quenched approx. ! )

(a;
z(T)=x T .

= / Dz exp {z/ dt [—@552 + ix(a;(t))] }
2(0)=y 0 2 2Ko

Functional x integration now Gaussian :

T[22 (@)] | y>

(G0 ' 1
/DX SO+ — const. exp [_% (b7 —5 2b>]

b(2) : Z Ji /dta(z — (1))
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Result for 12 : “worldline path integral”

N(g®) = @/ ANdTs [ —a5uemtmsy]
o (2iko)?

x:(T))=x
/d4x H/ z{q-x—I—So[x1]+50[$2]+5int[$17$2]}
(0)= 0

Solzi] : = /0 " [——xQ(t)}

Functional variables reduced :{®;(x), x(z)} — {«/(¥)}!

— Effective interaction ( nonlocal and retarded ) :

gzgﬂ/ dt/ dt’ (azz(t)‘ g

Sint[T1, 2] 1= — Z

1,7=1

%‘(t’)>

Decomposition

Smler, w2 = 81 lwa] + Si o] + 2807 [, 22

self—energy terms 2—baryon interaction




Perturbative expansion of correlator:

@+@
> oD

Sums all-orders self-energy, vertex-corrections,
ladder and crossed-ladder diagrams (a)
but no vacuum polarization (b) :

quenched unguenched
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Normalization : multiply & divide T171> integrand
with exact path integral

2 2
i/ﬁlzei(q'x+znl SO[x"]) = [ 0 ] exp (z ¢ _TT )
2n (T 4+ T5) 2k0T1 + 1>

Result for correlator

o [* dNdD K >
) = = [ Gy 1 @0 { 3g [~ QUET -+ MET)
, . T JD12 exp{iS [z1,22]}
T4 (Tl —I—Tg)}} . [D12 exp{iSo[z1,z2]}
2
So: = q-x+ Y Solx]
=1
S : = 504 Sintlz1,z2]

“Free” correlator ( Sihnt = 0 ) has branch cut along
real axis of complex ¢2 plane at

® > ¢i = (M1 + M3)?

corresp. to continuum 2-baryon states. For Sint =0
expect same, plus bound-state pole(s) at 0 < ¢° < ¢3,,.



14

Digression: Feynman’s Polaron

Polaron: = ‘“dressed” electron slowly moving through
polar crystal (e.g.NaCl), dragging polarization cloud

Model Hamiltonian ( ) :

i132‘|‘Z<,<)ATC7/1<-|-\/_Z|k| [ e k% 4 h.c.
K

« : dimless electron-phonon coupling (~1...10) .
m :electron mass, w :phonon frequency (indep. of k).

. phonons can be integrated out
exactly in path integral for partition fn.:

L | ,
S = / dt —ma? + o / dtdt’ et
0 2 0

x /d3k % exp [ik - (x(t) —x(t"))]

NS

=const:|x(t)—x(t)|*

One-particle problem, but two-time (retarded) action!

Variational principle ( from Jensen inequality ) for

Z(ﬁ) — /DCE e~ et (5) @)O e PEo
— /Dx o fDx exp (=St — (Sefr — St))
[ Dz exp(—5S;)

=:(e29),
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— ground-state energy of polaron at rest :

p—o0

] 1
Eo < By + lim 3 (Sefr — St)

Feynman’s trial action :

g )
St — / dtx—
0 2

3
+ /dtdt’f(\t—t’\) [X(t)—X(t/)]Q
0]

= nonlinear variational eq. for retardation fn. f(o).

Best analytical method, works for all «

a— 0
Eo = —a—0.0159a° —0.0008060° + ...
Er = —a—0.0123a°%—-0.0006340°+ ...
o — O .
Eo = -0.10850"—2.844 0 (a™?)
Ep = —0.10610?—2.834 0O (o ?)

— confirmed by Monte-Carlo calculations |

].
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4. Variational Approximation

Choose class of trial actions S;, exactly calculable

[D12 exp{iS [z1,22]}  [Dio exp{iS;}
[D12 exp{iSo[z1,z2]} [D12 exp{iSo}

/D12 exp{iSi} exp{i(S — S}
fﬁlz exp{ th}

=: < exp i<§_§t)>t

\ e

Feynman-Jensen variational principle
( complex version: heuristic only ! )

e~ optimal o~ o~
(expi(§—51)), =~ exp { i(S—5;), }stat

where S; fulfills stationarity condition,

o  ~

5—§t<5_s’5>t‘stat =0
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Real case : Jensen’s inequality

Convexity of exp(—=x) on real axis =

ek < (e o)

More generally : for any average (...) w. r. t. positive,
normalized measure :

e~ A < <e_A>.

Generalization to functional measure :

exp{— /D[x]A[a:]} < /D[:c] exp {—Ale]} |

if /D[x] = 1.

= Maximum of exp{ —(5 -5, >t} w. r. t. 5
is best approximation for (exp —(5 — S;))
class of trial actions S;.

. in given

( Carried over to complex A[x] or (S—S5;) : widespread
heuristic procedure, but not rigorous ! )
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Choice of trial action: (...); doable analytically < S;
bilinear in x1,x>.

Parametrization of paths with z;(0) = 0, z;(T;) = x :

zl(r) = " -7 + Z (\/_> K sin (kmT)

t
= 0...3; = — € |0, 1
p T - € [0, 1]

)

Functional measure now :

/1512 — const. /d4ac /Ddalpdaz

Free action

2
a0

2 1=1

> W\ 2
23 ()
k=1
taken as guideline for choice of S; :

o= ax 23 |k + 30 a0 (o )]

+ ko Z By, (a,(fl) : a](f))
k=1
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Coefficients to be determined variationally:

5\7 AOa A]({;Z) (7’ — 17 2)7 By.
More generally possible, but not used here :

e Nondiagonal terms a\” .o, 1 £ k
( found negligible in limit Ty + 1> — oo )

e Tensorial coefficients

W oV L AV
Ap — AP = AT (QW_qu ) 4+ Ak (‘23)

\ . 4 \ . 4

transverse longitudinal

( improve non-relativistic limit quantitatively )

With S;, all path integrals in

> dT1dT )
var __ 16442 M2T V2T
4 - _/o (4m)2(T1 + T»)? exp{2—1‘40[_( 111+ MaT2)

> T175 fﬁlg exp{ th} -
T4 (Tl -+ Tg) } } % f'Dlg exp{ Zgo} exp {Z< 5= 5 >t}

Gaussian, exactly calculable.



20

Klein-Gordon kernel handled by

x; (t/>> — d4p exp [_Zp ) (xZ(t) - x](t/))] .

) |—
i —02 —m?2 (2m)4 p2 — m?2 4+ 10

Correlator in variational approximation:

var, oy [ dT1dT> o2 2
) = /o (47)2(T1 + T2)? exp{ 2/@0[ (MiTa+ MET2)
+¢° (ﬂ) (CA =A%) — (T1 + T2) (212(¢%; T12) + V(¢ T12)) | }
T+ T o o

Q1> ( from det™'/2 and S terms ),
1% ( from S;,: term )

functions of ¢2, T1, T, )\ = Aio

and complicated functionals of A" By.
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5. Bound-state pole : Mano’s equation

For function defined by proper-time integral

Mvar(?) = = / dre TN @Dlg(g?, ),

tJo

whose convergence at T' — oo is due to the oscillating
exponential, and where g(¢?,T) is smooth in ¢2, a pole
can develop only when

N =0 at g¢°= M3

What is T ? Restriction to equal-mass case

M, = M> =: Mo.
Here, answer is to transform 17,75 integration to

Ty + T
TZZ%zO...oo

s: = Ty—-T, = =2T ... +2T.
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Possibility of b.-s. pole develops because
as T — oo, Q210+ V — constant Q9% + V°°,
independent of 7' and s.

Integrand for T' — oo

. 2
exp { - [q—(% — %) — Mg — (Q12+ V)OO] T
Ko | 4

7

N

— In(2T) + [nonincreasing](T,s)}

M% determined by Mano’s equation :

2

q 2N a2 00 __
T (A =0%) — M§— (12 + V) ‘qzzMg—o'

( K. Mano, 1955, for one-body problem ).
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“Kinetic” (2) and “interaction” (V) terms for T' — oo :
Fourier sums Y72, — integrals over E = =

> (A — %/oodEf(A(E)), etc.
k=1

0

For simplicity consider case

g1 =90 =g — AD(E)=4AC)N(E) = A(B).

Use Ai(F)= A(F)=+ B(FE) ; choose kg =1ikEg

% = QA4 + QA
Kgd 1
QA] = — dE In A(E — 1
Al = 528 im0 A + s -1
. 92 o0 1 1
Ve o= 2/ do— /du
327< Jo N11(0) 0
1 5 9 l1—u A202g?
exp{ ——— —
: p{ 2np [m T VROl
—Z
VS —29 /da /du
~ 32x2 0 ,ulg(o')

1 l—wu A202g?
X exp —% m ,LL12(O') m’u,
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“Pseudotimes” ,u% are functionals of

“profile functions” A(FE), B(E) or A4 (F), A_(F) :

2 [ 1 1 1 Eo
2 ) 2
Ag; = — dE sin“ (—
o0 . 2 EO’ 2 EO’
pislAs o) = g/ dE L sin” (%) | cos™ ()
T Jo E2 | A_(F) A+(E)
To be noted :

1
ni;, — finite aso — 0 (—ocEQatE:O>
Ay

pZ — 0 (xo)as o —0

Leads to divergence in Vi1 = Voo at o = 0.

This is the expected UV divergence calling for
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6. Mass Renormalization

Regularize divergence of V7 integrand at o =0 ,
e.g. by dimensional regularization in d = 4 — 2¢

Vzozo — [Vzozo sing (6) + [Vzozo reg (q2> )
Vi dsing (€)= 4k (27‘(’)d p? — m2 + 40 =P (QIiop 0)
)
—(9i)? 2

~"

Y

_ 1 M
= 2G@m2 )< [1 —oEn (4%—)] 0Ol

\ C‘(L) y,

\ - 7

independent of ko and ¢®. [Vi¥] s regular at d = 4.

Mano's equation only contains sum M§—|—2Vlf>§
= absorb 1/e divergence in modification of bare mass :

(91)?
(47)2

renormalized mass M ()2

Mg+ 2vir = {15 -

G

[ + cm] } +2[Vl,., (@) .
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After solution of variational problem for trial quanti-
ties A and A+ (E), intermediate, u-dependent mass M?
can be eliminated in favor of physical baryon mass M?2
by renormalization condition Mg — 2M as V1o — 0O, i.e.

N(¢?=4M?) =0 at Z =0 (Vi5 =0).

Note: [V.O@] _independent of trial quantities =
1 1sing

Choice of C(u) does not affect variational equations.
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7. Stationarity Equations

For T — oo, stationarity condition ;% (...); =0

simplifies to %&N[Ai,)\;qQ) =0, i.e.,

0 )
N =o0, N =0
O\ AL (F)

Give system of 3 one-dimensional, but strongly
nonlinear integral equations :

2

Zn—l
1—|—< )MQ/daa/duu
2TKE 1,u1n(a)

1 —u N2o2¢?
X exp “orn m ,uln(a) a2 (O)U, :

2 o0 Eo OV.°
A(E) = 1 al{sin2 EEAS TN IS
+(B) +mEE2/o 7S (50) suz, A

) . 5V12 [A:I:; )\]}
5:“12

A(E) =1+ 2E2 /Oofia {sm (E;) : Z?Vm [Ax A]}.

n=1 ‘uln
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Parametrization now through

M?: = physical baryon mass (pole position);

2

— g — dimless coupling constant.

167w M?2

Functional dependence on profile functions through

pi (0) = pui [Ay,A_ X;0) — functionals as before;
SV 7n—1, 02 1 20252

12” [Ar, X\ 0) = 4a duu ll—q—OQu
5luln 7'(',u1n(0') 0 16I§JE,LL1n

v T azo"

1 l—wu N2o?qg® ]
X exp {—g [mQI,L]_Qn(O') } .
E

To be noted :

e Stationarity egs. reparametrization invariant in ko,

therefore solved “Euclidean” ( at ko = ikg ) where
they are real;

e Can be used, without solving them, to deduce
properties of profile fns. and pseudotimes,
e.g. for limit values, scaling properties, ...
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In particular, for large & small arguments,

4

aM2) 1
E

Ai(E) ETO)O 1 + (4/1]3

A_(E) g3 A-(0) regularat E=0

w2 2 [ Vo
AL (E — +const. + ..., 2= | do—————
+(E) 5= 52 + + w s 05‘u122(0)

2 () o n 1/°°dE 1 [ 1 1
0) 7= — —
Hinl9) o=2 547(0) ) “CE2 A (B) T A_(0)
1
+ } 4.
At (E)
@) = 15(0) g o+ (22) o2 2 4
o) = o (o) (o) —
M11 M2 o=0 Ak o1
1 (o) —3 12 (0) regular at ¢ =0 .
Scaling with respect to kg parameter :
o
A:E(KJEa E) — Aﬂ:(’%E ) E) — :ulzn(’%E70-) — RE :ulzn(li_>
E

The latter give reparametrization invariance of €215, Vi, .
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8. Solution & Results

Procedure for solution :

1. Input parameter : + =0.15 (= ﬂ;”—l) .
Physical baryon mass M serves as mass scale to
express all other masses & energies.

2. Choose value of coupling constant o.

3. Solve variational eqgs. for A4 (FE), A_(FE), A
numerically by iteration ( on grid of Gaussian
mtegratlon points ), first for qQ/M2 = 4 and

= 0 (V12 = 0) to determine M?.

4. Choose values of ¢°/M? below 4 in small steps.

5. For each value, solve again variational eqs. nu-
merically and ...

6. ...calculate N[A4, A_ ), qQ/MQ] (in units of M?),
usmg previously determined M?2.

7. Plot N/M? versus ¢°/M? and look for zero.
8. If no zero yet, increase o« and go back to step 3.
9. If zero at ¢°> = M3 found ( regula falsi ),

plot binding energy ¢/M = (Mp —2M)/M
as function of «.
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Results:

e Method does produce bound state for couplings

o~ 0.43, larger than the non-relativistic ( Yukawa )
threshold value o« ~ 0.40, and still larger than
threshold couplings observed in B.-S.-based ap-

proximations ( « < 0.30 ).
Reason is poor approximation of relativistic-Yukawa
interaction by quadratic, oscillator-like one.

e Above threshold coupling, ( absolute values of )
binding energies are substantially larger than in
B.-S.-based calculations ( ladder and " generalized-
ladder” approximations ).

Detailed comparison shows this is mainly due to
inclusion of self-energy and vertex-correction ef-
fects ( quantum corrections to Gz—baryon and

Gz_baryon_l_meson functions ). Check by cal-
culations with a =0 but Za # 0 .

e Unlike perturbation theory or B.-S. ladder approx-
imation, the method does account for the insta-
bility of the W.-C.-system, a genuinely nonper-
turbative property:

at couplings acrit é 0.542, there are no real so-
lutions any more to Mano's equation. ( In fact,
solutions become complex, with imaginary parts
giving width of metastable state ).

‘The acjt value is markedly smaller than the ac it =
0.817 observed in one-baryon problem: states of
unstable field system decay the faster the more
particles they contain.
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Profile functions and pseudotimes for bound-state
solution at a« = 0.5 ( parameter kg/M =1 ) :

1.25 —t—
|
\ (@) 7
1.20 \\ A, (E) -
& i, \ x = 05 |
.0 \\
H 115 B
§ - A_(E)\\
= 1,10
S
Q
1.05 -
1.00 ! | I I T | T T T
00 02 04 06 08 10
E/M?
50 : . : | : ’
(b) /,,
- /" L
.07 a =05/
=
8 307 2 ,'/ ,.// g i
:g Mo (a)//’,///
o "/
© 20 s -
> N p(0)
) M, (o)
o /’
10 i -
O ! | T | T
0 20 40 60
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Binding energy ﬁ vS. coupling constant «
(77 =0.15):

R (]
—4 4 worldline var. -

0.3 0.4 0.5 0.6 0.7
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The charm of doing things analytically

Example: Massless mesons (m = 0) at weak inter-
particle coupling Zc.

Use worldline version of “Feynman-Hellmann theorem’,

OMZ 8 5 5
— — —
0Z  N\Z 12(g »)

to derive expansion,

1\5/02 — by (Za)? [1+r1%+... — ba (Za)? [14—...] — .
variat. exact

b2 1 =0.318 = (Coulomb)

Ty =35 4  (eff. field theory)

bs 1 =o0.101 = = 0.156 (Todorov's eq.)

— Numerical coefficients smaller, as expected from a
variational calculation
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9. Summary & Conclusions

. Basing two-particle interaction problem on path-
integral representation for suitable current-correl-
ation function, rather than on Bethe-Salpeter type
equations for full four-point function, leads to
a formulation closer to sum-rule and lattice ap-
proaches.

Worldline formulation for this problem leads ( in
gquenched approximation ) to huge reduction in
functional variables and highly visual picture in
terms of ( heavy- ) particle trajectories.

. Nonlocal, retarded effective interaction sums up
in closed form noncrossed and crossed multi-meson
exchanges of arbitrarily high order, along with
self-energy and vertex-correction effects.

. Combination with variational method, based on
trial actions bilinear in the Fourier amplitudes of
trajectories, leads to path integral performable
analytically. Contrary to all known approxima-
tions to Bethe-Salpeter equation, its evaluation
implies neither a neglect of dressing of (n < 4)—
point functions ( self-energy and vertex- correc-
tion effects ), nor a violation of the non-relativistic
limit, although the quenched approx. still does
imply a certain violation of crossing symmetry.

. One drawback of the method is that two approxi-
mations, quenched and variational, are necessary.
Both can be in principle be improved through se-
ries expansions in the neglected terms, but the
resulting double series is clumsy.
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6. Experience shows that the quadratic trial-action
ansatz (‘“Yukawa approximated by oscillator”) is
not very accurate, particularly for the low-energy
( “threshold” ) regime at weak coupling.

7. On the other hand the zeroth approximation fur-
nished by this ansatz is structured and transpar-
ent; it allows many particular aspects and limit-
ing situations to be studied analytically, and thus
leads to better insight and understanding.

8. The ‘realistic” application best suited for this
method would seem to be the physics of heavy
quarkonia in QCD. There, the renormalization
problem is more involved than in a superrenor-
malizable theory, but the existing application to
QED makes it likely that ( in the framework of
the bilinear ansatz ) it can still be handled.
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A.. Bosonic Gaussian integral

[P ewi[50.40) + (G.6)

__ const.
(det A)Y/?2

N
exp[—E(J,A )

Application to trial action : if

22=1k:1
00 2 o0
+ K B (a'P . ¢® + f(z) .a(z),

then

/Dda(l) DD gy exp{z'SM}
o —d/2
= const. {Am H (A(kl)A(kQ) _ BkQ)} X
k=1
exp{ [ + Z AL (F2)° + AP (1) +2Bu(f7 - 172) }
210 L4 A4~ g2
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B. Homogeneous Bethe-Salpeter equation:

crossed

ladder

=

iteration
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C. A brief history of worldlines

Quantum Mechanics:

x(ty)=x, '
<axp| exp [—iH(ty, — ta)/R] |2a > = / Dz (t) ClEW/h
x(t,) =z,
Heisenberg, Schrodinger, Dirac (1933),
Dirac (1925 - 1927) Feynman (1942)
operators, wavefunctions — path integrals,

trajectories

“WAVES" «— "PARTICLES"
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Field Theory:

field operators ¢(x),
states

Jordan, Heisenberg,
Pauli (~ 1930)

“FIELDS"

"second quantization”

Dyson (1949)

Y

wins |

(see textbooks)

worldlines x#(t)

Feynman
(~ 1950)

“PARTICLES”

" first quantization”
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renaissance ... from string theory (1)

Bern & Kosower (1991)

Strassler (1992) showed how to derive the Bern-Kosower
rules from the particle (worldline) representation of

Quantum Field Theory

Advantages:
a) efficient way to calculate diagrams with many legs

b) new approximation methods for large couplings
(cf. Feynman's treatment of the polaron)



