Effective string excitation energies

Peter Weisz

Max-Planck-Institute, Munich

- Effective string model
- Polyakov loop correlation function
- Old results
- "New" results; Martin Lüscher, P.W, JHEP 0407 (2004) 014

Univ. Münster, 25.06.2007

Pure SU(N) gauge theories

Flux distribution in the presence of static color sources

In presence of dynamical quarks "the string breaks" due to pair production (not considered in this talk) **static potential** V(r): minimum energy of a static $q - \bar{q}$ pair separated by a distance r

$$V(r) = -\lim_{t \to \infty} \frac{1}{t} \ln w(\mathcal{C}_{rt}), \quad \mathcal{C}_{rt}$$
: planar $r \times t$ loop

Wilson loop:
$$w(\mathcal{C}) = \langle \operatorname{tr} P \exp \int_{\mathcal{C}} \mathrm{d} x_{\mu} A_{\mu}(x) \rangle$$

Pert. Thy: $w(\mathcal{C})$ is multiplicatively renormalizable (Brandt, Ng):

$$w_{\mathrm{ren}}(\mathcal{C}) = \lim_{\Lambda \to \infty} \mathrm{e}^{-P(\mathcal{C})\Lambda F(g)} w(\mathcal{C})$$

 $P(\mathcal{C})$: perimeter of (smooth) \mathcal{C} , Λ : UV cutoff

force: $F(r) = \frac{\mathrm{d}V}{\mathrm{d}r} = C_{\mathrm{F}} \frac{\alpha_{q\bar{q}}(r)}{r^2}$ is RG invariant

running coupling: $\alpha_{q\bar{q}}(r) \sim \frac{c}{-\ln r}$ for $r \to 0$, (Asympt. Freedom)

For large r need non-perturbative methods:

* Lattice gauge theory (LGT)

 \star Loop wave equations

LGT with positive transfer matrix \Rightarrow

 $V(\mathbf{r})$ along the axis $\mathbf{r} = (r, 0, 0)$ (in infinite volume) is monotonic and concave (Seiler, Bachas 1986)

 \Rightarrow Force between opposite charges is always attractive, and at large $r\,,V({\bf r})$ cannot rise faster than linear.

strong coupling: $V(r) \sim \sigma r$, (Wilson)

 $\Rightarrow w(\mathcal{C}) \sim \exp(-\sigma \mathcal{A}(\mathcal{C})) \text{ for large minimal area } \mathcal{A}(\mathcal{C})$ σ : string tension: String wave equations (Polyakov, Migdal, Nambu):

$$\frac{\delta^2 w(\mathcal{C})}{\delta x_{\mu}(\sigma) \delta x_{\mu}(\sigma)} = \langle \operatorname{tr} \left[(x'_{\rho} F_{\mu\rho})^2(\sigma) U_{\mathcal{C}}(x(\sigma), x(\sigma)) \right] \rangle + \dots$$

assume finite thickness $\rightarrow (x'_{\rho}F_{\mu\rho})^2 \sim \text{electric flux through the tube}$ independent of posn. along the loop

 \Rightarrow free loop equation (for large smooth C)

$$\left[-\frac{\delta^2}{\delta x(\sigma)^2} + M^4 x'(\sigma)^2\right] w(\mathcal{C}) = 0$$

wave functions: $w(\mathcal{C}) \sim M^p e^{-M^2 \mathcal{A}(\mathcal{C})} \sum_{\nu=0}^{\infty} M^{-2\nu} w_{\nu}(\mathcal{C})$

which are reparametrization invariant $x'(\sigma)\frac{\delta}{\delta x(\sigma)}w(\mathcal{C}) = 0$, and satisfy a (complicated) local regularized loop equation (Lüscher, Symanzik, P.W. (1980))

→ hope Nambu-Goto string theory can be quantized without violating "fundamental principles" (Pohlmeyer)

Polyakov loop correlation function

In gauge theories with compact gauge group,

$$\langle P(r, x_{\perp})^* P(0, x_{\perp}) \rangle = \sum_{n=0}^{\infty} w_n \mathrm{e}^{-E_n(r)T}$$

static quark potential: $E_0(r) \equiv V(r)$, $w_0 = 1$

excited states: $E_n(r), n \ge 1$, $w_n \in \mathbb{N}$

in the effective string theory:

$$\langle P(r)^* P(0) \rangle \approx \mathcal{P}(r,T) = e^{-\sigma r T - \mu T} \times \int_{\text{fluctuations } h} e^{-S_{\text{eff}}}$$

 $h_i, \quad i = 1, 2, \dots, d-2$ d: space-time dimension effective action has an expansion:

$$S_{\text{eff}} = S_0 + S_1 + S_2 + \dots$$

where S_v has couplings of dimension $[length]^v$

Free string approximation: $S_{\text{eff}} = S_0 + S_1$

$$S_0 = \frac{1}{2} \int_0^T \int_0^T dx_0 dx_1 \, \left(\partial_a h\right)^2$$

$$S_1 = \frac{1}{4} \mathbf{b} \int_0^T \mathrm{d}x_0 \left\{ (\partial_1 h \partial_1 h)_{x_1=0} + (\partial_1 h \partial_1 h)_{x_1=r} \right\}$$

 \Rightarrow correlation function of required form:

$$\mathcal{P}(r,T)|_{b=0} = e^{-\sigma r T - \mu T} \left[\det(-\Delta)\right]^{-\frac{1}{2}(d-2)}$$

$$[\det(-\Delta)]^{\frac{1}{2}} = q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1-q^n), \quad q = e^{-\pi T/r}$$

energy spectrum:

$$E_0 = \sigma r + \mu - \frac{\pi}{24r} (d-2) (1 + \frac{b}{r} + \dots)$$

$$\triangle E_n = E_n - E_0 = \frac{n\pi}{r} \left(1 + \frac{b}{r} + \dots\right)$$

degeneracies: $w_0 = 1, w_1 = d - 2, ...$

leading terms are universal! Lüscher '81, Lüscher & P.W. '02

another prediction of the effective theory concerns the "tube width" Lüscher, Münster, P.W. (1981)

$$\lambda^{2}(r) \equiv \frac{\int \mathrm{d}^{2} x_{\perp} x_{\perp}^{2} \mathcal{\mathcal{E}}(x)}{\int \mathrm{d}^{2} x_{\perp} \mathcal{\mathcal{E}}(x)} \sim \ln(r) \,, \text{ for } r \to \infty$$

 $\mathcal{E}(x)$: chromo-electric field energy density distribution

$$\mathcal{E}(x) \propto \langle q\overline{q} | \mathrm{tr} \mathbf{E}^2(x) | q\overline{q} \rangle - \langle q\overline{q} | q\overline{q} \rangle \langle \Omega | \mathrm{tr} \mathbf{E}^2(x) | \Omega \rangle$$

in strong coupling limit the string is rigid ($\lambda(\infty)$ finite), expect "roughening transition" as g_0 decreases

But Bokko, Gubarev & Morozov (arXiv:0704.1203) claim $\lambda(r) \rightarrow 0$ as $a \rightarrow 0$!!

Naive model: doesn't take decay of higher excitations

 \rightarrow lower states + glueballs into account

But is it basically correct? If so ...

- Exactly which string theory?
 - Alternative string actions ("rigid" string, etc.)
 Polyakov '86, Savvidy & Savvidy '93
 - String theories with fermionic modes Ramond '71, Neveu & Schwartz '71
- At which distances does string behavior set in?

\Rightarrow lattice gauge theory

Studying string behavior in LGT

★ Ground state energy

$$V'(r) = \sigma + O(r^{-2})$$
$$V''(r) = \frac{\pi}{12r^3} (d-2) + O(r^{-4})$$

Lucini & Teper '01, Necco & Sommer '02 * Low-lying excited states

$$\Delta E = \frac{\pi}{r} + \mathcal{O}(r^{-2})$$

Michael & Perantonis '90; Juge, Kuti & Morningstar '98ff, Majumdar '03ff

★ Wilson loop expectation values

Caselle et al. '97ff, Caselle, Hasenbusch & Panero '02ff

Force between static quark sources in pure SU(3) Yang-Mills Necco, Sommer (2001)

* Sommer's scale: $r_0^2 F(r_0) = 1.65$, $\Rightarrow r_0 \sim 0.5 \text{fm}$ * full line: PT with $\Lambda_{\overline{\text{MS}}} r_0 = 0.602$ * dashed line: bosonic string model: $F(r) = \sigma + \frac{\pi}{12r^2}$

The principal difficulties measuring such correlation fns. accurately:

!The signal $\langle PP \rangle \propto e^{-\sigma rT}$ decreases exponentially (~ 10^{-25} at $a = 0.1 \,\text{fm}$, $rT = 5 \,\text{fm}^2$)

!The significance loss in $-\frac{1}{2}r^3V''(r) = \frac{\pi}{24}(d-2) + \dots$ grows proportionally to $\sigma r^4/a^2$

The multilevel algorithm achieves exponential reduction of the statistical errors!

(M.Lüscher. & P.W '01, P.Majumdar '03)

Systematic errors

Excited states contributions

$$V(r) = -\frac{1}{T} \ln \langle P^* P \rangle + \epsilon, \qquad \epsilon \simeq \frac{w_1}{T} e^{-(E_1 - E_0)T}$$

should check if negligible

• Lattice spacing effects

Are of order a^2 , already small at a = 0.1 fm

- Finite-volume effects "around the world"
- Autocorrelations
- Statistical correlations

$$c(r) \equiv -\frac{1}{2} r^3 V''(r)$$
 (Lüscher. & P.W '02)

* careful continuum limit extrapolation still required!

Excited states [SU(3), d = 4] (Juge, Kuti & Morningstar '02)

Precise studies of 3-d gauge theory: SU(2): (Majumdar '03)

 \mathbb{Z}_2 : (Caselle, Fiore, Gliozzi, Hasenbusch, Panero, Pepe, Provero, Rago '97ff)

String self-interaction effects

Classical Nambu–Goto Model:

$$S = \int \mathrm{d}x_0 \mathrm{d}x_1 \sqrt{1 + \partial_a h \cdot \partial_a h} + (\partial_0 h \cdot \partial_0 h)(\partial_1 h \cdot \partial_1 h) - (\partial_0 h \cdot \partial_1 h)^2$$

Arvis '83: Energy levels are given by

$$E_n(r) = \sigma r \sqrt{1 + \frac{2\pi}{\sigma r^2} \left[n - \frac{d-2}{24}\right]}$$

status?? Result for all d but quantum theory claimed consistent only for d = 26

see Polchinski & Strominger '91

Effective string interactions with coupling dimension $[length]^2$:

$$S_{2} = \frac{1}{4} \int \mathrm{d}x_{0} \,\mathrm{d}x_{1} \Big\{ \mathbf{c}_{2} \left(\partial_{a} h \partial_{a} h \right) \left(\partial_{b} h \partial_{b} h \right) + \mathbf{c}_{3} \left(\partial_{a} h \partial_{b} h \right) \left(\partial_{a} h \partial_{b} h \right) \Big\}$$

- contributions to the partition function (Dietz and Filk '83)
- effect on energy levels computed for all states $n \le 3$ (M.Lüscher & P.W '04)

states classified by O(d-2) axial symmetry e.g. level n = 3 has: 1 scalar, 2 vectors, 1 symmetric 2-tensor,

1 antisymmetric 2-tensor, symmetric 3-tensor

• states for n fixed are degenerate (only) for $c_3 = -2c_2$ for all d (~ classical Nambu–Goto case)

"Open-closed string duality"

The Polyakov loop correlation function satisfies

$$\int_{\substack{x_0=0\\x_1=z}} d^{d-2} x_{\perp} \left\langle P(x)^* P(0) \right\rangle = \sum_{n \ge 0} |c_n|^2 e^{-\widetilde{E}_n z}$$

should also be so in the effective theory

$$\Rightarrow b = 0, \qquad (d-2)c_2 + c_3 = (d-4)/(2\sigma)$$

• only one parameter left for d > 3; none for d = 3!

c(r) in 4-d SU(3) Yang-Mills theory (Majumdar, Hari Dass '06)

c(r) in 3-d SU(2) Yang-Mills theory

(Majumdar, Hari Dass '07)

case d = 4: O-C string duality $\Rightarrow c_3 = -2c_2$ \Rightarrow accidental degeneracies not lifted to this order

curves with $c_2 = (2\sigma)^{-1} \simeq 0.093 \text{fm}^2$

Concluding remarks:

small coefficients of $1/r^3$ term in V; e.g. for d = 4

$$V = \sigma r + \mu - \frac{\pi}{12r} - \frac{\pi^2 c_2}{144r^3} + O(1/r^4),$$
$$\Delta E_1 = \frac{\pi}{r} - \frac{5\pi^2 c_2}{6r^3} + O(1/r^4),$$

 \sim string description for V sets in at relatively short distances where low-lying levels not string-like?

• whether low-lying energy values in gauge theory matched by an effective string theory not yet confirmed. For detailed comparison need $O(1/r^3)$ terms and dedicated lattice simulations taking account of systematic error sources

• does the degeneracy for $c_3 = -2c_2$ indicate a (hidden) symmetry?

• Drummond and Haria Dass & Matlock claim that imposing Poincare invariance on the spectrum obtained from the Polchinski-Strominger action fixes the $O(r^{-3})$ terms (??)

Multilevel algorithm

First average $U^* \otimes U$ here for fixed b.c. and then take product

$$\langle P(r)^* P(0) \rangle = \langle \operatorname{tr} \{ [U^* \otimes U] [U^* \otimes U] \dots [U^* \otimes U] \} \rangle$$

$$\uparrow$$

$$\sim e^{-2\sigma ra}$$

 \Rightarrow exponential reduction of the statistical errors!

(M.Lüscher. & P.W '01, P.Majumdar '03)

$$\int_{\substack{x_0=0\\x_1=z}} d^{d-2} x_{\perp} \left\langle P(x)^* P(0) \right\rangle = \sum_{n\geq 0} |c_n|^2 e^{-\widetilde{E}_n z}$$

the lhs is a Radon transformation; inverting yields

$$\langle P(x)^* P(0) \rangle = \sum_{n \ge 0} |c_n|^2 2r \left(\frac{\widetilde{E}_n}{2\pi r}\right)^{-\frac{1}{2}(d-1)} K_{\frac{1}{2}(d-3)}(\widetilde{E}_n r),$$

 $r = \sqrt{x^2}$