Worldline Variational Approximation for the Bound-State Problem in Field Theory

R. Rosenfelder (PSI Villigen), K. Barro-Bergflödt (ETH Zürich), M. S.

Literature:

K. Barro-Bergflödt, R. Rosenfelder and M. Stingl, Variational Worldline Approximation for the Relativistic Two-Body Bound State in a Scalar Model, Few-Body Systems **39**, 193 - 253 (2006) [arXiv:hep-ph/0601220]

Background:

R. P. Feynman, Slow electrons in a Polar Crystal,

Phys. Rev. **97**, 660 - 665 (1955); reprinted in: L.M. Brown (Ed.), Selected Papers of Richard Feynman With Commentary, World Scientific, Singapore (2000), pp. 237-242.

Yu. A. Simonov and J. A. Tjon, The Feynman-Schwinger Representation for the Relativistic Two-Particle Amplitude in Field Theory, Ann. Phys. (N.Y.) **228**, 1 - 18 (1993).

R. Rosenfelder and A. W. Schreiber, Polaron Variational Methods in the Particle Representation of Field Theory,

I. General Formalism, Phys. Rev **D53**, 3337 - 3353 (1996) [arXiv:nucl-th/9504002], II. Numerical Results for the Propagator, ibid. **D53**, 3354 - 3365 (1996) [arXiv:nucl-th/9504005].

1. The field-theory bound-state problem

Scalar fields $\hat{a}(x)$, $\hat{b}(y)$; particle masses m_a , m_b . Two-body bound state $|B\rangle$:

$$\langle 0 | \hat{a}(x) \hat{b}(y) | B \rangle \neq 0.$$

signalled by pole in 4-point correlation fn.

$$\int d^4 x_1 \dots d^4 x_4 e^{i(p_1 \cdot x_1 + p_2 \cdot x_2 + p_3 \cdot x_3 + p_4 \cdot x_4)} \\ \langle 0 | \mathcal{T} \{ \hat{a}(x_1) \hat{b}(x_2) \hat{b}(x_3) \hat{a}(x_4) \} | 0 \rangle \\ = (2\pi)^4 \, \delta^4(p_1 + p_2 + p_3 + p_4) \, \tilde{G}_4 \left(p', q, p \right) \\ q = p_1 + p_2 = -(p_3 + p_4), \\ p' = p_2 - p_1, \ p = p_4 - p_3$$

at timelike total momentum

$$0 < q^2 = M_B^2 < (m_a + m_b)^2$$
.

"Binding energy"

$$\varepsilon = M_B - (m_a + m_b).$$

Standard approach:

Bethe-Salpeter (B.-S.) equation:

Formally linear integral equation for either full 4-point function G_4 ("inhomogeneous" eq.) or B.-S. amplitude ("homogeneous" eq.), using as inputs noninteracting $G_2 \otimes G_2$ and interaction term K_4 ("1- and 2particle-irreducible kernel") with respect to one of the 3 channels. But K_4 only definable as functional of G_2 , G_3 , and G_4 itself \Rightarrow nonlinearity. Problems:

- Derivable only as member of a whole system of integral eqs., in which G_4 gets coupled to G_2 , G_3 , itself, and higher functions. All known approximations replace G_2 , G_3 by zeroth-order perturbative forms or simplified *ansätze* to force closed form of G_4 not justifiable.
- Kernel K_4 formally accounts for coupling to higher fns. exactly, but at price of becoming extremely complicated, infinite series ("dressed-skeletons expansion"). Approximations studied – usually "ladder approximation" ($K_4 = 1$ -particle-exchange graph = lowest-order term) or at most "ladderplus-singly-crossed-" approximation – usually justified as long-distance approxs., but unconvincing for e.g. *s*-wave bound states.
- Combined approximations suffer from all sorts of defects : violation of crossing principle, families of unphysical states with negative probabilities, wrong one-heavy-particle limit and/or nonrelativistic limit,
- \Rightarrow Good reasons for exploring alternatives.

Testing ground for bound-state theories:

Wick-Cutkosky (W.-C.) model:

$$S[\Phi_{1}, \Phi_{2}, \chi] = \int d^{4}x \left\{ \frac{1}{2} \left[(\partial_{\mu}\chi)^{2} - m^{2}\chi^{2} \right] + \sum_{i=1}^{2} \left[|\partial_{\mu}\Phi_{i}|^{2} - M_{i}^{2}|\Phi_{i}|^{2} + g_{i}|\Phi_{i}|^{2}\chi \right] \right\}$$

 M_1, M_2, m : bare masses (later: $M_1 = M_2 = M_0$) g_1, g_2 : coupling constants

 $[g_i] = +1 \implies \text{Superrenormalizable theory}$ (only 1-loop 2-point function UV-divergent)

Coupling term indefinite \implies Instability (G. Baym)

Nonrelativistic limit:

"Baryons" interacting through Yukawa potential

$$\propto ~g_i g_j \exp(-m r_{ij}) \, / \, r_{ij}$$

 \Rightarrow expect $\Phi_1 \Phi_2$ bound state(s) for g_i sufficiently large.

2. Baryon-current correlation function

Current-correlation function, or polarization propagator :

$$\Pi_{ij}(q^2) := -i \int d^4x \, e^{iq \cdot x} \, \langle 0 | \mathcal{T} \{ \, \widehat{C}_{ij}(x) \, \widehat{C}_{ij}^{\dagger}(0) \, \} | 0 \rangle_{conn}$$

"Current" (interpolating) operators :

$$\widehat{C}_{ij}^{\dagger}(x) = \widehat{\Phi}_{i}^{\dagger}(x) \widehat{\Phi}_{j}^{\dagger}(x)$$

(Note: Same starting point as in sum-rule & lattice approaches)

Insert complete set of 4-momentum eigenstates :

$$1 = \sum_{n} |P_n\rangle \langle P_n| \qquad (P_n \cdot P_n = M_n^2 \text{ for discrete n}).$$

 \Rightarrow Spectral representation :

$$\Pi_{ij}(q^2) = (2\pi)^3 \sum_n \frac{1}{q^2 + i0 - M_n^2} \\ \times \left\{ \delta^3(\mathbf{q} - \mathbf{P}_n) \left(q^0 + P_n^0 \right) |\langle P_n | \hat{C}_{ij}^{\dagger}(0) | 0 \rangle |^2 \right. \\ \left. - \delta^3(\mathbf{q} + \mathbf{P}_n) \left(q^0 - P_n^0 \right) |\langle P_n | \hat{C}_{ij}(0) | 0 \rangle |^2 \right\}$$

Scalar $\Phi_i \Phi_j$ bound state \Leftrightarrow pole at timelike q^2 .

Generating functional:

$$Z[J^*, J] = \frac{1}{\mathcal{N}} \int \prod_{i=1}^2 \mathcal{D}\Phi_i \mathcal{D}\Phi_i^{\dagger} \mathcal{D}\chi$$
$$\times e^{i\{S[\Phi, \Phi^{\dagger}, \chi] + \sum_j [(J_j^*, \Phi_j) + (\Phi_j^*, J_j)]\}}$$

Integrate out bilinearly occurring baryon fields:

$$Z = \frac{1}{\mathcal{N}} \int \mathcal{D}\chi \, e^{iS^{(0)}[\chi]} \prod_{i=1}^{2} \left\{ \frac{1}{\det \mathcal{O}_{i}(\chi)} \times e^{\left[-i \int d^{4}x d^{4}y J_{i}^{*}(x) \left(x | \mathcal{O}_{i}^{-1}(\chi) | y\right) J_{i}(y)\right]} \right\}$$

Notation :

$$S^{(0)}[\chi] := \frac{1}{2} \int d^4x \left[(\partial \chi)^2 - m^2 \chi^2 \right],$$
$$\mathcal{O}_i(\chi) := -\partial^2 - M_i^2 + g_i \chi$$

Generate Π by functional differentiations :

$$\Pi_{ij} = -i \int d^4 x \, e^{iq \cdot x} \frac{\delta^4 \ln Z}{\delta J_i(x) \delta J_i^*(x) \delta J_j(0) \delta J_j^*(0)} \Big|_{J=J^*=0}$$

Notation for functional averages :

$$\langle A \rangle := \frac{\int \mathcal{D}\chi \left[\prod_{i=1}^{i=2} \frac{1}{\det \mathcal{O}_i(\chi)} \right] e^{iS^{(0)}[\chi]} A[\chi]}{\int \mathcal{D}\chi \left[\prod_{i=1}^{i=2} \frac{1}{\det \mathcal{O}_i(\chi)} \right] e^{iS^{(0)}[\chi]}}$$

Result current correlation :

$$\Pi_{ij} = i \int d^4 x \, e^{iq \cdot x} \left\{ \left\langle \left(x | \mathcal{O}_i^{-1}(\chi) | 0 \right) (x | \mathcal{O}_j^{-1}(\chi) | 0) \right\rangle \right. \\ \left. - \left\langle \left(x | \mathcal{O}_i^{-1}(\chi) | 0 \right) \right\rangle \left\langle \left(x | \mathcal{O}_j^{-1}(\chi) | 0 \right) \right\rangle \right\}$$

For bound-state pole, 2nd line can be omitted \Rightarrow simplified Π_{ij} .

3. Worldline representation

"Quenched" approximation :

$$\det \mathcal{O}_i(\chi) = \underbrace{\det(-\partial^2 - M_i^2)}_{\text{drops out}} \underbrace{\det\left(1 + \frac{g_i}{-\partial^2 - M_i^2}\chi(x)\right)}_{\rightarrow 1 \text{ for large } M_i}$$

Physics : suppression of closed baryon loops; good for heavy baryons.

$$\langle A \rangle \rightarrow \langle A \rangle_{quench} := \frac{\int \mathcal{D}\chi \, e^{iS^{(0)}[\chi]} A[\chi]}{\int \mathcal{D}\chi \, e^{iS^{(0)}[\chi]}}$$

$$\Pi_{ij} = i \int d^4x \, e^{iq \cdot x} \left\langle (x | \mathcal{O}_i^{-1}(\chi) | \mathbf{0}) (x | \mathcal{O}_j^{-1}(\chi) | \mathbf{0}) \right\rangle_{quench}$$

Schwinger-parameter ("proper-time") representation:

$$\mathcal{O}_i^{-1}(\chi) = \frac{1}{2i\kappa_0} \int_0^\infty dT \, e^{\left[\frac{iT}{2\kappa_0}\left(-\partial^2 - M_i^2 + i0 + g_i\chi\right)\right]}$$

Choice of κ_0 arbitrary ("reparametrization invariance").

Change to Euclidean (real) formally through $\kappa_0 \rightarrow i\kappa_E$ (and $-\partial^2 \rightarrow \partial_E^2$). O. k. for stable theory.

Here: need complex form because $g_i\chi$ indefinite.

Dynamical eqs. will allow $\kappa_0 \rightarrow i\kappa_E$, become real. But real *solutions* may exist only in limited domains.

$$(x|\mathcal{O}_{i}^{-1}(\chi)|0) = \frac{1}{2i\kappa_{0}} \int_{0}^{\infty} dT \, e^{-iT\frac{M_{i}^{2}-i0}{2\kappa_{0}}} (x|e^{-iT\left(\frac{\partial^{2}-g_{i}\chi}{2\kappa_{0}}\right)}|0)$$

In analogy to quantum-mechanical path integral

$$< x_b | \exp \left[-i \widehat{H}(t_b - t_a) / \hbar
ight] | x_a > = \int_{x(t_a) = x_a}^{x(t_b) = x_b} \mathcal{D}x(t) e^{iS[x(t)]/\hbar}$$

over 3-dimensional paths $\mathbf{x}(t)$, use integral over 4-dim. paths $x^{\mu}(t)$ ("worldlines"): (only 2 baryon worldlines because of quenched approx. !)

$$\left(x \left| e^{-iT\left[\frac{-\hat{p}^{\mu}\hat{p}_{\mu}}{2\kappa_{0}} - \frac{g_{i}}{2\kappa_{0}}\chi(\hat{x})\right]} \right| y \right)$$
$$= \int_{x(0)=y}^{x(T)=x} \mathcal{D}x \exp\left\{ i \int_{0}^{T} dt \left[-\frac{\kappa_{0}}{2}\dot{x}^{2} + \frac{g_{i}}{2\kappa_{0}}\chi(x(t)) \right] \right\}$$

Functional χ integration now Gaussian :

$$\int \mathcal{D}\chi \, e^{i\{S^{(0)}[\chi] + (b,\chi)\}} = \text{const.} \, \exp\left[-\frac{i}{2}\left(b, \frac{1}{-\partial^2 - m^2}b\right)\right]$$

$$b(z) := \sum_{i=1}^{2} \frac{g_i}{2\kappa_0} \int_0^{T_i} dt \, \delta(z - x_i(t))$$

Result for Π_{12} : "worldline path integral"

$$\Pi(q^2) = i \int_0^\infty \frac{dT_1 dT_2}{(2i\kappa_0)^2} e^{\left[-\frac{i}{2\kappa_0}(M_1^2 T_1 + M_2^2 T_2)\right]} \times$$

$$\underbrace{\left(\int d^4x \prod_{i=1}^2 \int_{x_i(0)=0}^{x_i(T_i)=x} \mathcal{D}x_i\right)}_{\tilde{\mathcal{D}}_{12}} e^{i\{q \cdot x + S_0[x_1] + S_0[x_2] + S_{int}[x_1, x_2]\}}$$

$$S_0[x_i] := \int_0^{T_i} dt \left[-\frac{\kappa_0}{2} \dot{x}_i^2(t) \right]$$

Functional variables reduced $\{\Phi_i(x), \chi(x)\} \rightarrow \{x_i^{\mu}(t)\}!$

- Effective interaction (nonlocal and retarded) :

$$S_{int}[x_1, x_2] := -\sum_{i,j=1}^{2} \frac{g_i g_j}{8\kappa_0^2} \int_0^{T_i} dt \int_0^{T_j} dt' \left(x_i(t) \left| \frac{1}{-\partial^2 - m^2} \right| x_j(t') \right)$$

Decomposition

$$S_{int}[x_1, x_2] = \underbrace{S_{int}^{(1,1)}[x_1] + S_{int}^{(2,2)}[x_2]}_{\text{self-energy terms}} + \underbrace{2S_{int}^{(1,2)}[x_1, x_2]}_{2-\text{baryon interaction}}$$

Perturbative expansion of correlator:

Sums all-orders self-energy, vertex-corrections, ladder and crossed-ladder diagrams (a) but no vacuum polarization (b) :

Normalization : multiply & divide T_1T_2 integrand with exact path integral

$$i\int \tilde{\mathcal{D}}_{12} e^{i\left(q\cdot x + \sum_{n=1}^{2} S_0[x_n]\right)} = \left[\frac{\kappa_0}{2\pi(T_1 + T_2)}\right]^2 \exp\left(i\frac{q^2}{2\kappa_0}\frac{T_1T_2}{T_1 + T_2}\right)$$

Result for correlator

$$\Pi(q^{2}) = -\int_{0}^{\infty} \frac{dT_{1}dT_{2}}{(4\pi)^{2}(T_{1}+T_{2})^{2}} \exp\left\{\frac{i}{2\kappa_{0}}\left[-(M_{1}^{2}T_{1}+M_{2}^{2}T_{2})\right]\right\}$$
$$+q^{2}\left(\frac{T_{1}T_{2}}{T_{1}+T_{2}}\right)\left]\right\} \times \frac{\int \tilde{\mathcal{D}}_{12} \exp\{i\tilde{S}\left[x_{1},x_{2}\right]\}}{\int \tilde{\mathcal{D}}_{12} \exp\{i\tilde{S}_{0}[x_{1},x_{2}]\}}$$
$$\tilde{S}_{0}: = q \cdot x + \sum_{i=1}^{2} S_{0}[x_{i}]$$
$$\tilde{S}: = \tilde{S}_{0} + S_{\text{int}}[x_{1},x_{2}]$$

"Free" correlator ($S_{\rm int}=0$) has branch cut along real axis of complex q^2 plane at

$$q^2 \ge q_{\text{thr}}^2 := (M_1 + M_2)^2$$

corresp. to continuum 2-baryon states. For $S_{int} \neq 0$ expect same, plus bound-state pole(s) at $0 < q^2 < q_{thr}^2$.

Digression: Feynman's Polaron

Polaron: = "dressed" electron slowly moving through polar crystal (e.g.NaCl), dragging polarization cloud Model Hamiltonian (H. Fröhlich, 1954) :

$$\hat{H} = \frac{1}{2m}\hat{\mathbf{p}}^2 + \sum_{\mathbf{k}}\omega\,\hat{a}_{\mathbf{k}}^{\dagger}\hat{a}_{\mathbf{k}} + \sqrt{\alpha}\sum_{\mathbf{k}}\frac{1}{|\mathbf{k}|}\left[\hat{a}_{\mathbf{k}}^{\dagger}e^{-i\mathbf{k}\cdot\hat{\mathbf{x}}} + h.c.\right]$$

 α : dimless electron-phonon coupling ($\approx 1...10$). m :electron mass, ω :phonon frequency (indep. of k).

Feynman (1955) : phonons can be integrated out exactly in path integral for partition fn.:

$$S_{\text{eff}} = \int_{0}^{\beta} dt \, \frac{1}{2} m \dot{x}^{2} + \alpha \int_{0}^{\beta} dt dt' \, e^{-\omega |t-t'|} \\ \times \underbrace{\int d^{3}k \, \frac{1}{k^{2}} \exp\left[i\mathbf{k} \cdot \left(\mathbf{x}(t) - \mathbf{x}(t')\right)\right]}_{=\text{const} \cdot |\mathbf{x}(t) - \mathbf{x}(t')|^{-1}}$$

One-particle problem, but two-time (retarded) action! Variational principle (from Jensen inequality) for

$$Z(\beta) = \int \mathcal{D}x \, e^{-S_{\text{eff}}(\beta)} \stackrel{\beta \to \infty}{\longrightarrow} e^{-\beta E_0}$$

=
$$\int \mathcal{D}x \, e^{-S_t} \cdot \underbrace{\frac{\int \mathcal{D}x \, \exp\left(-S_t - (S_{\text{eff}} - S_t)\right)}{\int \mathcal{D}x \, \exp(-S_t)}}_{=:\langle e^{-\Delta S} \rangle_t}$$

 \implies ground-state energy of polaron at rest :

$$E_0 \leq E_t + \lim_{eta o \infty} rac{1}{eta} \left< S_{\mathsf{eff}} - S_t \right>$$

Feynman's trial action :

$$S_t = \int_0^\beta dt \frac{\dot{x}^2}{2} + \int_0^\beta dt \, dt' f\left(|t - t'|\right) \left[\mathbf{x}(t) - \mathbf{x}(t')\right]^2$$

 \Rightarrow nonlinear variational eq. for retardation fn. $f(\sigma)$.

Best analytical method, works for all α :

 $\alpha \to 0$: $E_0 = -\alpha - 0.0159 \, \alpha^2 - 0.000806 \, \alpha^3 + \dots$ $E_F = -\alpha - 0.0123 \, \alpha^2 - 0.000634 \, \alpha^3 + \dots$

 $\alpha \to \infty$: $E_0 = -0.1085 \, \alpha^2 - 2.84 + \mathcal{O}(\alpha^{-2})$ $E_F = -0.1061 \, \alpha^2 - 2.83 + \mathcal{O}(\alpha^{-2})$

– confirmed by Monte-Carlo calculations [Alexandrou & Rosenfelder, Phys. Rep. 215 (1992)].

4. Variational Approximation

Choose class of trial actions \tilde{S}_t , exactly calculable

$$\frac{\int \tilde{\mathcal{D}}_{12} \exp\{i\tilde{S} \ [x_1, x_2]\}}{\int \tilde{\mathcal{D}}_{12} \exp\{i\tilde{S}_0 [x_1, x_2]\}} = \frac{\int \tilde{\mathcal{D}}_{12} \exp\{i\tilde{S}_t\}}{\int \tilde{\mathcal{D}}_{12} \exp\{i\tilde{S}_0\}}$$
$$\times \underbrace{\frac{\int \tilde{\mathcal{D}}_{12} \exp\{i\tilde{S}_t\} \exp\{i(\tilde{S} - \tilde{S}_t)\}}{\int \tilde{\mathcal{D}}_{12} \exp\{i\tilde{S}_t\}}}_{=: \langle \exp i(\tilde{S} - \tilde{S}_t) \rangle_t}$$

Feynman-Jensen variational principle (complex version: heuristic only !) :

$$\big\langle \exp i(\tilde{S} - \tilde{S}_t) \big\rangle_t \stackrel{\mathsf{optimal}}{\approx} \exp \Big\{ i \big\langle \, \tilde{S} - \tilde{S}_t \, \big\rangle_t \Big\}_{\mathsf{stat}}$$

where \tilde{S}_t fulfills stationarity condition,

$$\frac{\delta}{\delta \tilde{S}_t} \langle \tilde{S} - \tilde{S}_t \rangle_t \Big|_{\text{stat}} = 0.$$

Real case : Jensen's inequality

Convexity of exp(-x) on real axis \Rightarrow

$$e^{-\frac{1}{2}(x_1+x_2)} \le \frac{1}{2} \left(e^{-x_1} + e^{-x_2} \right)$$

More generally : for any average $\langle \ldots \rangle$ w. r. t. positive, normalized measure :

$$e^{-\langle A \rangle} \leq \langle e^{-A} \rangle.$$

Generalization to functional measure :

$$\exp\left\{-\int \mathcal{D}[x] A[x]\right\} \le \int \mathcal{D}[x] \exp\left\{-A[x]\right\},$$

if $\int \mathcal{D}[x] = 1.$

 $\Rightarrow \text{ Maximum of } \exp \left\{ -\left\langle \tilde{S} - \tilde{S}_t \right\rangle_t \right\} \text{ w. r. t. } \tilde{S}_t$ is best approximation for $\left\langle \exp -(\tilde{S} - \tilde{S}_t) \right\rangle_t$ in given class of trial actions \tilde{S}_t .

(Carried over to complex A[x] or $(\tilde{S} - \tilde{S}_t)$: widespread heuristic procedure, but not rigorous !)

Choice of trial action: $\langle \ldots \rangle_t$ doable analytically $\Leftrightarrow \tilde{S}_t$ bilinear in x_1, x_2 .

Parametrization of paths with $x_i(0) = 0, x_i(T_i) = x$:

$$x_i^{\mu}(\tau) = x^{\mu} \cdot \tau + \sum_{k=1}^{\infty} \left(\frac{\sqrt{2T_i}}{k\pi}\right) a_k^{(i)\,\mu} \sin\left(k\pi\tau\right)$$
$$\mu = 0 \dots 3; \qquad \tau := \frac{t}{T_i} \in [0, 1]$$

Functional measure now :

$$\int \tilde{\mathcal{D}}_{12} = \text{const.} \int d^4x \int \mathcal{D}^d a_1 \mathcal{D}^d a_2$$

Free action

$$S_0 = -\frac{\kappa_0}{2} \sum_{i=1}^2 \left[\frac{1}{T_i} x^2 + \sum_{k=1}^\infty \left(a_k^{(i)} \right)^2 \right]$$

taken as guideline for choice of S_t :

$$\tilde{S}_t = \tilde{\lambda}q \cdot x - \frac{\kappa_0}{2} \sum_{i=1}^2 \left[A_0 \frac{x^2}{T_i} + \sum_{k=1}^\infty A_k^{(i)} \left(a_k^{(i)} \right)^2 \right]$$
$$+ \kappa_0 \sum_{k=1}^\infty B_k \left(a_k^{(1)} \cdot a_k^{(2)} \right)$$

Coefficients to be determined variationally:

$$\tilde{\lambda}, \quad A_0, \quad A_k^{(i)} \ (i = 1, 2), \quad B_k.$$

More generally possible, but not used here :

- Nondiagonal terms $a_k^{(i)} \cdot a_l^{(j)}, l \neq k$ (found negligible in limit $T_1 + T_2 \longrightarrow \infty$)
- Tensorial coefficients

$$A_k \longrightarrow A_k^{\mu\nu} = \underbrace{A_k^T \left(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2} \right)}_{\text{transverse}} + \underbrace{A_k^L \left(\frac{q^{\mu}q^{\nu}}{q^2} \right)}_{\text{longitudinal}}$$

(improve non-relativistic limit quantitatively)

With \tilde{S}_t , all path integrals in

$$\Pi^{\text{var}} = -\int_{0}^{\infty} \frac{dT_{1}dT_{2}}{(4\pi)^{2}(T_{1}+T_{2})^{2}} \exp\left\{\frac{i}{2\kappa_{0}}\left[-(M_{1}^{2}T_{1}+M_{2}^{2}T_{2})\right] + q^{2}\left(\frac{T_{1}T_{2}}{T_{1}+T_{2}}\right)\right] + \frac{\int \tilde{\mathcal{D}}_{12} \exp\{i\tilde{S}_{t}\}}{\int \tilde{\mathcal{D}}_{12} \exp\{i\tilde{S}_{0}\}} \exp\left\{i\left\langle\tilde{S}-\tilde{S}_{t}\right\rangle_{t}\right\}$$

Gaussian, exactly calculable.

20

Klein-Gordon kernel handled by

$$\left(x_i(t)\left|\frac{1}{-\partial^2 - m^2}\right|x_j(t')\right) = \int \frac{d^4p}{(2\pi)^4} \frac{\exp\left[-ip\cdot\left(x_i(t) - x_j(t')\right)\right]}{p^2 - m^2 + i0}$$

Correlator in variational approximation:

$$\Pi^{\mathsf{var}}(q^2) = -\int_0^\infty \frac{dT_1 dT_2}{(4\pi)^2 (T_1 + T_2)^2} \exp\left\{\frac{i}{2\kappa_0} \left[-\left(M_1^2 T_1 + M_2^2 T_2\right)\right.\right.\right.\right.\right.$$
$$\left. + q^2 \left(\frac{T_1 T_2}{T_1 + T_2}\right) (2\lambda - \lambda^2) - (T_1 + T_2) \left(\Omega_{12}(q^2; T_{1,2}) + V(q^2; T_{1,2})\right) \left]\right\}$$

$$\begin{split} &\Omega_{12} \quad (\text{ from det}^{-1/2} \text{ and } S_0 \text{ terms }), \\ &V \qquad (\text{ from } S_{int} \text{ term }) \quad : \\ &\text{functions of } q^2, \, T_1, \, T_2, \, \lambda := \frac{\tilde{\lambda}}{A_0} \\ &\text{and complicated functionals of } A_k^{(1,2)}, \, B_k. \end{split}$$

5. Bound-state pole : Mano's equation

For function defined by proper-time integral

$$\Pi^{\mathsf{Var}}(q^2) = \frac{1}{i} \int_0^\infty dT e^{iT[N(q^2)]} g(q^2, T),$$

whose convergence at $T \to \infty$ is due to the oscillating exponential, and where $g(q^2, T)$ is smooth in q^2 , a pole can develop only when

$$N = 0 \quad \text{at} \quad q^2 = M_B^2.$$

What is T ? Restriction to equal-mass case

$$M_1 = M_2 =: M_0.$$

Here, answer is to transform T_1, T_2 integration to

$$T := \frac{T_1 + T_2}{2} = 0 \dots \infty$$

s: = $T_1 - T_2 = -2T \dots + 2T$.

Possibility of b.-s. pole develops because

as $T \to \infty$, $\Omega_{12} + V \to \text{constant } \Omega_{12}^{\infty} + V^{\infty}$, independent of T and s.

Integrand for $T \to \infty$:

 M_B^2 determined by Mano's equation :

$$\frac{q^2}{4}(2\lambda - \lambda^2) - M_0^2 - (\Omega_{12} + V)^{\infty}\Big|_{q^2 = M_B^2} = 0.$$

(K. Mano, 1955, for one-body problem).

"Kinetic" (Ω) and "interaction" (V) terms for $T \to \infty$: Fourier sums $\sum_{k=1}^{\infty} \to$ integrals over $E = \frac{k\pi}{T}$:

$$\sum_{k=1}^{\infty} f(A_k) \longrightarrow \frac{T}{\pi} \int_0^{\infty} dE f(A(E)), \quad \text{etc.}$$

For simplicity consider case

 $g_1 = g_2 = g \rightarrow A^{(1)}(E) = A^{(2)}(E) = A(E).$

Use $A_{\pm}(E) = A(E) \pm B(E)$; choose $\kappa_0 = i\kappa_E$:

$$\Omega_{12}^{\infty} = \Omega[A_+] + \Omega[A_-]$$

$$\Omega[A] = \frac{\kappa_E d}{2\pi} \int_0^\infty dE \left[\ln A(E) + \frac{1}{A(E)} - 1 \right]$$

$$V_{ii}^{\infty} = \frac{-g^2}{32\pi^2} \int_0^\infty d\sigma \frac{1}{\mu_{11}^2(\sigma)} \int_0^1 du$$

 $\times \exp\left\{-\frac{1}{2\kappa_E} \left[m^2 \mu_{11}^2(\sigma) \frac{1-u}{u} + \frac{\lambda^2 \sigma^2 q^2}{4\mu_{11}^2(\sigma)}u\right]\right\}$

$$V_{12}^{\infty} = \frac{-Zg^2}{32\pi^2} \int_0^\infty d\sigma \frac{1}{\mu_{12}^2(\sigma)} \int_0^1 du$$

 $\times \exp\left\{-\frac{1}{2\kappa_E} \left[m^2 \mu_{12}^2(\sigma) \frac{1-u}{u} + \frac{\lambda^2 \sigma^2 q^2}{4\mu_{12}^2(\sigma)}u\right]\right\}$

"Pseudotimes" μ_{ij}^2 are functionals of "profile functions" A(E), B(E) or $A_+(E)$, $A_-(E)$:

$$\mu_{11}^{2}[A_{\pm};\sigma) = \frac{2}{\pi} \int_{0}^{\infty} dE \frac{1}{E^{2}} \left[\frac{1}{A_{-}(E)} + \frac{1}{A_{+}(E)} \right] \sin^{2}(\frac{E\sigma}{2}) = \mu_{22}^{2}$$
$$\mu_{12}^{2}[A_{\pm};\sigma) = \frac{2}{\pi} \int_{0}^{\infty} dE \frac{1}{E^{2}} \left[\frac{\sin^{2}(\frac{E\sigma}{2})}{A_{-}(E)} + \frac{\cos^{2}(\frac{E\sigma}{2})}{A_{+}(E)} \right]$$

To be noted :

$$\begin{array}{ll} \mu_{12}^2 & \to & \text{finite as } \sigma \to 0 & \left(\begin{array}{c} \frac{1}{A_+} \propto E^2 \text{ at } E = 0 \end{array} \right) \\ \mu_{11}^2 & \to & 0 \ (\ \propto \sigma \text{) as } \sigma \to 0 \end{array}$$

Leads to divergence in $V_{11} = V_{22}$ at $\sigma = 0$.

This is the expected UV divergence calling for

6. Mass Renormalization

Regularize divergence of V_{ii}^{∞} integrand at $\sigma = 0$, e.g. by dimensional regularization in $d = 4 - 2\epsilon$:

$$V_{ii}^{\infty} = [V_{ii}^{\infty}]_{sing}(\epsilon) + [V_{ii}^{\infty}]_{reg}(q^2);$$

$$\begin{split} [V_{ii}^{\infty}]_{sing}\left(\epsilon\right) &= \frac{(g_{i}\mu^{\epsilon})^{2}}{4\kappa_{0}} \int_{0}^{\infty} d\sigma \int \frac{d^{d}p}{(2\pi)^{d}} \frac{1}{p^{2} - m^{2} + i0} \exp\left(\frac{i}{2\kappa_{0}}p^{2}\sigma\right) \\ &= \frac{-(g_{i})^{2}}{2(4\pi)^{2}} \left\{ \frac{1}{\epsilon} + \underbrace{\left[1 - \gamma + \ln\left(4\pi\frac{\mu^{2}}{m^{2}}\right)\right]}_{C(\mu)} + \mathcal{O}(\epsilon) \right\}, \end{split}$$

independent of κ_0 and q^2 . $\left[V_{ii}^{\infty}\right]_{reg}$ is regular at d = 4.

Mano's equation only contains sum $M_0^2 + 2V_{ii}^{\infty}$ \Rightarrow absorb $1/\epsilon$ divergence in modification of bare mass :

$$M_0^2 + 2V_{ii}^{\infty} = \underbrace{\left\{ M_0^2 - \frac{(g_i)^2}{(4\pi)^2} \left[\frac{1}{\epsilon} + C(\mu) \right] \right\}}_{\text{renormalized mass } \bar{M}(\mu)^2} + 2 \left[V_{ii}^{\infty} \right]_{reg} (q^2) .$$

After solution of variational problem for trial quantities λ and $A_{\pm}(E)$, intermediate, μ -dependent mass \overline{M}^2 can be eliminated in favor of physical baryon mass M^2 by renormalization condition $M_B \rightarrow 2M$ as $V_{12} \rightarrow 0$, i.e.

 $N(q^2 = 4M^2) = 0$ at Z = 0 $(V_{12} = 0)$.

Note: $[V_{ii}^{\infty}]_{sing}$ independent of trial quantities \Rightarrow Choice of $C(\mu)$ does not affect variational equations.

7. Stationarity Equations

For $T \to \infty$, stationarity condition $\frac{\delta}{\delta S_t} \langle \ldots \rangle_t = 0$ simplifies to $\frac{\delta}{\delta S_t} N[A_{\pm}, \lambda; q^2) = 0$, i.e.,

$$\frac{\partial}{\partial \lambda} N = 0, \qquad \frac{\delta}{\delta A_{\pm}(E)} N = 0.$$

Give system of 3 one-dimensional, but strongly nonlinear integral equations :

$$\frac{1}{\lambda} = 1 + \left(\frac{\alpha}{2\pi\kappa_E}\right) M^2 \int_0^\infty d\sigma \,\sigma^2 \int_0^1 du \, u \sum_{n=1}^2 \frac{Z^{n-1}}{\mu_{1n}^4(\sigma)}$$
$$\times \exp\left\{-\frac{1}{2\kappa_E} \left[m^2 \mu_{1n}^2(\sigma) \frac{1-u}{u} + \frac{\lambda^2 \sigma^2 q^2}{4\mu_{1n}^2(\sigma)}u\right]\right\},$$

$$A_{+}(E) = 1 + \frac{2}{\kappa_{E}E^{2}} \int_{0}^{\infty} d\sigma \left\{ \sin^{2}\left(\frac{E\sigma}{2}\right) \cdot \frac{\delta V_{11}^{\infty}}{\delta \mu_{11}^{2}} [A_{\pm}; \lambda] + \cos^{2}\left(\frac{E\sigma}{2}\right) \cdot \frac{\delta V_{12}^{\infty}}{\delta \mu_{12}^{2}} [A_{\pm}; \lambda] \right\},$$

$$A_{-}(E) = 1 + \frac{2}{\kappa_{E}E^{2}} \int_{0}^{\infty} d\sigma \left\{ \sin^{2}\left(\frac{E\sigma}{2}\right) \cdot \sum_{n=1}^{2} \frac{\delta V_{1n}^{\infty}}{\delta \mu_{1n}^{2}} [A_{\pm}; \lambda] \right\}.$$

Parametrization now through

$$M^2$$
: = physical baryon mass (pole position);
 α : = $\frac{g^2}{16\pi M^2}$ – dimless coupling constant.

Functional dependence on profile functions through

$$\mu_{1n}^2(\sigma) = \mu_{1n}^2[A_+, A_-, \lambda; \sigma) - \text{functionals as before;}$$

$$\frac{\delta V_{1n}^{\infty}}{\delta \mu_{1n}^{2}} [A_{\pm}, \lambda; \sigma) = \frac{Z^{n-1} \alpha M^{2}}{\pi \mu_{1n}^{4}(\sigma)} \int_{0}^{1} du \, u \left[1 - \frac{\lambda^{2} q^{2} \sigma^{2}}{16 \kappa_{E} \mu_{1n}^{2}} u \right] \\ \times \exp\left\{ -\frac{1}{2\kappa_{E}} \left[m^{2} \mu_{1n}^{2}(\sigma) \frac{1-u}{u} + \frac{\lambda^{2} \sigma^{2} q^{2}}{4\mu_{1n}^{2}(\sigma)} u \right] \right\}.$$

To be noted :

- Stationarity eqs. reparametrization invariant in κ_0 , therefore solved "Euclidean" (at $\kappa_0 = i\kappa_E$) where they are real;
- Can be used, without solving them, to deduce properties of profile fns. and pseudotimes, e.g. for limit values, scaling properties, ...

In particular, for large & small arguments,

$$A_{\pm}(E) \xrightarrow[E\to\infty]{} 1 + \left(\frac{\alpha M^2}{4\kappa_E}\right) \frac{1}{E} + \dots,$$

 $A_{-}(E) \xrightarrow[E \to 0]{} A_{-}(0) \quad \text{regular at } E = 0$ $A_{+}(E) \xrightarrow[E \to 0]{} \frac{\omega^{2}}{E^{2}} + \text{const.} + \dots , \qquad \omega^{2} = \frac{2}{\kappa_{E}} \int_{0}^{\infty} d\sigma \frac{\delta V_{12}}{\delta \mu_{12}^{2}(\sigma)}$

$$\mu_{1n}^{2}(\sigma) \xrightarrow[\sigma \to \infty]{} \frac{\sigma}{2A_{-}(0)} + \frac{1}{\pi} \int_{0}^{\infty} dE \frac{1}{E^{2}} \left[\frac{1}{A_{-}(E)} - \frac{1}{A_{-}(0)} + \frac{1}{A_{+}(E)} \right] + \dots$$

$$\mu_{11}^2(\sigma) = \mu_{22}^2(\sigma) \quad \overrightarrow{\sigma \to 0} \quad \sigma + \left(\frac{\alpha M^2}{4\pi\kappa_E}\right)\sigma^2 \ln \frac{\sigma}{\sigma_1} + \dots$$

 $\mu_{12}^2(\sigma) \xrightarrow[\sigma \to 0]{} \mu_{12}^2(0)$ regular at $\sigma = 0$.

Scaling with respect to κ_E parameter :

 $A_{\pm}(\kappa_E, E) = A_{\pm}(\kappa_E \cdot E) \implies \mu_{1n}^2(\kappa_E, \sigma) = \kappa_E \, \mu_{1n}^2(\frac{\sigma}{\kappa_E}).$

The latter give reparametrization invariance of Ω_{12}, V_{1n} .

8. Solution & Results

Procedure for solution :

- 1. Input parameter : $\frac{m}{M} = 0.15$ ($\approx \frac{m_{pion}}{m_{nucleon}}$). Physical baryon mass M serves as mass scale to express all other masses & energies.
- 2. Choose value of coupling constant α .
- 3. Solve variational eqs. for $A_+(E)$, $A_-(E)$, λ numerically by iteration (on grid of Gaussian integration points), first for $q^2/M^2 = 4$ and Z = 0 ($V_{12} = 0$) to determine \overline{M}^2 .
- 4. Choose values of q^2/M^2 below 4 in small steps.
- 5. For each value, solve again variational eqs. numerically and ...
- 6. ...calculate $N[A_+, A_-, \lambda; q^2/M^2]$ (in units of M^2), using previously determined \overline{M}^2 .
- 7. Plot N/M^2 versus q^2/M^2 and look for zero.
- 8. If no zero yet, increase α and go back to step 3.
- 9. If zero at $q^2 = M_B^2$ found (regula falsi), plot binding energy $\epsilon/M = (M_B - 2M)/M$ as function of α .

Results:

- Method does produce bound state for couplings $\alpha \stackrel{>}{\approx} 0.43$, larger than the non-relativistic (Yukawa) threshold value $\alpha \stackrel{>}{\approx} 0.40$, and still larger than threshold couplings observed in B.-S.-based approximations ($\alpha \stackrel{>}{\approx} 0.30$). Reason is poor approximation of relativistic-Yukawa interaction by quadratic, oscillator-like one.
- Above threshold coupling, (absolute values of) binding energies are substantially larger than in B.-S.-based calculations (ladder and "generalizedladder" approximations). Detailed comparison shows this is mainly due to inclusion of self-energy and vertex-correction effects (quantum corrections to $G_{2-baryon}$ and $G_{2-baryon-1-meson}$ functions). Check by calculations with $\alpha = 0$ but $Z\alpha \neq 0$.
- Unlike perturbation theory or B.-S. ladder approximation, the method does account for the instability of the W.-C.-system, a genuinely nonperturbative property:

at couplings $\alpha_{\text{Crit}} \approx 0.542$, there are no real solutions any more to Mano's equation. (In fact, solutions become complex, with imaginary parts giving width of metastable state).

The α_{crit} value is markedly smaller than the $\alpha_{crit} = 0.817$ observed in *one*-baryon problem: states of unstable field system decay the faster the more particles they contain.

Profile functions and pseudotimes for bound-state solution at $\alpha = 0.5$ (parameter $\kappa_E/M = 1$):

Binding energy $\frac{\epsilon}{M}$ vs. coupling constant α ($\frac{m}{M} = 0.15$) :

The charm of doing things analytically

Example: Massless mesons (m = 0) at weak interparticle coupling $Z\alpha$.

Use worldline version of "Feynman-Hellmann theorem",

$$\frac{\partial M_B^2}{\partial Z} = \frac{8}{\lambda Z} V_{12} (q^2 = M_B^2)$$

to derive expansion,

$$\frac{E_0}{M/2} = -b_2 (Z\alpha)^2 \left[1 + r_1 \frac{\alpha}{\pi} + \ldots\right] - b_4 (Z\alpha)^4 \left[1 + \ldots\right] - \ldots$$

variat.
 exact

$$b_2$$
:
 $\frac{1}{\pi} = 0.318$
 $\frac{1}{2}$ (Coulomb)

 r_1 :
 $\frac{7}{2} = 3.5$
 4 (eff. field theory)

 b_4 :
 $\frac{1}{\pi^2} = 0.101$
 $\frac{5}{32} = 0.156$ (Todorov's eq.)

Numerical coefficients smaller, as expected from a variational calculation

9. Summary & Conclusions

- 1. Basing two-particle interaction problem on pathintegral representation for suitable *current*-correlation function, rather than on Bethe-Salpeter type equations for full four-point function, leads to a formulation closer to sum-rule and lattice approaches.
- 2. Worldline formulation for this problem leads (in quenched approximation) to huge reduction in functional variables and highly visual picture in terms of (heavy-) particle trajectories.
- 3. Nonlocal, retarded effective interaction sums up in closed form noncrossed and crossed multi-meson exchanges of arbitrarily high order, along with self-energy and vertex-correction effects.
- 4. Combination with *variational* method, based on trial actions bilinear in the Fourier amplitudes of trajectories, leads to path integral performable analytically. Contrary to all known approximations to Bethe-Salpeter equation, its evaluation implies neither a neglect of dressing of (n < 4)-point functions (self-energy and vertex- correction effects), nor a violation of the non-relativistic limit, although the quenched approx. still does imply a certain violation of crossing symmetry.
- 5. One drawback of the method is that *two* approximations, quenched and variational, are necessary. Both can be in principle be improved through series expansions in the neglected terms, but the resulting double series is clumsy.

- Experience shows that the quadratic trial-action ansatz ("Yukawa approximated by oscillator") is not very accurate, particularly for the low-energy ("threshold") regime at weak coupling.
- 7. On the other hand the zeroth approximation furnished by this ansatz is structured and transparent; it allows many particular aspects and limiting situations to be studied analytically, and thus leads to better insight and understanding.
- 8. The "realistic" application best suited for this method would seem to be the physics of heavy quarkonia in QCD. There, the renormalization problem is more involved than in a superrenormalizable theory, but the existing application to QED makes it likely that (in the framework of the bilinear ansatz) it can still be handled.

A. Bosonic Gaussian integral

$$\int \mathcal{D}\phi \exp i \left[\frac{1}{2} (\phi, A\phi) + (j, \phi) \right]$$
$$= \frac{\text{const.}}{(\det A)^{1/2}} \exp \left[-\frac{i}{2} (j, A^{-1}j) \right]$$

Application to trial action : if

$$\tilde{S}_{M} := p \cdot x - \frac{\kappa_{0}}{2} A_{x} x^{2} - \frac{\kappa_{0}}{2} \sum_{i=1}^{2} \sum_{k=1}^{\infty} A_{k}^{(i)} (a_{k}^{(i)})^{2} + \kappa_{0} \sum_{k=1}^{\infty} B_{k} (a_{k}^{(1)} \cdot a_{k}^{(2)}) + \sum_{i=1}^{2} \sum_{k=1}^{\infty} \underbrace{f_{k}^{(i)}}_{sources} \cdot a_{k}^{(i)},$$

then

$$\int \mathcal{D}^{d} a^{(1)} \mathcal{D}^{d} a^{(2)} d^{d} x \exp\{i\tilde{S}_{M}\}$$

$$= \text{const.} \left\{ A_{x} \prod_{k=1}^{\infty} (A_{k}^{(1)} A_{k}^{(2)} - B_{k}^{2}) \right\}^{-d/2} \times$$

$$\exp\left\{ \frac{i}{2\kappa_{0}} \left[\frac{p^{2}}{A_{x}} + \sum_{k=1}^{\infty} \frac{A_{k}^{(1)} (f_{k}^{(2)})^{2} + A_{k}^{(2)} (f_{k}^{(1)})^{2} + 2B_{k} (f_{k}^{(1)} \cdot f_{k}^{(2)})}{A_{k}^{(1)} A_{k}^{(2)} - B_{k}^{2}} \right] \right\}$$

B. Homogeneous Bethe-Salpeter equation:

C. A brief history of worldlines

Quantum Mechanics:

$$< x_b \mid \exp\left[-i\hat{H}(t_b - t_a)/\hbar
ight] \mid x_a > = \int_{x(t_a)=x_a}^{x(t_b)=x_b} \mathcal{D}x(t) \ e^{iS[x(t)]/\hbar}$$

Heisenberg, Schrödinger, Dirac (1933),

 \longleftrightarrow

Dirac (1925 - 1927)

operators, wavefunctions

"WAVES"

Feynman (1942)

path integrals, trajectories

 \longrightarrow "PARTICLES"

Field Theory:

field operators $\widehat{\phi}(x)$, states	\longleftrightarrow	worldlines $x^{\mu}(t)$
Jordan, Heisenberg, Pauli (~ 1930)		Feynman (~ 1950)
"FIELDS"	\longleftrightarrow	"PARTICLES"
"second quantization"	\longleftrightarrow	"first quantization"
Dyson (1949))	
$\downarrow \downarrow$		
wins !		
(see textbooks)		

renaissance ... from string theory (!)

Bern & Kosower (1991)

Strassler (1992) showed how to derive the Bern-Kosower rules from the particle (worldline) representation of Quantum Field Theory

Advantages:

- a) efficient way to calculate diagrams with many legs
- b) new approximation methods for large couplings (cf. Feynman's treatment of the polaron)