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Some Conventions

We Are Lattice People

We do Monte Carlo (MC) simulations with

Lattice size L

Lattice spacing a

(L/a)4 lattice points (in 4 dimensions)

The lattice introduces a momentum cutoff a−1

First we will consider pure Yang-Mills-Theory, later switch to QCD.
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The Running Coupling

QCD

Bare coupling constant
g0

has to be renormalized.

The Real World

Physical, scale dependant coupling α(µ), e.g.

α(µ) ∝ σ(e+e− → qqg)

σ(e+e− → qq)
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A Picture

Stolen from S. Bethke: αs 2002
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The Perturbation Theory Side

For high energies µ, one can use perturbation theory (PT) to make
predictions. The renormalization group (RG) tells us that

µ
∂g

∂µ
= β(g),

PT then yields

β(g)
g→0∼ −g3(b0 + g2b1 + . . .)

But QCD should also describe low energy phenomena ...
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What Do We Want To Do?

A Test For QCD

Determine α(µ) non-perturbatively on the lattice

Make connection to PT in the high energy sector

i.e. connect low- and high-energy regimes of QCD, predict
e.g. Λ/Fπ or simply Λ trough hadronic input

Use PT (or some other effective theory) for ’real world
predictions’

Compare with experiments
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How To Do This?

Define a physical coupling, e.g.

αqq(µ) :=
1

CF
r2F (r)

∣∣∣∣
µ=1/r

and measure it on the lattice!

Simple?

This doesn’t work!
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Why Doesn’t It Work?

We have to satisfy constraints:

µ ≥ 10 GeV for PT matching

µ� a−1 to control discretization errors

L� 1
mπ
, r0 to control finite size effects

This leads to

L� r0,
1

mπ
∼ 1

0.14GeV
� 1

µ
∼ 1

10GeV
� a

⇒ Simulate L/a� 70 lattice points in MC simulation
→ (today) not possible
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The Way Out (Lüscher, Weisz, Wolf, 1991)

Besides a−1, another energy scale is accessible in MC simulations,
namely L

The L Trick

Identify µ = 1
L , i.e. choose finite size effects as observable

Find a clever definition for α(L)

Split up the

Renormalization of α(L) for fixed L and
Computation of the scale dependence of α
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Step By Step: The Step Scaling Function (SSF)

To investigate the scale evolution of α, define the step scaling
function σ

The Step Scaling Function

Choose starting point u0 = g2(L)

Choose a scaling factor s

Define σ(s, u0) = g2(sL)

This is a discrete integrated β-function
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The SSF on a Lattice

REMEMBER: We Are Lattice People

Obtained on a lattice, σ will carry a dependence on a/L

So define

Σ(s, u, a/L) = g2(sL)
∣∣
g2(L)=u,g0 fixed,a/L fixed

Calculate Σ(s, u, a/L) for several lattice resolutions and take
the limit

σ(s, u) = lim
a/L→0

Σ(s, u, a/L)



Scale Dependent Renormalization The Schrödinger Functional Renormalizing Quark Masses

σ in Three n Steps

How To Obtain σ?

1 Choose initial (L/a)4 lattice

2 Tune β such that g(L) = u is where you want to start

3 Compute g(2L) with the same bare parameters and get
Σ(2, u, a/L)

Repeat for several resolutions a/L and extrapolate a/L→ 0

Note:

Step 2) takes care of renormalization

Step 3) computes the scale-evolution of of the renormalized
coupling
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σ: A Comic Approach

Stolen from ALPHA Collaboration
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Does It Work?

One finds that

Σ(2, u, a/L)− σ(2, u)

σ(2, u)
= δ1(a/L)u + δ2(a/L)u2 + . . .

where
δn = O(a/L).

This looks good, the continuum limit is reached with errors of
O(a/L).
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What About Universality?

Question

Does σ depend on the choice of the action?

Answer

It seems not ...

Strategy

Improve Σ

Σ(k)(2, u, a/L) =
Σ(2, u, a/L)

1 +
∑k

i=1 δi (a/L)u

and calculate σ for different actions.
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Some Numerical Results

Stolen from CP-CACS Collaboration
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Putting It Together

What We’ve Got So Far

Assume, one has

Calculated σ(ui ) for several ui

Interpolated a polynomial σ(u)

The Final Step

Then one can construct the running coupling g2(2−iL0) = ui via
the recursion

u0 = g2(L0), σ(ui+1) = ui
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Some Results

Done by ALPHA
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What Still Has To Be Done

The Definition of α(L)

We have to define α(L) such that it has

An easy expansion in PT

A small Monte Carlo variance

Small discretization errors

Which leads us to ...
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Introducing: The Schrödinger Functional

The SF ...

Was first used by Symanzik for renormalization of the
Schrödinger Picture in QFT

Then by Lüscher and Narayanan, Weisz, Wolff for finite size
scaling technique

Is the propagation kernel of some field configuration C to
another in euclidean time T
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The Space-time

Our theory lives on a L3-space-box with periodic boundary and
finite time T , like this
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The Players I: Gauge Fields

On our space-time live SU(N) gauge fields Ak(~x) on LS3.

We want for a SU(N) gauge transformation Λ

AΛ
k (~x) = Λ(~x)Ak(~x)Λ(~x)−1 + Λ(~x)∂kΛ(~x)−1

to be another gauge field.

We only admit periodic gauge transformations Λ
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The Winding Number Thing

The Operators A : S3 → SU(N) fall in disconnected topological
classes, labelled by their winding number n. A simple example:

f : S2 → U(1) ' S2
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The Players II: The States

A state is a wave functional ψ[A]. On the set of all states, a scalar
product is given by

〈ψ|χ〉 =

∫
D[A]ψ[A]∗χ[A]

with
D[A] =

∏
~x ,k,a

Aa
k(~x)

Physical states satisfy ψ[AΛ] = ψ[A]. We introduce the projector
on the set of physical states through

Pψ[A] =

∫
D[Λ]ψ[AΛ]
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The Players III: The Boundary

How To Make Up a State ...

Take a smooth classical gauge field Ck(~x)

Introduce a state |C 〉 via

〈C |ψ〉 = ψ[C ] ∀ states ψ

C can be made gauge invariant by applying P
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Putting It Together

Defining the Schrödinger Functional

Let

Z [C ′,C ] = 〈C ′|e−HTP|C 〉

=
∞∑

n=0

eEnTψn[C ′]ψn[C ]∗

Where ψn is the n-th (physical) energy eigenstate

Invariant under gauge transformations due to P
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Going Functional

We Are Lattice People

We want a functional integral:

Z [C ′,C ] =

∫
D[Λ]D[A]eS[A]

(modulo renormalization factor) where

Ak(x) =

{
CΛ

k (~x) at x0 = 0

C ′k(~x) at x0 = T

and

S [A] = − 1

2g2
0

∫
d4x tr(FµνFµν)
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The Topology Trick

After the D[A] integration, Z reads

Z [C ′,C ] =

∫
D[Λ]F [Λ]

and actually, F only depends on the winding number n. So we find
that

Z [C ′,C ] =
∞∑

n=−∞

∫
D[A]eS[A]

where

Ak(x) =

{
CΛn

k (~x) at x0 = 0

C ′k(~x) at x0 = T
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The Action And the Winding Number

A Boundary for the Action

One finds that S [A] is bounded by

S [A] ≥ 1

2g2
0

|SCS [C ]− SCS [C ′] + n|

=
1

2g2
0

|some number + n|

Where SCS is the Chern-Simons action

And n the winding number of A

Only have to check a few topological sectors for minimal
action gauge fields, which dominate the integral
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Finding The Minimum

How To Obtain a Minimal Action Configuration B ?

Generally difficult

Easy if we

Take a known solution B of the field eqns. and
Define C ,C ′ as

Ck(~x) = Bk(x)|x0=0 C ′k(~x) = Bk(x)
∣∣
x0=T

If

Gµν = ∂µBν − ∂νBµ + [Bµ,Bν ] is self dual and
SSC [C ′]− SCS [C ] < 1/2 and
n(B) = 0

Then B is the unique (up to gauge transformations) minimal
action configuration
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A Simple Example

A One-Parameter Family of Background Fields

Consider the BG-field

B0(x) = 0 Bk(x) = b(x0)Ik [Ik , Il ] = εklj Ij .

Self-duality condition reduces to

∂0b = b2 ⇒ b(x0) = (τ − x0)−1.

We just found a family of globally stable background fields!

We will need this for α!
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What About Renormalization?

Question: Is the SF Renormalizable?

In the weak coupling domain, expand the SF around the induced
background field and obtain for the effective action:

Γ[B] = − ln Z [C ′,C ]

= g−2
0 Γ0[B] + Γ1[B] + g2

0 Γ2[B] + . . .

with Γ0[B] = g2
0 S [B], divergent in each power of g0

Answer: Most Probably ... Yes

Of course, one has to renormalize g0, (m)

In general, one has to add boundary counter-terms

This should be sufficient (checked up to 2-loop order in QCD)

In Yang-Mills theory, no such counter-terms are needed
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The Running Coupling (Finally)

A Running Coupling Recipe

Choose a background field B depending on a dimensionless
parameter η

Then Γ′[B] = − ∂
∂ηΓ[B] is a renormalization group invariant.

Set T = L and define a physical coupling via

g2(L) := Γ′0[B]/Γ′[B]

This is a Casimir force between the boundary fields

If the chosen field depends on parameters with dimension 6= 1,
scale them proportional to L, e.g. in our example set
τ = −L/η
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The Result

From ALPHA again
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Let’s Measure a Mass

Fermions

The next interesting quantities which needs scale dependent
Renormalization are the quark Masses.

Define Nf fermion fields ψs on our periodic space time

Define boundary fields ζ, ζ ′ for quark fields

Add counter terms for ψ at the boundary for renormalization
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Definition for m

Defining a Running Quark Mass

Use the PCAC relation to define m

∂µA
R
µ (x) = (ms + ms′)P

R(x)

with

AR
µ (x) = ZAAµ(x) = ZAψs(x)γµγ5ψs′(x)

PR(x) = ZpP(x) = Zpψs(x)γ5ψs′(x)

Aµ(x) is renormalized through current algebra relations

Scale- & scheme-dependence arises through renormalization of
P(x), ZP = ZP(µ)

the corresponding RG function reads τ(g)ms = µ∂ms
∂µ
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Doing It All Over

A Definition for Zp(L)

We drop s and define

ZP(L) =

√
3f1

fP(L/2)

where
√

3f1 is only a normalization factor, defined as

fP(x) = −1

3

∫
d3y d3z 〈ψ(x)γ5

1

2
τ aψ(x)ζ(y)γ5

1

2
τ aζ(z)〉

f1 = − 1

3L6

∫
d3u d3v d3y d3z 〈ζ ′(u)γ5

1

2
τ aζ ′(v)ζ(y)γ5

1

2
τ aζ(z)〉

which look complicated, but...



Scale Dependent Renormalization The Schrödinger Functional Renormalizing Quark Masses

fp and f1, an Illustration

... can be illustrated like this:
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Calculating M(m, µ), Pt. 1

Yet Another Step Scaling Function

So far, we have

m(µ)s =
ZA

ZP(L)
ms

Define the step scaling function σP as

ZP(2L) = σP(u)ZP(L)

and compute σ(L0), . . . , σ(2kL0). Use these for

M

m(2kL0)
=

M

m(L0)︸ ︷︷ ︸
accessible in PT

m(L0)

m(2L0)

m(2L0)

m(22L0)
. . .

m(2k−1L0)

m(2kL0)︸ ︷︷ ︸
∼SSF−1
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Calculating M(m, µ), Pt. 2

The Final Step

Finally, we can compute

M =
M

m(2kL0)
m(2kL0)

=
M

m(2kL0)︸ ︷︷ ︸
(known from Pt. 1)

ZA

ZP (µ = (2kL0)−1)︸ ︷︷ ︸
(from simulations)

m

= Z (µ)m

We found the overall renormalization factor!
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This Talk’s Last Picture

ALPHA once more
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Conclusions

Important physical quantities like α and m require scale
dependent renormalization

Scale dependent renormalization is a difficult task, because a
large variety of energy scales has to be covered

This problem can be fixed by using a finite scaling technique

The Schrödinger Functional provides a good framework for
the definition of scale dependent quantities

Thank you!

Some literature:

R. Sommer: Non-perturbative QCD [...], hep-lat/0611020

Capitani, Lüscher, Sommer, Wittig: Non-perturbative quark
mass renormalization in quenched lattice QCD,
hep-lat/9810063
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