
Chapter 2
Advection Equation

Let us consider a continuity equation for the one-dimensional drift of incompress-
ible fluid. In the case that a particle density u(x, t) changes only due to convection
processesone can write

u(x, t +△t) = u(x−c△t, t).

If △t is sufficient small , the Taylor-expansion of both sidesgives

u(x, t)+△t
∂u(x, t)

∂ t
≃ u(x, t)−c△t

∂u(x, t)
∂x

or, equivalently
∂u
∂ t

+c
∂u
∂x

= 0. (2.1)

Hereu = u(x, t), x∈ R, andc isanonzero constant velocity. Equation(2.1) iscalled
to bean advectionequationand describesthemotion of ascalar u asit isadvected by
aknown velocity field. Accordingto the classification given in Sec. 1.1, Eq. (2.1) is
ahyperbolicPDE. Theuniquesolution of (2.1) isdetermined byan initial condition
u0 := u(x,0)

u(x, t) = u0(x−ct) , (2.2)

whereu0 = u0(x) is an arbitrary function defined onR.
Oneway to findthisexact solution is themethod of characteristics(seeApp. ??). In
the case of Eq. (2.1) the coefficientsA = c, B = 1, C = 0 andEqn. (??) read

dt
ds

= 1⇔ |t(0) = 0| ⇔ t = s,

dx
ds

= c⇔ |x(0) = x0| ⇔ x = x0 +ct.

That is, for the advection equation (2.1) characteristic curves are represented by
straight lines (seeFig. 2.1). Hence, Eq. (??) becomes
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Fig. 2.1 Chareacteristic
curves x = x0 + cs, s = t
for advection equation (2.1)
are shown for different values
of c.
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du
ds

= 0 with u(0) = u0(x0) .

Alltogether the solution of (2.1) takes the form (2.2). The solution (2.2) is just an
initial function u0 shifted by ct to the right (for c > 0) or to the left (c < 0), which
remainsconstant alongthe characteristic curves(du/ds= 0).

2.1 FTCS Method

Now we focus on different explicit methods to solve advection equation (2.1) nu-
merically on theperiodic domain [0, L] with a given initial conditionu0 = u(x,0).

We start the discussion of Eq. (2.1) with a so-called FTCS (forward in time,
centered in space) method. Asdiscussed in Sec. 1.2 we introducethe discretization
in time on theuniform grid

t j = t0 + j△t , j = 0 . . . T .

Furthermore, in thex-direction, we theuniform grid in the samemanner

xi = a+ i△x, i = 0 . . . M , △x =
L
M

.

Adoptinga forward temporal differencescheme(1.3), anda centered spatial differ-
encescheme(1.7), Eq. (2.1) yields

u j+1
i −u j

i

△t
= −c

u j
i+1−u j

i−1

2△x
⇔

u j+1
i = u j

i −
c△t
2△x

(

u j
i+1−u j

i−1

)

. (2.3)

Hereweuse anotationu j
i := u(xi , t j). Shematic representation of theFTCSapprox-

imation (2.3) is shown onFig. 2.2.



von Neumann Stability Analysis

To investigatestabilit y of the scheme(2.3) we follow the concept of vonNeumann,
introduced in Sec. 1.3. Theusual ansatz

ε j
i ∼ eikxi

leads to the followingrelation

ε j+1
i = eikxi −

c△t
2△x

(

eik(xi+△x)−eik(xi−△x)
)

=

(

1−
c△t
2△x

(

eik△x−e−ik△x
))

︸ ︷︷ ︸

g(k)

ε j
i ,

whereε j+1
i stands for the cumulativeroundingerror at time t j . ThevonNeumann’s

stabilit y condition(1.22) for the amplification factor g(k) reads:

|g(k)| ≤ 1 ∀k.

In our case oneobtains:

|g(k)|2 = 1+
c2△t2

△x2 sin2(k△x),

One can seethat themagnitudeof the amplificationfactor g(k) isgreater than unity
for all k. This implies that the instabilit y occurs for all given c, △t and△x, i.e., the
FTCS scheme(2.3) isunconditionally unstable.

2.2 Upwind Methods

Thenext simpleschemewe are intersted in belongsto the classof so-called upwind
methods– numerical discretizationschemes for solving hyperbolic PDEs. The idea
of this methodis that the spatial differencesare skewed in the “upwind” direction,
i.e., the direction from which the advecting flow originates. The origin of upwind
methodscan be traced back to thework of R. Courant et al. [2].
Thesimplest upwindschemespossible aregiven by
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method(2.3). t j

u

xi−1

�
�

�
�

��7

u

6

xi

u

xi+1

S
S

S
S

SSo
t j+1

e



u j+1
i −u j

i

△t
= −c

u j
i −u j

i−1

△x
⇔

u j+1
i = u j

i −
c△t
△x

(

u j
i −u j

i−1

)

, (c > 0) . (2.4)

and

u j+1
i −u j

i

△t
= −c

u j
i+1−u j

i

△x
⇔

u j+1
i = u j

i −
c△t
△x

(

u j
i+1−u j

i

)

(c < 0) . (2.5)

Note that theupwindscheme (2.4) correspondsto the caseof positivevelocities
c, whereas Eq. (2.5) stands for the case c < 0. The next point to emphasize is that
both schemes (2.4)–(2.5) are only first-order in space and time. Shematic represen-
tationsof both upwindmethods is presented onFig. 2.3

In thematrix form the upwindscheme(2.4) takes the form

u j+1 = Au j , (2.6)

whereu j is avector on the time step j andA is an×n matrix (h := △t/△x),

A =









1−ch 0 0 . . . ch
ch 1−ch 0 . . .0
0 ch 1−ch . . .0

. . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . ch 1−ch









Theboxed element A1n indicates the influenceof the periodic boundary conditions.
Similary, one can also represent the scheme(2.5) in the form (2.6) with matrix
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Fig. 2.3 Schematic visualization of the first-order upwind methods. (a) Upwind scheme (2.4) for
c > 0. (b) Upwindscheme (2.5) for c < 0.



A =









1+ch −ch 0 . . .0
0 1+ch −ch . . .0

. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 1+ch −ch

−ch . . . 0 1+ch









Again, the boxed element An1 displays the influence of periodic boundary condi-
tions.

von Neumann Stability Analysis

In order to investigate the stabilit y of the upwind scheme (2.4) (or (2.5) ) we start
with the usual ansatz

ε j
i ∼ eikxi ,

leading to the equationfor the cumulativeroundingerror at time t j+1

ε j+1
i = g(k)ε j

i ,

where the amplification factor g(k) for, e.g., theupwindscheme(2.4) isgiven by

g(k) = 1−
c△t
△x

(

1−e−ik△x
)

=

∣
∣
∣
∣
α =

c△t
△x

, ϕ = −k△x

∣
∣
∣
∣
= 1−α + αeiϕ .

Thestabilit y condition(1.22) is fulfilled for all k as longas

|g(k)| ≤ 1⇔ 1−α ≤ 0⇔
c△t
△x

≤ 1⇔ c≤
△x
△t

. (2.7)

That is, the method (2.4) is conditionally stable, i.e., is stable if and only if the
”physical“ velocity c is not bigger than the spreading velocity △x/△t of the nu-
merical method. This is equivalent to the condition that the time step, △t, must be
smaller than the time taken for the wave to travel the distance of the spatial step,
△x. Schematic ill ustration of stabilit y condition (2.7) is shown on Fig. . Condi-
tion (2.7) is called a Courant-Friedrichs-Lewy (CFL) stabilit y criterion whereas α
is. The condition (2.7) is named after R. Courant, K. Friedrichs, and H. Lewy, who
described it in their paper in 1928[8].

Numerical results

Figure 2.5 shows an example of the calculation in which the upwind scheme (2.4)
isused to advect aGaussian pulse. Parametersof the calculationare choosen as



Fig. 2.4 Advection of a one-
dimensional Gaussian shaped
pulse u0 = exp(−(x−0.2)2)
with thescheme(2.4). Numer-
ical calculation performed on
the interval x∈ [0, 10] using
c= 0.5, △t = 0.05, △x= 0.1.
Numerical solutions at dif-
ferent times t = 0, t = 50,
t = 100, t = 150, t = 200are
shown.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
t=0

x

u(
x)

t=50

t=100
t=150

t=200

Fig. 2.5 Scematic ill ustration
of thestabilit y condition (2.7)
for theupwind-method(2.4).

Space interval L=10
Initial condition u0(x) = exp(−(x−2)2)
Space discretization step △x = 0.1
Time discretization step △t = 0.05
Velocity c = 0.5
Amount of time steps T = 200

For parameter values given above the stabilit y condition (2.7) is fulfilled, so the
scheme (2.4) is stable. On the other hand, one can see, that the wave-form shows
evidenceof dispersion. We discussthisproblem in details in thenext section.

2.3 The Lax Method

Let us consider a minor modification of the FTCS-method(2.3), in which the term
u j

i hasbeen replaced byan averageover its two neighbours(seeFig. 2.6):

u j+1
i =

1
2

(

u j
i+1 +u j

i−1

)

−
c△t
2△x

(

u j
i+1−u j

i−1

)

. (2.8)



In this case thematrix A of the linear system (2.6) is given by a sparse matrix with
zero main diagonal

A =















0 a 0 0 . . . 0 0 b
b 0 a 0 . . . 0 0 0
0 b 0 a . . . 0 0 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 0 0 0. . . b 0 a
a 0 0 0 . . . 0 b 0















,

where

a =
1
2
−

c△t
2△x

,

b =
1
2

+
c△t
2△x

.

and theboxed elements represent the influenceof periodic boundary conditions.

von Neumann stability analysis

In the case of thescheme(2.8) the amplification factor g(k) becomes

g(k) = cosk△x− i
c△t
△x

sink△x.

With α = c△t
△x and ϕ(k) = k△x oneobtains

|g(k)|2 = cos2 ϕ(k)+ α2sin2 ϕ(k) = 1− (1−α2)sin2 ϕ(k) .

Thestabilit y condition(1.22) is fulfilled for all k as longas

1−α2 ≥ 0 ⇔
c△t
△x

≤ 1,

Fig. 2.6 Schematic visualiza-
tion of theLax method(2.8). t j
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which is again the Courant-Friedrichs-Lewy condition (2.7). In fact, all stable ex-
plicit differencing schemes for solving the advection equation (2.1) are subject to
theCFL constraint, which determinesthemaximum allowable time-step△t.

Numerical results

Consider a realization of the Lax method(2.8) on the concretenumerical example:

Space interval L=10
Initial condition u0(x) = exp(−10(x−2)2)
Space discretization step △x = 0.05
Time discretization step △t = 0.05
Velocity c = 0.5
Amount of time steps T = 200

As can be seen from Fig. 2.7 (a) like the upwind method (2.4), the Lax scheme
introduces a spurious dispersion effect into the advection problem (2.1). Although
the pulse is advected at the correct speed (i.e., it appears approximately stationary
in the co-movingframex−ct (seeFig. 2.7 (b))), it doesnot remain the same shape
as it should.

Fourier Analysis

One can try to understand the origin of the dispersion effect with the help of the
dispersionrelation. The ansatz of theFourier modeof the form
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Fig. 2.7 Numerical implementation of the Lax method (2.8). Parameters: Advection velocity is
c= 0.5, length of thespaceinterval isL = 10, space andtimediscretizationstepsare△x= 0.05and
△t = 0.05, amount of timesteps isT = 200, and initial condition isu0(x) = exp(−10(x−2)2). (a)
Time evolution of u(x, t) for different timemoments. Solutions at t = 0, 100, 150, 200are shown.
(b) Time evolution in the co-moving frame x−ct at t = 0, 100, 200.
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Fig. 2.8 Illustration of thedispersion relationfor theLax methodcalculated for different valuesof
theCourant number α . (a) Real part of ω. (b) Imaginary part of ω.

u j
i ∼ eikxi−iωt j

for Eq. (2.8) results in the followingrelation

e−iω△t = cosk△x− iα sink△x,

where again α = c△t/△x. For α = 1 the right handside of this relation isequal to
exp(−ik△x) and oneotbaines

ω = k
△x
△t

= k ·c.

That is, in thiscasetheLax method(2.8) isexact (thephasevelocity ω/k isequal c).
However, in general case oneshould supposeω = ω1− iω2, i.e., theFourier modes
areof the form

u(x, t) ∼ eikx−i(ω1−iω2)t = ei(kx−ω1t)e−ω2t

and the corresponding dispersionrelationreads

ω△t = (ω1− iω2)△t = i ln
(
cosk△x− iα sink△x

)
. (2.9)

Hence, if ω2 ≥ 0 onehasdeal with dampedwaves, that decay exponentially with the
time contstant 1/ω2. Furthermore, from Eq. (2.9) can beseen, that for α < 1 Fouirer
modeswith wavelength about some grid constants (λ = 2π/k≈ 4△x) are not only
damped (seeFig 2.8 (b)) but, ontheother hand, propagatewith the essential greater
phase velocity ω1/k as long-wave components(seeFig. 2.8 (a)). Now the question
we are interested in is what is the reason for this unphysical behavior? To answer
thisquestion let us rewrite thedifferencial scheme(2.8):



1
2

u j+1
i +

1
2

u j+1
i

︸ ︷︷ ︸

u j+1
i

−
1
2

u j−1
i +

1
2

u j−1
i

︸ ︷︷ ︸

0

=
1
2

(
u j

i+1+u j
i−1

)
+u j

i −u j
i

︸ ︷︷ ︸

0

−
c△t
2△x

(
u j

i+1−u j
i−1

)
⇔

1
2

(
u j+1

i −u j−1
i

)
=

1
2

(
u j

i+1−2u j
i +u j

i−1

)
−

c△t
2△x

(
u j

i+1−u j
i−1

)
−

1
2

(
u j+1

i −2u j
i +u j−1

i

)
,

or, in the continuouslimit,

∂u
∂ t

=
△x2

2△t
∂ 2u
∂x2 −c

∂u
∂x

−
△t2

2
∂ 2u
∂ t2 (2.10)

Althougth the last term in (2.10) tends to zero as△t → 0, the behavior of the first
term dependsonthebehavior of △t and△x. That is, theLax methodisnot a consis-
tent way to solveEq. (2.1). Thismessagebecomesclear if one calculates thepartial
derivative

∂ 2u
∂ t2

(2.1)
= c2 ∂ 2u

∂x2 .

Substitution of the last expresssion into Eq. (2.10) relults in the equation, which in
addition to the advection term includesdiffusion term aswell ,

∂u
∂ t

= −c
∂u
∂x

+D
∂ 2u
∂x2 ,

where

D =
△x2

2△t
−c2△t

2

is a positive diffusion constant. Now the unphysical behavior of the Fourier modes
becomes clear–we have integrated the wrong equation! That is, other numerical
approximations should beused to solveEq. (2.1) in amore correct way.

2.4 The Lax-Wendroff method

TheLax-Wendroff method, named after P. Lax andB. Wendroff [ 5], can bederived
in avariety of ways. Let usconsider two of them. Thefirst way isbased onthe idea
of so-calledmultistepmethods. First of all l et uscalculateu j+1

i usingtheinformation
on thehalf timestep:

u
j+ 1

2
i = u j

i +
△t
2

(

−c
∂u
∂x

∣
∣
∣
∣
(i, j)

)

,

u j+1
i = u j

i +△t

(

−c
∂u
∂x

∣
∣
∣
∣
(i, j+ 1

2 )

)

.

Now we use the central differenceto approximatethederivativeux|i, j+ 1
2
, i.e.,



Fig. 2.9 Schematical visual-
ization of the Lax-Wendroff
method(2.11). t j
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u j+1
i = u j

i −
c△t
△x

(

u
j+ 1

2

i+ 1
2
−u

j+ 1
2

i− 1
2

)

.

Onthesecondstep, both quantitiesu
j+ 1

2

i± 1
2

can be calculated usingtheLax method(2.8).

As the result, following two-steps scheme isobtained (seeFig. 2.9):

u
j+ 1

2

i− 1
2

=
1
2

(

u j
i +u j

i−1

)

−
c△t
2△x

(

u j
i −u j

i−1

)

,

u
j+ 1

2

i+ 1
2

=
1
2

(

u j
i +u j

i+1

)

−
c△t
2△x

(

u j
i+1−u j

i

)

,

u j+1
i = u j

i −
c△t
△x

(

u
j+ 1

2

i+ 1
2
−u

j+ 1
2

i− 1
2

)

. (2.11)

The approximationscheme(2.11) can also berewritten as

u j+1
i = b−1u j

i−1+b0u j
i +b1u

j
i+1 , (2.12)

where constantsb−1, b0 andb1 aregiven by

b−1 =
α
2

(α +1) ,

b0 = 1−α2 ,

b1 =
α
2

(α −1)

and α is the Courant number. The matrix A of the linear system (2.6) is a sparse
matrix of the form

A =
















b0 b1 0 0 . . . 0 0 b−1

b−1 b0 b1 0 . . . 0 0 0
0 b−1 b0 b1 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . b−1 b0 b1

b1 0 0 0 . . . 0 b−1 b0
















,



whereboxed elements stays for influenceof the periodic boundary conditions.
Noticethat the three-point scheme (2.12) is second-order accurate in space and

time. The distinguishing feature of the Lax–Wendroff methodis, that for the linear
advection equation (2.1) it is the only explicit scheme of second-order accuracy in
space and time.
The secondway to derive the Lax-Wendroff diffrential scheme isbased onthe idea
that we would like to get a scheme with second-order accurate in space and time.
First of all , we useTaylor seriesexpansion in time, namely

u(xi , t j+1) = u(xi , t j)+△t∂tu(xi , t j)+
△t2

2
∂ 2

t u(xi , t j)+O(△t2) .

In thenext placeonereplacestimederivativesin thelast expression byspacederiva-
tivesaccordingto the relation

∂ (n)
t u = (−c)n∂ (n)

x u.

Hence

u(xi , t j+1) = u(xi , t j)−c△t∂xu(xi, t j )+
c2△t2

2
∂ 2

x u(xi , t j)+O(△t2) .

Finally, the spacederivatives are approximated by central differences (1.7), (1.12),
resulting in theLax-Wendroff scheme(2.12).

von Neumann stability analysis

In the case of themethod(2.12) the amplification factor g(k) becomes

g(k) =
(
1+ α2(cos(k△x)−1)

)
− iα sin(k△x)

and
|g(k)|2 = 1−α2(1−α2)

(
1−cos(k△x)

)2
.

Hence, thestabilit y condition(1.22) reads

1−α2 ≥ 0 ⇔ α =
c△x
△t

≤ 1,

and onebecomes(asexpected) the CFL-condition(2.7) again.

Fourier analysis

In order to check availabilit y of dispersion, let us calculate the dispersion relation
for thescheme(2.12). The ansatz of the form exp(i(kxi −ωt j)) results in



e−iω△t =
(
1+ α2(cos(k△x)−1)

)
− iα sin(k△x) ,

andwith ω = ω1 + iω2 oneobtaines

ω△t = ω1△t − iω2△t = i ln

(
(
1+ α2(cos(k△x)−1)

)
− iα sin(k△x)

)

.

One can easily see, that in the caseof (2.12) dispersion(seeFig. 2.10(a)) aswell
as damping (diffusion) (seeFig. 2.10 (b)) of Fourier modes take place. However,
as can be seen on Fig. 2.10 and Fig. 2.11, dispersion and diffusion are weaker as
for the Lax method (2.8) and appear by much smaller wave lengths. Because of
these properties and taking into account the fact that the method (2.12) is of the
second order, it becomesastandard schemeto approximateEq. (2.1). Moreover, the
scheme (2.12) can be generalized to the case of conservation equation in general
form.

Lax-Wendroff method for 1D conservation equations

A typical one-dimensional evolutionequation takes the form

∂u
∂ t

+
∂F(u)

∂x
= 0, (2.13)

where u = u(x, t) and the form of a function F(u) depends on the problem we are
interested in. One can try to apply the Lax-Wendroff method(2.12) to Eq. (2.13).
With F j

i := F(u j
i ) oneobtains the following differential scheme
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Fig. 2.10 Illustration of thedispersion relation for theLax-Wendroff methodcalculated for differ-
ent values of α . (a) Real part of ω (dispersion). (b) Imaginary part of ω (diffusion).
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Fig. 2.11 Numerical implementation of the Lax-Wendroff method (2.12). Parameters are: Ad-
vection velocity is c = 0.5, length of the spaceinterval is L = 10, space and time discretization
steps are △x = 0.05 and △t = 0.05, amount of time steps is T = 800, and initial condition is
u0(x) = exp(−(x−2)2). (a) Time evolution of u(x, t) for different timemoments. (b) Time evolu-
tion in the co-moving frame x−ct at t = 0, 400, 800.

u
j+ 1

2

i− 1
2

=
1
2

(

u j
i +u j

i−1

)

−
△t

2△x

(

F j
i −F j

i−1

)

,

u
j+ 1

2

i+ 1
2

=
1
2

(

u j
i +u j

i+1

)

−
△t

2△x

(

F j
i+1−F j

i

)

,

u j+1
i = u j

i −
△t
△x

(

F
j+ 1

2

i+ 1
2
−F

j+ 1
2

i− 1
2

)

. (2.14)
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