< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Scale Dependent Renormalization and the Schrödinger Functional

Dirk Hesse dirk.hesse@uni-muenster.de

Institut für Theoretische Physik WWU Münster

July 6th, 2007

3 Renormalizing Quark Masses

Some Conventions

We Are Lattice People

We do Monte Carlo (MC) simulations with

- Lattice size L
- Lattice spacing a
- $(L/a)^4$ lattice points (in 4 dimensions)
- The lattice introduces a momentum cutoff a^{-1}

First we will consider pure Yang-Mills-Theory, later switch to QCD.

The Running Coupling

QCD Bare coupling constant go has to be renormalized.

The Real World

Physical, scale dependant coupling $\alpha(\mu)$, e.g.

$$lpha(\mu) \propto rac{\sigma(e^+e^-
ightarrow \overline{q}qg)}{\sigma(e^+e^-
ightarrow \overline{q}q)}$$

(日) (同) (日) (日)

A Picture

Stolen from S. Bethke: α_{s} 2002

The Perturbation Theory Side

For high energies μ , one can use perturbation theory (PT) to make predictions. The renormalization group (RG) tells us that

$$\mu \frac{\partial \overline{g}}{\partial \mu} = \beta(\overline{g}),$$

PT then yields

$$\beta(\overline{g}) \stackrel{\overline{g} \to 0}{\sim} -\overline{g}^3(b_0 + \overline{g}^2 b_1 + \ldots)$$

But QCD should also describe low energy phenomena ...

What Do We Want To Do?

A Test For QCD

- Determine $\alpha(\mu)$ non-perturbatively on the lattice
- Make connection to PT in the high energy sector
- i.e. connect low- and high-energy regimes of QCD, predict
 e.g. Λ/F_π or simply Λ trough hadronic input
- Use PT (or some other effective theory) for 'real world predictions'
- Compare with experiments

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How To Do This?

Define a physical coupling, e.g.

$$\alpha_{\overline{q}q}(\mu) := \frac{1}{C_F} r^2 F(r) \Big|_{\mu = 1/r}$$

and measure it on the lattice!

Simple?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How To Do This?

Define a physical coupling, e.g.

$$\alpha_{\overline{q}q}(\mu) := \frac{1}{C_F} r^2 F(r) \Big|_{\mu = 1/r}$$

and measure it on the lattice!

This doesn't work!

Why Doesn't It Work?

We have to satisfy constraints:

- $\mu \geq 10 \, {
 m GeV}$ for PT matching
- $\mu \ll a^{-1}$ to control discretization errors
- $L \gg \frac{1}{m_{\pi}}$, r_0 to control finite size effects This leads to

$$L \gg r_0, rac{1}{m_\pi} \sim rac{1}{0.14 {\it GeV}} \gg rac{1}{\mu} \sim rac{1}{10 {\it GeV}} \gg a$$

⇒ Simulate $L/a \gg 70$ lattice points in MC simulation → (today) not possible

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

The Way Out (Lüscher, Weisz, Wolf, 1991)

Besides a^{-1} , another energy scale is accessible in MC simulations, namely L

The *L* Trick

- Identify $\mu = \frac{1}{L}$, i.e. choose finite size effects as observable
- Find a clever definition for $\alpha(L)$
- Split up the
 - Renormalization of $\alpha(L)$ for fixed L and
 - $\bullet\,$ Computation of the scale dependence of $\alpha\,$

Step By Step: The Step Scaling Function (SSF)

To investigate the scale evolution of $\alpha,$ define the step scaling function σ

The Step Scaling Function

- Choose starting point $u_0 = \overline{g}^2(L)$
- Choose a scaling factor s
- Define $\sigma(s, u_0) = \overline{g}^2(sL)$

This is a discrete integrated β -function

The SSF on a Lattice

REMEMBER: We Are Lattice People

- Obtained on a lattice, σ will carry a dependence on a/L
- So define

$$\Sigma(s, u, a/L) = \overline{g}^2(sL)|_{\overline{g}^2(L)=u,g_0 \text{ fixed,a/L fixed}}$$

• Calculate $\Sigma(s, u, a/L)$ for several lattice resolutions and take the limit

$$\sigma(s, u) = \lim_{a/L \to 0} \Sigma(s, u, a/L)$$

σ in Three n Steps

How To Obtain σ ?

- Choose initial $(L/a)^4$ lattice
- **2** Tune β such that $\overline{g}(L) = u$ is where you want to start
- Compute g
 (2L) with the same bare parameters and get Σ(2, u, a/L)

Repeat for several resolutions a/L and extrapolate $a/L \rightarrow 0$

Note:

- Step 2) takes care of renormalization
- Step 3) computes the scale-evolution of the renormalized coupling

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

σ : A Comic Approach

Stolen from ALPHA Collaboration

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Does It Work?

One finds that

$$\frac{\Sigma(2, u, a/L) - \sigma(2, u)}{\sigma(2, u)} = \delta_1(a/L)u + \delta_2(a/L)u^2 + \dots$$

where

$$\delta_n = O(a/L).$$

This looks good, the continuum limit is reached with errors of O(a/L).

What About Universality?

Question

Does σ depend on the choice of the action?

Answer

It seems not ...

Strategy

Improve Σ

$$\Sigma^{(k)}(2, u, a/L) = \frac{\Sigma(2, u, a/L)}{1 + \sum_{i=1}^{k} \delta_i(a/L)u}$$

and calculate σ for different actions.

Some Numerical Results

Stolen from CP-CACS Collaboration

Putting It Together

What We've Got So Far

Assume, one has

- Calculated $\sigma(u_i)$ for several u_i
- Interpolated a polynomial $\sigma(u)$

The Final Step

Then one can construct the running coupling $\overline{g}^2(2^{-i}L_0) = u_i$ via the recursion

$$u_0 = \overline{g}^2(L_0), \sigma(u_{i+1}) = u_i$$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 ○ のへで

Some Results

Done by ALPHA

Renormalizing Quark Masses

What Still Has To Be Done

The Definition of $\alpha(L)$

We have to define $\alpha(L)$ such that it has

- An easy expansion in PT
- A small Monte Carlo variance
- Small discretization errors

Which leads us to ...

Introducing: The Schrödinger Functional

The SF ...

- Was first used by Symanzik for renormalization of the Schrödinger Picture in QFT
- Then by Lüscher and Narayanan, Weisz, Wolff for finite size scaling technique
- Is the propagation kernel of some field configuration C to another in euclidean time T

The Space-time

Our theory lives on a L^3 -space-box with periodic boundary and finite time T, like this

The Players I: Gauge Fields

- On our space-time live SU(N) gauge fields $A_k(\vec{x})$ on LS^3 .
- We want for a SU(N) gauge transformation Λ

$$A_k^{\Lambda}(\vec{x}) = \Lambda(\vec{x})A_k(\vec{x})\Lambda(\vec{x})^{-1} + \Lambda(\vec{x})\partial_k\Lambda(\vec{x})^{-1}$$

to be another gauge field.

 \bullet We only admit periodic gauge transformations Λ

The Winding Number Thing

The Operators $A: S^3 \rightarrow SU(N)$ fall in disconnected topological classes, labelled by their winding number *n*. A simple example:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Players II: The States

A state is a wave functional $\psi[A]$. On the set of all states, a scalar product is given by

$$\langle \psi | \chi \rangle = \int \mathcal{D}[A] \psi[A]^* \chi[A]$$

with

$$\mathcal{D}[A] = \prod_{ec{x},k,a} A^a_k(ec{x})$$

Physical states satisfy $\psi[A^{\Lambda}] = \psi[A]$. We introduce the projector on the set of physical states through

$$\mathbb{P}\psi[A] = \int \mathcal{D}[\Lambda]\psi[A^{\Lambda}]$$

Renormalizing Quark Masses

The Players III: The Boundary

How To Make Up a State ...

- Take a smooth classical gauge field $C_k(\vec{x})$
- Introduce a state $|C\rangle$ via

$$\langle {\cal C} | \psi \rangle = \psi [{\cal C}] ~~\forall~~ {\rm states}~~\psi$$

• ${\mathcal C}$ can be made gauge invariant by applying ${\mathbb P}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Putting It Together

Defining the Schrödinger Functional

Let

$$Z[C',C] = \langle C'|e^{-HT}\mathbb{P}|C\rangle$$

 $\bullet\,$ Invariant under gauge transformations due to $\mathbb P$

Putting It Together

Defining the Schrödinger Functional

Let

$$Z[C', C] = \langle C' | e^{-HT} \mathbb{P} | C \rangle$$
$$= \sum_{n=0}^{\infty} e^{E_n T} \psi_n[C'] \psi_n[C]$$

*

• Where ψ_n is the *n*-th (physical) energy eigenstate

ullet Invariant under gauge transformations due to ${\mathbb P}$

Going Functional

We Are Lattice People

We want a functional integral:

$$Z[C',C] = \int \mathcal{D}[\Lambda]\mathcal{D}[A]e^{S[A]}$$

(modulo renormalization factor) where

$$A_k(x) = egin{cases} C_k^{\wedge}(ec{x}) & ext{at } x^0 = 0 \ C_k'(ec{x}) & ext{at } x^0 = T \end{cases}$$

and

$$S[A] = -rac{1}{2g_0^2}\int \mathrm{d}^4x \ \mathrm{tr}(F_{\mu
u}F_{\mu
u})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Topology Trick

After the $\mathcal{D}[A]$ integration, Z reads

$$Z[C',C] = \int \mathcal{D}[\Lambda]F[\Lambda]$$

and actually, F only depends on the winding number n. So we find that

$$Z[C',C] = \sum_{n=-\infty}^{\infty} \int \mathcal{D}[A] e^{S[A]}$$

where

$$A_k(x) = egin{cases} C_k^{\Lambda_n}(ec{x}) & ext{at } x^0 = 0 \ C_k'(ec{x}) & ext{at } x^0 = T \end{cases}$$

The Action And the Winding Number

A Boundary for the Action

• One finds that *S*[*A*] is bounded by

$$S[A] \ge \frac{1}{2g_0^2} |S_{CS}[C] - S_{CS}[C'] + n|$$

- Where S_{CS} is the Chern-Simons action
- And *n* the winding number of *A*
- Only have to check a few topological sectors for minimal action gauge fields, which dominate the integral

The Action And the Winding Number

A Boundary for the Action

• One finds that S[A] is bounded by

$$egin{aligned} S[A] &\geq rac{1}{2g_0^2} |S_{CS}[C] - S_{CS}[C'] + n| \ &= rac{1}{2g_0^2} | ext{some number} + n| \end{aligned}$$

- Where S_{CS} is the Chern-Simons action
- And *n* the winding number of *A*
- Only have to check a few topological sectors for minimal action gauge fields, which dominate the integral

Finding The Minimum

How To Obtain a Minimal Action Configuration B?

- Generally difficult
- Easy if we
 - Take a known solution B of the field eqns. and
 - Define C,C' as

$$C_k(\vec{x}) = B_k(x)|_{x^0=0} \quad C'_k(\vec{x}) = B_k(x)|_{x^0=T}$$

If

•
$$G_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu}, B_{\nu}]$$
 is self dual and
• $S_{SC}[C'] - S_{CS}[C] < 1/2$ and
• $n(B) = 0$

• Then *B* is the unique (up to gauge transformations) minimal action configuration

A Simple Example

A One-Parameter Family of Background Fields

Consider the BG-field

$$B_0(x) = 0$$
 $B_k(x) = b(x^0)I_k$ $[I_k, I_l] = \epsilon_{klj}I_j.$

Self-duality condition reduces to

$$\partial_0 b = b^2 \quad \Rightarrow \quad b(x^0) = (\tau - x^0)^{-1}.$$

We just found a family of globally stable background fields!

A Simple Example

A One-Parameter Family of Background Fields

Consider the BG-field

$$B_0(x) = 0$$
 $B_k(x) = b(x^0)I_k$ $[I_k, I_l] = \epsilon_{klj}I_j.$

Self-duality condition reduces to

$$\partial_0 b = b^2 \quad \Rightarrow \quad b(x^0) = (\tau - x^0)^{-1}.$$

We just found a family of globally stable background fields!

We will need this for α !

What About Renormalization?

Question: Is the SF Renormalizable?

In the weak coupling domain, expand the SF around the induced background field and obtain for the effective action:

$$\Gamma[B] = -\ln Z[C', C]$$

= $g_0^{-2}\Gamma_0[B] + \Gamma_1[B] + g_0^2\Gamma_2[B] + \dots$

with $\Gamma_0[B] = g_0^2 S[B]$, divergent in each power of g_0

Answer: Most Probably ... Yes

- Of course, one has to renormalize g_0 , (m)
- In general, one has to add boundary counter-terms
- This should be sufficient (checked up to 2-loop order in QCD)
- In Yang-Mills theory, no such counter-terms are needed

The Running Coupling (Finally)

A Running Coupling Recipe

- Choose a background field B depending on a dimensionless parameter η
- Then $\Gamma'[B] = -\frac{\partial}{\partial \eta} \Gamma[B]$ is a renormalization group invariant.
- Set T = L and define a physical coupling via

$$\overline{g}^2(L) := \Gamma_0'[B]/\Gamma'[B]$$

- This is a Casimir force between the boundary fields
- If the chosen field depends on parameters with dimension \neq 1, scale them proportional to *L*, e.g. in our example set $\tau = -L/\eta$

The Result

From ALPHA again

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 ○ のへで

Let's Measure a Mass

Fermions

The next interesting quantities which needs scale dependent Renormalization are the quark Masses.

- Define N_f fermion fields ψ_s on our periodic space time
- Define boundary fields ζ, ζ' for quark fields
- $\bullet\,$ Add counter terms for ψ at the boundary for renormalization

Definition for \overline{m}

Defining a Running Quark Mass

• Use the PCAC relation to define \overline{m}

$$\partial_{\mu}A^{R}_{\mu}(x) = (\overline{m}_{s} + \overline{m}_{s'})P^{R}(x)$$

with

$$A^{R}_{\mu}(x) = Z_{A}A_{\mu}(x) = Z_{A}\overline{\psi}_{s}(x)\gamma_{\mu}\gamma_{5}\psi_{s'}(x)$$
$$P^{R}(x) = Z_{p}P(x) = Z_{p}\overline{\psi}_{s}(x)\gamma_{5}\psi_{s'}(x)$$

- $A_{\mu}(x)$ is renormalized through current algebra relations
- Scale- & scheme-dependence arises through renormalization of P(x), $Z_P = Z_P(\mu)$
- the corresponding RG function reads $\tau(\overline{g})\overline{m}_s = \mu \frac{\partial \overline{m}_s}{\partial \mu}$

Doing It All Over

A Definition for $Z_p(L)$

We drop s and define

$$Z_P(L) = \frac{\sqrt{3f_1}}{f_P(L/2)}$$

where $\sqrt{3f_1}$ is only a normalization factor, defined as

$$f_{P}(x) = -\frac{1}{3} \int d^{3}y \ d^{3}z \ \langle \overline{\psi}(x)\gamma_{5}\frac{1}{2}\tau^{a}\psi(x)\overline{\zeta}(y)\gamma_{5}\frac{1}{2}\tau^{a}\zeta(z)\rangle$$

$$f_{1} = -\frac{1}{3L^{6}} \int d^{3}u \ d^{3}v \ d^{3}y \ d^{3}z \ \langle \overline{\zeta}'(u)\gamma_{5}\frac{1}{2}\tau^{a}\zeta'(v)\overline{\zeta}(y)\gamma_{5}\frac{1}{2}\tau^{a}\zeta(z)\rangle$$

which look complicated, but...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

f_p and f_1 , an Illustration

... can be illustrated like this:

Calculating $M(m, \mu)$, Pt. 1

Yet Another Step Scaling Function

So far, we have

$$\overline{m}(\mu)_{s} = \frac{Z_{A}}{Z_{P}(L)}m_{s}$$

Define the step scaling function σ_P as

$$Z_P(2L) = \sigma_P(u) Z_P(L)$$

and compute $\sigma(L_0), \ldots, \sigma(2^k L_0)$. Use these for

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Calculating $M(m, \mu)$, Pt. 2

The Final Step

Finally, we can compute

$$M = \frac{M}{\overline{m}(2^{k}L_{0})}\overline{m}(2^{k}L_{0})$$

=
$$\underbrace{\frac{M}{\overline{m}(2^{k}L_{0})}}_{\text{(known from Pt. 1) (from simulations)}} \underbrace{\frac{Z_{A}}{Z_{P}(\mu = (2^{k}L_{0})^{-1})}}_{= Z(\mu)m}m$$

We found the overall renormalization factor!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This Talk's Last Picture

ALPHA once more

Conclusions

- Important physical quantities like α and m require scale dependent renormalization
- Scale dependent renormalization is a difficult task, because a large variety of energy scales has to be covered
- This problem can be fixed by using a finite scaling technique
- The Schrödinger Functional provides a good framework for the definition of scale dependent quantities

Thank you!

Some literature:

- R. Sommer: Non-perturbative QCD [...], hep-lat/0611020
- Capitani, Lüscher, Sommer, Wittig: Non-perturbative quark mass renormalization in quenched lattice QCD, hep-lat/9810063