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Scale Dependent Renormalization

Some Conventions

We Are Lattice People

We do Monte Carlo (MC) simulations with
o Lattice size L
@ Lattice spacing a
e (L/a)* lattice points (in 4 dimensions)

@ The lattice introduces a momentum cutoff a—!

First we will consider pure Yang-Mills-Theory, later switch to QCD.




Scale Dependent Renormalization

The Running Coupling

Bare coupling constant
&0

has to be renormalized.

The Real World

Physical, scale dependant coupling (), e.g.

o(eTe” — Gqg)
o(ete” —qq)

o)




Scale Dependent Renormalization

A Picture
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Scale Dependent Renormalization

The Perturbation Theory Side

For high energies 1, one can use perturbation theory (PT) to make
predictions. The renormalization group (RG) tells us that

o7

PT then yields
&80 _ _
3(g) 6~ —83(bo +8°b1 +...)

But QCD should also describe low energy phenomena ...



Scale Dependent Renormalization

What Do We Want To Do?

A Test For QCD

@ Determine a(u) non-perturbatively on the lattice
@ Make connection to PT in the high energy sector

@ i.e. connect low- and high-energy regimes of QCD, predict
e.g. N/F or simply A trough hadronic input

Use PT (or some other effective theory) for 'real world
predictions’

o Compare with experiments




Scale Dependent Renormalization

How To Do This?

Define a physical coupling, e.g.
1 5
aali) = 0|
pn=1/r

and measure it on the lattice!

Simple?



Scale Dependent Renormalization

How To Do This?

Define a physical coupling, e.g.
1 5
aali) = 0|
pn=1/r

and measure it on the lattice!

This doesn't work!



Scale Dependent Renormalization

Why Doesn't It Work?

We have to satisfy constraints:
@ 1 > 10GeV for PT matching
@ 1 < a~! to control discretization errors
o L> m%r, rp to control finite size effects
This leads to

1 1 1

1
L R S N
0 Y 0 14GeV ~ 1~ 10Gev 2

= Simulate L/a > 70 lattice points in MC simulation
— (today) not possible



Scale Dependent Renormalization

The Way Out (Lischer, Weisz, Wolf, 1991)

Besides a1

namely L

The L Trick

o Identify u = % i.e. choose finite size effects as observable

, another energy scale is accessible in MC simulations,

e Find a clever definition for a(L)
@ Split up the
o Renormalization of «(L) for fixed L and
o Computation of the scale dependence of «




Scale Dependent Renormalization

Step By Step: The Step Scaling Function (SSF)

To investigate the scale evolution of «, define the step scaling
function ¢

The Step Scaling Function

o Choose starting point uy = g2(L)
@ Choose a scaling factor s
o Define o(s, ug) = g2(sL)

This is a discrete integrated (-function




Scale Dependent Renormalization
The SSF on a Lattice

REMEMBER: We Are Lattice People

@ Obtained on a lattice, o will carry a dependence on a/L

@ So define

X(s,u,a/L) = gz(SL)}EZ(L):u,gO fixed,a/L fixed

o Calculate X (s, u, a/L) for several lattice resolutions and take
the limit
o(s,u) = lim X(s,u,a/L)
0

a/L—>




Scale Dependent Renormalization

o in Three " Steps

How To Obtain o7
@ Choose initial (L/a)* lattice
@ Tune § such that g(L) = u is where you want to start

© Compute g(2L) with the same bare parameters and get
¥(2,u,a/L)

Repeat for several resolutions a/L and extrapolate a/L — 0

@ Step 2) takes care of renormalization

@ Step 3) computes the scale-evolution of of the renormalized
coupling




Scale Dependent Renormalization

o: A Comic Approach

£(2,u,1/4)

Z(2,u,1/6)

(g0?

Stolen from ALPHA Collaboration

(g0®



Scale Dependent Renormalization
Does It Work?

One finds that

Y(2,u,a/L) —o(2

u)
o(2,u) _51(3/L)U+52(3/L)u2+'”

where

5, = O(a/L).

This looks good, the continuum limit is reached with errors of

0(a/L).



Scale Dependent Renormalization
What About Universality?

Does o depend on the choice of the action?

It seems not ...

_
_

Strategy

Improve ¥

¥(2,u,a/L)
1+ 35, 6i(a/L)u

and calculate o for different actions.

¥((2,u,a/L) =




Scale Dependent Renormalization
Some Numerical Results
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Scale Dependent Renormalization

Putting It Together

What We've Got So Far
Assume, one has
o Calculated o(u;) for several u;

e Interpolated a polynomial o(u)

The Final Step

Then one can construct the running coupling g2(277Lg) = u; via
the recursion

o = g°(Lo), o(ujt1) = us




Scale Dependent Renormalization

Some Results
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Done by ALPHA



Scale Dependent Renormalization

What Still Has To Be Done

The Definition of (L)
We have to define (L) such that it has

@ An easy expansion in PT

@ A small Monte Carlo variance

@ Small discretization errors

Which leads us to ...



The Schrédinger Functional

Introducing: The Schrodinger Functional

The SF ...

@ Was first used by Symanzik for renormalization of the
Schrodinger Picture in QFT

@ Then by Liischer and Narayanan, Weisz, Wolff for finite size
scaling technique

@ Is the propagation kernel of some field configuration C to
another in euclidean time T




The Schrédinger Functional

The Space-time

Our theory lives on a [3-space-box with periodic boundary and
finite time T, like this

L
e
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The Schrédinger Functional

The Players |: Gauge Fields

@ On our space-time live SU(N) gauge fields A, (X) on LS3.
e We want for a SU(N) gauge transformation A

AR(R) = NR)ARNE) ™ + AF)aNR)

to be another gauge field.

@ We only admit periodic gauge transformations A



The Schrédinger Functional

The Winding Number Thing

The Operators A : $3 — SU(N) fall in disconnected topological
classes, labelled by their winding number n. A simple example:

f:5%2 - U(1)~S




The Schrédinger Functional

The Players |I: The States

A state is a wave functional ¥[A]. On the set of all states, a scalar
product is given by

<wm=/vwmaww

with
DA = [] Ai(%)

X,k,a

Physical states satisfy 1)[A"] = 1[A]. We introduce the projector
on the set of physical states through

PulA] = [ DIN(AY



The Schrédinger Functional
The Players lll: The Boundary

How To Make Up a State ...

@ Take a smooth classical gauge field Cx(X)

@ Introduce a state |C) via

(Cly) =¢[C] V states 9

@ C can be made gauge invariant by applying P




The Schrédinger Functional

Putting It Together

Defining the Schrodinger Functional

o Let

Z[C', C] = (C'|e~"TP|C)

@ Invariant under gauge transformations due to IP




The Schrédinger Functional
Putting It Together

Defining the Schrodinger Functional

o Let

Z[C', C] = (C'|e~"TP|C)

= Z eE"TT/}n[CI]T/}n[C]*

n=0

@ Where 1), is the n-th (physical) energy eigenstate

@ Invariant under gauge transformations due to IP




The Schrédinger Functional
Going Functional

We Are Lattice People

We want a functional integral:

Z[C', C] = / D[N D[A]e>

(modulo renormalization factor) where

A(x) = CMX) at x°=0
VT aE) at =T

1
S[A :—/d4xtrF,,FV
[A] 282 (FuvFuw)




The Schrédinger Functional

The Topology Trick

After the D[A] integration, Z reads
zic )= [ DINFIN

and actually, F only depends on the winding number n. So we find

that -
zic,cj= Y} / DlAleSA

n—=—oo

where

Au(x) = CM(X) at xX°=0
VT ar) st x0=T



The Schrédinger Functional

The Action And the Winding Number

A Boundary for the Action

@ One finds that S[A] is bounded by

1
S[A] > 72 5 ’SCs[C] — Scs[C/] + n[
&0

@ Where Scs is the Chern-Simons action
@ And n the winding number of A

@ Only have to check a few topological sectors for minimal
action gauge fields, which dominate the integral




The Schrédinger Functional

The Action And the Winding Number

A Boundary for the Action

@ One finds that S[A] is bounded by

1
S[A] > 272’5C5[C] — Scs[C/] + n[
80
1
= ~—5|[some number + n|
285

@ Where Scs is the Chern-Simons action
@ And n the winding number of A

@ Only have to check a few topological sectors for minimal
action gauge fields, which dominate the integral




The Schrédinger Functional

Finding The Minimum

How To Obtain a Minimal Action Configuration B ?

o Generally difficult
o Easy if we
o Take a known solution B of the field eqns. and
e Define C,C’ as
Ce(X) = Bk(X)lyo—o  Ch(X) = Bk(x)| o7
o If

o Gy =0,B,—0,B,+[Bu, B, is self dual and
° SSC[C/] — Scs[C] < 1/2 and
e n(B)=0
@ Then B is the unique (up to gauge transformations) minimal
action configuration




The Schrédinger Functional
A Simple Example

A One-Parameter Family of Background Fields

Consider the BG-field

Bo(x) =0 Bi(x) = b(x°)k [, 1] = exsjl;-
Self-duality condition reduces to
db=b = b =(r-x"L

We just found a family of globally stable background fields!




The Schrédinger Functional
A Simple Example

A One-Parameter Family of Background Fields

Consider the BG-field
Bo(x) =0 Bi(x) = b(x°)k [, 1] = exsjl;-
Self-duality condition reduces to
db=b = b =(r-x"L

We just found a family of globally stable background fields!

We will need this for a!




The Schrédinger Functional

What About Renormalization?

Question: Is the SF Renormalizable?

In the weak coupling domain, expand the SF around the induced
background field and obtain for the effective action:

[[B] = —In Z[C', C]
= g5 2Mo[B] + T1[B] + g32[B] + ...

with [o[B] = g2S[B], divergent in each power of go

Answer: Most Probably ... Yes

@ Of course, one has to renormalize gp, (m)

@ In general, one has to add boundary counter-terms
@ This should be sufficient (checked up to 2-loop order in QCD)

@ In Yang-Mills theory, no such counter-terms are needed




The Schrédinger Functional

The Running Coupling (Finally)

A Running Coupling Recipe
@ Choose a background field B depending on a dimensionless
parameter 7

Then ['[B] = —%F[B] is a renormalization group invariant.

@ Set T = L and define a physical coupling via

g%(L) = To[B]/T"[B]

This is a Casimir force between the boundary fields

(]

If the chosen field depends on parameters with dimension # 1,
scale them proportional to L, e.g. in our example set

T=—L/n




The Schrédinger Functional

The Result
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From ALPHA again



Renormalizing Quark Masses

Let's Measure a Mass

Fermions

The next interesting quantities which needs scale dependent
Renormalization are the quark Masses.

@ Define N¢ fermion fields s on our periodic space time

@ Define boundary fields ¢, (' for quark fields

@ Add counter terms for 1) at the boundary for renormalization

v




Renormalizing Quark Masses
Definition for m

Defining a Running Quark Mass

@ Use the PCAC relation to define m
BuAR (x) = (ms + g ) PR (x)
with
AL (x) = ZaAu(x) = Zahs(x)usibs (x)
PR(x) = Z,P(x) = Zyth(x)5s (x)

e A,(x) is renormalized through current algebra relations

@ Scale- & scheme-dependence arises through renormalization of
P(X), Zp = ZP(,U,)

e the corresponding RG function reads 7(g)ms = M%T;




Renormalizing Quark Masses
Doing It All Over

A Definition for Z,(L)

We drop s and define

3t
fp(L/2)

where /3f; is only a normalization factor, defined as

Zp(L) =

o(x) = =3 [ & €2 @500 1s57C(2)
= —575 | Pudy &y &2 € a7 ()57

which look complicated, but...




Renormalizing Quark Masses

f, and fi, an lllustration

. can be illustrated like this:

N e Y
N~

time

space



Renormalizing Quark Masses

Calculating M(m, p), Pt. 1

Yet Another Step Scaling Function

So far, we have
_ Z

Define the step scaling function op as
Zp(2L) = op(u)Zp(L)

and compute o(Lp),...,(25Lg). Use these for

M . M m(Lo) m(QLo) m(Qk_lLo)
m(2kLo) ML)  m(2Lo) mM(22Lo) T m(2kLo)
——

accessible in PT ~SSF!




Renormalizing Quark Masses

Calculating M(m, p), Pt. 2

The Final Step

Finally, we can compute
M
M= —_——m(2"L
kg "2 Lo
B M Za m
m(2%Lo) Zp (1= (2"Lo) 1)
———
(known from Pt. 1) (from simulations)
= Z(u)m
We found the overall renormalization factor!




Renormalizing Quark Masses

This Talk's Last Picture
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Renormalizing Quark Masses

Conclusions

@ Important physical quantities like &« and m require scale
dependent renormalization

@ Scale dependent renormalization is a difficult task, because a
large variety of energy scales has to be covered

@ This problem can be fixed by using a finite scaling technique

@ The Schrodinger Functional provides a good framework for
the definition of scale dependent quantities

Thank you!

Some literature:
@ R. Sommer: Non-perturbative QCD [...], hep-lat/0611020
o Capitani, Liischer, Sommer, Wittig: Non-perturbative quark

mass renormalization in quenched lattice QCD,
hep-lat/9810063
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