Chapter 2
Advection Equation

Let us consider a cortinuity equation for the one-dimensional drift of incompress
ible fluid. In the case that a particle density u(x,t) changes only due to convedion
processes one ca write

u(x,t+ At) = u(x—cAt,t).

If Atis aufficient small, the Taylor-expansion of both sides gives

du(x,t) au(x,t)
u(x,t) + AtT ~ u(x,t) — cAtT
or, equivalently
Jdu Jdu

Hereu=u(x,t), x € R, andcisanorzero constant velocity. Equation (2.1) iscdled
to bean adredionequationand describesthe motion of ascdar u asitisadveded by
aknown velocity field. Accordingto the dasdficaion gvenin Sec 1.1, Eq. (2.1) is
ahyperbalic PDE. The unique solution o (2.1) is determined by an initial condtion
Up := u(x,0)

u(xt) = uog(x—ct), (22)
where up = up(X) isan arbitrary function defined onR.

Oneway to find this exad solutionisthe method d charaderistics (seeApp. ??). In
the case of Eq. (2.1) the wefficientsA=c, B=1,C = 0and Eqn. (??) read

dt

— =1 t(0)=0|t=
L-1et0=0et=s
dx
d—S:c<:>|x(O):xo|<:>x=xo+ct.

That is, for the advedion equation (2.1) charaderistic curves are represented by
straight lines (seeFig. 2.1). Hence, Eq. (??) bemmes
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du

s 0 with u(0) =up(xo)
Alltogether the solution o (2.1) takes the form (2.2). The solution (2.2) isjust an
initial function ug shifted by ct to the right (for ¢ > 0) or to theleft (c < 0), which
remains constant alongthe charaderistic curves (du/ds= 0).

2.1 FTCSMethod

Now we focus on dff erent explicit methods to solve advedion equation (2.1) nu-
mericdly onthe periodic domain [0, L] with agiveninitial condtionugp = u(x,0).

We start the discusson o Eq. (2.1) with a so-cdled FTCS (forward in time,
centered in space method Asdiscussed in Sec. 1.2 we introducethe discretizaion
in time onthe uniform grid

ti=to+jAt, j=0..T.

Furthermore, in the x-diredion, we the uniform grid in the same manner

X =a+iAXx, i=0...M, Ax:m.

Adopting aforward temporal diff erence scheme (1.3), and a centered spatial diff er-
encescheme (1.7), Eq. (2.1) yields

P . ,
T e
At 2AX
W =ul - > Ax (ui‘Jrl — uijl) : (2.3)

Here we use anatation uij ‘= u(x;, tj). Shematic representation of the FTCS approx-
imation (2.3) is hown onFig. 2.2.



von Neumann Stability Analysis

To investigate stability of the scheme (2.3) we foll ow the concept of von Neumann,
introduced in Sec. 1.3. The usual ansatz

leasto the following relation

P ks COU (ki ax) _ aikos—ox ) _ (1 COU( Gkex _ oikex) )
g _d ZAX(é d 1- S (exe el

g(k)

where g/ ™" stands for the cumulative roundngerror at timet;. The von Neumann's
stability condtion (1.22) for the anplification fador g(k) reads:

gl <1 vk

In our case one obtains:

2 At2
2 CAtC .,
la(k)|“ = 1+—Ax2 sin“(kAX),
One can seethat the magnitude of the anplificationfador g(k) is greder than unity
for al k. Thisimpliesthat the instability occursfor al given c, At and A, i.e, the
FTCS scheme (2.3) isuncondtiondly unstable.

2.2 Upwind Methods

The next simple scheme we aeintersted in belongsto the dassof so-cdled upwind
methods — numericd discretization schemes for solving hyperbalic PDEs. The idea
of this methodis that the spatial diff erences are skewed in the “upwind”’ diredion,
i.e., the diredion from which the adveding flow originates. The origin of upwind
methods can be tracal badk to the work of R. Courant et al. [2].

The simplest upwind schemes possble ae given by
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Note that the upwind scheme (2.4) correspondsto the case of positive velocities
¢, whereas Eq. (2.5) stands for the case ¢ < 0. The next point to emphasizeis that
both schemes (2.4)—(2.5) are only first-order in space ad time. Shematic represen-
tations of both upwind methodsis presented onFig. 2.3

In the matrix form the upwind scheme (2.4) takes the form

ul ™t = Aul, (2.6)
whereul isavedor onthetime step j and Aisan x nmatrix (h:= At/AX),

1-ch 0 0 ..[ch]

ch 1-ch O ...0
A= 0 ch 1-ch ...0
0 ch 1-ch

The boxed element Ay, indicaes the influence of the periodic boundary conditions.
Similary, one can aso represent the scheme (2.5) in the form (2.6) with matrix
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Fig. 2.3 Schematic visuaization o the first-order upwind methods. (a) Upwind scheme (2.4) for
¢ > 0. (b) Upwind scheme (2.5) for c < 0.
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14+ch —ch 0 ...0
O 1+4ch —ch ...0

Again, the boxed element An; displays the influence of periodic boundary cond-
tions.

von Neumann Stability Analysis

In order to investigate the stahility of the upwind scheme (2.4) (or (2.5) ) we start
with the usual ansatz .

leading to the eguationfor the aumulative roundngerror at timet;j 1

g =gk,

where the amplificationfador g(k) for, e.g., the upwind scheme (2.4) is given by

g(k) = 1CA—A):<1e”‘AX> = ‘a = CA—A):, ¢ =—kAX|=1—a+a€?.

The stability condtion (1.22) isfulfilled for al k aslongas

A A
C—t<1<:>c<—x. (2.7

< —a<
gk)|<lel-a<0s iy = SN

That is, the method (2.4) is condtiondly stable, i.e, is dable if and orly if the
"physicd“ velocity c is not bigger than the spreading velocity Ax/At of the nu-
mericd method Thisis equivalent to the condtion that the time step, At, must be
smaller than the time taken for the wave to travel the distance of the spatial step,
AX. Schematic ill ustration o stability condtion (2.7) is shown on Fig. . Cond-
tion (2.7) is cdled a Courant-Friedrichs-Lewy (CFL) stahility criterion whereas a
is. The condtion (2.7) is named after R. Courant, K. Friedrichs, and H. Lewy, who
described it in their paper in 1928[8].

Numerical results

Figure 2.5 shows an example of the cdculation in which the upwind scheme (2.4)
isused to adved a Gaussan puse. Parameters of the cdculation are choosen as
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Fig. 2.5 Scematic ill ustration
of the stability condtion (2.7)

for the upwind-method (2.4).
Space interval L=10
Initial condition Up(X) = exp(—(x—2)?)

Space discretization step|Ax=0.1
Time discretization step [|[At=0.05
Vel ocity c=05
Amount of time steps T =200

For parameter values given abowve the stability condtion (2.7) is fulfilled, so the
scheme (2.4) is dable. On the other hand, one can seg that the wave-form shows
evidenceof dispersion. We discussthis problem in detail sin the next sedion.

2.3 TheLax Method

Let us consider a minor modification o the FTCS-method (2.3), in which the term
uiJ has been replacal by an average over itstwo neighbous (seeFig. 2.6):

1/ i CAt [ '
= > <Uij+1 + Ui11> N <Uij+1 - UiJl> ' (28)



In this case the matrix A of the linea system (2.6) is given by a sparse matrix with
zero main diagonal

0a00...00[b]
b0a0...000
0bOa...00 0

where
B } c/\t
T2 2AX]
b_ 1 n c/At
T2 2AX]

and the boxed elements represent the influence of periodic boundry condtions.

von Neumann stability analysis

In the case of the scheme (2.8) the amplificationfador g(k) becomes
.CAt
g(k) = coskAx—i X sinkAX.

With a = 2! and ¢ (k) = k/\x one obtains
lg(k) |2 = cos® (k) + a?sin? ¢ (k) = 1— (1— a?)sin® ¢ (k).

The stability condtion (1.22) isfulfilled for @l k aslongas

cAt
1-a%>0e —<1
a= @Ax ’

O tj+l

Fig. 2.6 Schematic visualiza-
tion o the Lax method (2.8). ® t]
X Xit1




which is again the Courant-Friedrichs-Lewy condtion (2.7). In faa, al stable ex
plicit differencing schemes for solving the advedion equation (2.1) are subjed to
the CFL constraint, which determines the maximum all owable time-step At.

Numerical results

Consider aredizaion o the Lax method(2.8) onthe concrete numerica example:

Space interval L=10

Initial condition Up(X) = exp(—10(x — 2)?)
Space discretization step||Ax=0.05

Time discretization step |[At=0.05

Vel ocity c=05

Amount of time steps T =200

As can be seen from Fig. 2.7 (@) like the upwind method (2.4), the Lax scheme
introduces a spurious dispersion effed into the advedion problem (2.1). Although
the pulse is adveded at the crred sped (i.e., it appeas approximately stationary
in the c>-movingframe x — ct (seeFig. 2.7 (b))), it does nat remain the same shape
asit shoud.

Fourier Analysis

One can try to uncerstand the origin of the dispersion effed with the help of the
dispersionrelation. The ansatz of the Fourier mode of the form
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Fig. 2.7 Numericd implementation o the Lax method (2.8). Parameters. Advedion \elocity is
¢= 0.5, length of the spaceinterval isL = 10, space adtimediscretization stepsare Ax=0.05and
At = 0.05, amourt of time stepsis T = 200, and initial condtionisug(x) = exp(—10(x— 2)?). (a)
Time evolution o u(x,t) for different time moments. Solutionsat t = 0, 100, 150, 200 are shown.
(b) Time evolutionin the a-moving framex—ct att = 0, 100 200.
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Fig. 2.8 lllustration o the dispersion relation for the Lax method cd culated for diff erent values of
the Courant number a. (8) Red part of w. (b) Imaginary part of w.

uiJ ~ elk)qfl(x)tj

for Eq. (2.8) resultsin the followingrelation

e 198t — coskAX — iar SinkAX,
where again a = cAt/Ax. For a = 1 theright hand side of thisrelationis equal to
exp(—ikAx) and ore otbaines

AX
=k— =k-c.
w I c
That is, in this case the Lax method(2.8) isexad (the phase velocity w/kisequal c).
However, in general case one shoud suppcse w = w; — iay, i.e., the Fourier modes

areof theform
U(X,t) -~ eikxfi(wlfiwz)t _ ei(kxfwlt)efwzt

and the correspondng dspersionrelationreads
WAt = (w1 —iwp) At =i In(coskAx— ia sinkAX) . (2.9

Hence, if ap > 0 orehasded with damped waves, that decay exporentialy with the
time contstant 1/ «y,. Furthermore, from Eqg. (2.9) can be seen, that for a < 1 Fouirer
modes with wavelength abou some grid constants (A = 2m/k =~ 4AX) are nat only
damped (seeFig 2.8 (b)) but, onthe other hand, propagate with the essential greaer
phase velocity wy /k aslong-wave comporents (seeFig. 2.8 (a)). Now the question
we aeinterested in is what is the reason for this unphysica behavior? To answer
this question let us rewrite the diff erencial scheme (2.8):



1 i+1 1 i+1 14 14 1, CAt ,
Euij +§Uij *Quij +§Uij :E(ULDLU. D) U - 3*—2AX(UiJ+1 1) e
uij+1 0 0
T N T N A P CAt | +1 i1
E(UiJ —ul ) = 3 (ufpr—2u +uf ) - SAX (ulr—ul ) - E(uij 20+ ),

or, in the continuouws li mit,

du Ax29%u  du At?29%u
3t 20t0¢ Sox 2 o (2.10)

Although the last term in (2.10) tends to zero as At — 0, the behavior of the first
term dependsonthe behavior of At and Ax. That is, the Lax methodisnot a consis-
tent way to solve Eqg. (2.1). This message becomes clea if one cdculatesthe partial
derivative

9°u (21) ,0%u

iz~ “ae
Substitution of the last expresssoninto Eq. (2.10) relultsin the equation, which in
additionto the advedionterm includes diffusionterm as well,

ot ox 0x2’

where
AY'S 20
T 2At 2
is a positive diffusion constant. Now the unphysicad behavior of the Fourier modes

bemmes clea—we have integrated the wrong equaion! That is, other numerica
approximations shoud be used to solve Eq. (2.1) in amore orred way.

2.4 The Lax-Wendroff method

The Lax-Wendroff method, named after P. Lax and B. Wendroff [ 5], can be derived
inavariety of ways. Let us consider two of them. Thefirst way is based ontheidea
of so-céll ed multi step methodk. First of &l | et uscaculate ui“rl usingtheinformation
onthe half time step:

utz = ui‘+%<c% ) ,
X1(i.p)

utt =y +At(—c? )
Xl6.j+3)

Now we use the central diff erenceto approximate the derivative u| i.e.,

ij+3e
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Onthesecondstep, both quantiti esui:f can be cdculated usingthe Lax method(2.8).
Asthe result, foll owing two-steps $he2me isobtained (seeFig. 2.9):

j+1 1 i c/At i i
uii%2 =5 (u,J +u,’1> ~ 5 uw—u ),
j+; 1 . . c/\t . .
ui+%2 - E <u|J + uiJ+1> - 2/AX L'IiJ+17 L'IiJ ’
a1 _ AU i it
U= <Ui+% uii% . (2.11)

The gproximation scheme (2.11) can also be rewritten as
u "t =b_gu! ; +boul + a4, (212

where constantsb_1, by and b; are given by

a
b71: E(a‘f’ ),
by = 170{2,

a
b1: 5(071)

and a is the Courant number. The matrix A of the linea system (2.6) is a sparse
matrix of the form

bo by 0 0... 0 O
bibpb0O.. 0 O
0 bibgby... 0 0




where boxed elements gays for influence of the periodic boundary conditions.
Noticethat the threepoint scheme (2.12) is £mnd-order acarrate in space ad
time. The distinguishing fedure of the Lax—Wendroff methodis, that for the linea
advedion equation (2.1) it is the only explicit scheme of seaond-order acairagy in
space adtime.
The secondway to derive the Lax-Wendroff diffrential scheme is based ontheidea
that we would like to get a scheme with second-order acalrate in space ad time.
First of al, we use Taylor series expansionin time, namely

At?
u(Xi,t11) = U(%;, tj) + Atau(x, tj) + TatZU(Xi,tj) +O(A?).

Inthe next placeonereplacestime derivativesin the last expresson by spacederiva-
tivesacardingto therelation

6" u=(—c)"a"u.

Hence

A, )
u(Xi,tj+1) = u(x,tj) — cAtau(x,tj) + TOX u(xi,tj) + O(At9).

Finally, the spacederivatives are goproximated by central differences (1.7), (1.12),
resultingin the Lax-Wendroff scheme (2.12).

von Neumann stability analysis

In the cae of the method (2.12) the amplificaionfador g(k) becomes
9(k) = (14 a?(cos(kAx) — 1)) — ia sin(kAX)

and )
I9(K)[>=1-a?(1-a?)(1-cos(kAX))”.
Hence, the stability condtion (1.22) reads

1701220@0:%31
At

3

and ore bemmes (as expeded) the CFL-condtion (2.7) again.

Fourier analysis

In order to chedk avail ability of dispersion, let us cdculate the dispersion relation
for the scheme (2.12). The ansatz of the form exp(i(kx — wt;)) resultsin



e '@ = (14 a®(cos(kAx) — 1)) —iasin(kAX)

and with w = wy + i, one obtaines

WAt = WAt —iwpAt =iln ((1+ a?(cos(kAX) — 1)) — iasin(kAx)) .

One can easily see that in the case of (2.12) dispersion (seeFig. 2.10(a)) aswell
as damping (diffusion) (seeFig. 2.10 (b)) of Fourier modes take place However,
as can be seen onFig. 2.10 and Fig. 2.11, dispersion and dffusion are we&er as
for the Lax method (2.8) and appea by much smaller wave lengths. Because of
these properties and taking into acourt the fad that the method (2.12) is of the
seoond ader, it becomesa standard scheme to approximate Eq. (2.1). Moreover, the
scheme (2.12) can be generalized to the case of conservation equation in general
form.

L ax-Wendroff method for 1D conservation equations

A typicd one-dimensional evolution equation takes the form

ou OJF(u)
at " T ax =0,

(2.13)

where u = u(x, t) andthe form of afunction F (u) depends on the problem we ae
interested in. One can try to apply the Lax-Wendroff method (2.12) to Eq. (2.13).
With R’ := F(u/) one obtains the foll owing dfferential scheme
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Fig. 2.10 Illustration o the dispersion relation for the Lax-Wendroff method cdculated for differ-
ent values of a. (8) Red part of w (dispersion). (b) Imaginary part of w (diffusion).
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Fig. 2.11 Numericd implementation o the Lax-Wendroff method (2.12). Parameters are: Ad-
vedion welocity is ¢ = 0.5, length of the spaceinterval is L = 10, space a&d time discretizaion
steps are Ax = 0.05 and At = 0.05, amourt of time steps is T = 800, and initial condtion is
Uo(X) = exp(—(x—2)?). (a) Time evolution o u(x,t) for different time moments. (b) Time evolu-
tionin the co-moving frame x—ct at t = 0, 400, 800.

Ui,%ﬁ §<UiJ +Ui11> ~ 5Ax F'—F.,),
I N A (i i
UH%? = E(ui tuUs ) oA\ R =R )

; ; At il il
+1 0 I+  lt3
ut = - (FH% F ) . (2.14)
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