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Chapter 1
Introduction

1.1 Definition, Notation and Classification

A differential equation involving more than one independemiable and its partial
derivatives with respect to those variables is callgohdial differential equation
(PDE).

Consider a simple PDE of the form:

17}

ax u(x,y) =0.

This equation implies that the functioifix, y) is independent of. Hence the general
solution of this equation ig(x,y) = f(y), wheref is an arbitrary function of. The
analogous ordinary differential equation is

du

d—XfO

its general solution isi(X) = ¢, wherec is a constant. This example illustrates that
general solutions of ODEs involve arbitrary constants, nehe solutions of PDEs
involve arbitrary functions

In general, one can classify PDEs with respect to differgterion, e.g.:

Order;

Dimension;

Linearity;

Initial/Boundary value problem, etc.

By order of PDE we will understand the order of the highest derivattiat occurs.

A PDE is said to bdinear if it is linear in unknown functions and their derivatives,
with coefficients depending on the independent variables.iidependent variables
typically include one or morspace dimensiorsnd sometimes time dimension as
well.

For example, the wave equation



%u(xt) o2 2u(x,t)
oz G
is a one-dimensional, second-order linear PDE. In contiiastFisher Equation of
the form

au(r,t)
ot
wherer = (x, y) is a two-dimensional, second-order nonlinear PDE.

= Au(r,t)+u(r,t) —u(r,t)?

Linear Second-Order PDEs

For linear PDEs in two dimensions there is a simple classifican terms of the
general equation

aly+ buyy + cuyy+du+eu+ fu+g=0, u=u(x,y),

where the coefficients, b, ¢, d, e, f andg are real and in general can also be func-
tions ofx andy. The PDE’s of this type are classified by the value of disanamni
D, = b?—4acof the eigenvalue problem for the matrix

([ a b/2
A= (b/z c ) ’
build from the coefficients of the highest derivatives. A glenclassification is
shown on the following table [20, 13]:

D, Typ Eigenvalues
D, <0| elliptic the same sign
D, > Olhyperboli¢  different signs
D, = 0| parabolic|zero is an eigenvalijie

For instancethe Laplace equatiofor the electrostatic potentigl in the space
without a charge
0’9 0%¢ _o
ox2  gy?
is elliptic, asa=c=1,b=0,D, = —4 < 0. In general, elliptic PDEs describe
processes that have already reached steady state, andaherioee-independent.
One-dimensionalkave equatiofior some amplitudé\(x,t)

%A 92A

e Vae O

with the positive dispersion velocityis hyperbolica=1,b=0,c= -, D, =
4v? > 0). Hyperbolic PDEs describe time-dependent, consem/giigcesses, such
as convection, that are not evolving toward steady state.

The next example is diffusion equatiorior the patricle’s density(x,t)



%0 _ o
ot ox2’

whereD > 0 is a diffusion coefficient. This equation is called to begtmlic
(a=-D,b=c=0,D, = 0). Parabolic PDEs describe time-dependent, dissipative
processes, such as diffusion, that are evolving towardgtstate.

Each of these classes should be investigated separateiffeaisrdt methods are
required for each class. The next point to emphasize is thall the coefficients of
the PDE can depend orandy, this classification concept iscal.

Initial and Boundary-Value Problems

As it was mentioned above the solution of PDEs involve aabjtfunctions. That
is, in order to solve the system in question completely, tmithl conditions are
needed. These conditions can be given in the forrmitil andboundarycondi-
tions. Initial conditions define the values of the dependamiables at the initial
stage (e.g. at = 0), whereas the boundary conditions give the informatioouab
the value of the dependent valiable or its derivative on thenldary of the area of
interest. Typically, one distinguishes

- Dirichlet conditionsspecify the values of the dependent variables of the boyndar
points.

- Neumann conditionspecify the values of the normal gradients of the boundary.

- Robin conditionglefines a linear combination of the Drichlet and Neumann con-
ditions.

Moreover, it is useful to classify the PDE in question in teraf initial value
problem (IVP)andboundary value problem (BVP)

- Initial value problem:PDE in question describésne evolutioni.e., the initial
space-distribution is given; the goal is to find how the dejeer variable propa-
gates in time ( e.g., the diffusion equation).

- Boundary value problemA static solution of the problem should be found in
some region-and the dependent variable is specified on itsdzoy ( e.g., the
Laplace equation).

1.2 Finite difference method

Let us consider a one-dimensional PDE for the unknown foncfix, t). One way to
numerically solve the PDE is to approximate all the derixegtibyfinite differences
We divide the domain in space usiagnesh ¥, X1, ...,Xy and in time using a mesh
to,t1,...,tr. Fisrt we assuma uniform partitionboth in space and in time, so that
the difference between two consecutive space points willieand between two
consecutive time points will bat, i.e.,



Xi = Xo +I1AX, i=0,1,...,M;
ti=to+jAt, j=01..T;

The Taylor series method

Consider a Taylor expansion of an analytical functigr).

® AXY 9" du AX292u  AxEd%u
AX) = — = Ax— = 4202 Z
ux+4x) u(x)—i—nzl n gxn up) + X0x+ 2! (3x2+ 3! 0x3+
(1.2)
Then for the first derivative one obtains:
_ 2 2 33
ou  u(x+Ax) uOQ,&‘ﬂ,A_XQ,W (1.2)

ax AX 21 9x2 31 9x8

If we break the right hand side of the last equation after tte¢ term, forAx < 1
the last equation becomes

ou _ u(x+Ax) —u(x)
ox X

+O(AX) = %wLﬁ(Ax) , (1.3)

where
Aju = u(X+ AX) — U(X) := Ui+1 — Uj

is calleda forward difference The backward expansion of the functiarcan be
written asAx <« 1 the last equation reads

du AX292u AxEd%u
U(X-l—(—AX))—U(X)—AX&—FTW_?W—F..., (1.4)

so for the first derivative one obtains

Ju  u(x) —u(x—Ax) _ Diu
i O(LX) = ~ O(AX) |, (1.5)

where
Oiu=u(X) —u(x— AX) := U — Uj_1

is calleda backward differenceOne can see that both forward and backward dif-
ferences are of the ordét(/Ax). We can combine these two approaches and derive
a central differencewhich yields a more accurate approximation. If we substrac
Eq. (1.5) from Eq. (1.3) one obtains

du _AxEd%u

U(X+ AX) —u(x— AX) = ZAX—X +2——

5 35 T (1.6)



what is equivalent to

du  u(x+Ax) —u(x— Ax)

g 2
I A WAING (1.7)

Note that the central difference (1.7) is of the ordecigi\x).
The second derivative can be found in the same way usingtearlcombination of
different Taylor expansions. For instance, consider

ou  (2A%)20%u  (2Ax)% 6%u
u(x+2Ax):u(x)+2Ax&+ o W+ 3 W—i_"'

(1.8)

Substracting from the last equation Eq. (1.1), multipligdtlwo, one gets the fol-
lowing equation

o
ox?

Hence one can approximate the second derivative as

3
U(X+2A%) — 2U(X+ AX) = —U(x) + Ax +Ax3%+... (1.9)

92U u(x+2Ax) — 2u(x+ Ax) +u(x)
ox2 NG

+O0(AX). (1.10)

Similarly one can obtain the expression for the second dtvir in terms of back-
ward expansion, i.e.,

92U u(x—2Ax) — 2u(x— Ax) +u(x)
ox2 NG

+O(LX). (1.11)

Finally, if we add Eqgn. (1.3) and (1.5) an expression for thetal second derivative
reads

92U u(x+Ax) —2u(x) + u(x— Ax)
ox2 AX2

+0(LXP). (1.12)

One can see that approximation (1.12) provides more aecaggtroximation as
(1.10) and (1.11).
In an analogous way one can obtain finite difference apprations to higher or-
der derivatives and differential operators. The coeffigdior first three deriva-
tives for the case of forward, backward and central diffeesnare given in Ta-
bles1.1,1.2,1.3.

Mixed derivatives

Afinite difference approximations for the mixed partialigatives can be calculated
in the same way. For example, let us find the central apprdioméor the derivative
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Table 1.1 Forward difference quotienty (AXx)

| [[ui—a]ui—s]ui—2[ui—a]ui]

AxYY 101
ALY 121
ALY HIEEIR
rxdull1 a6 |41

Table 1.2 Backward difference quotient;(AX)

Ui—2|Ui—1|Ui|Uit1|Uiy2
2/x%Y -110] 1
Ax2u 1121

02
2/3%48| -1 | 2 |of -2

54
AT 1| -4 6] -4
Table 1.3 Central difference quotient7(Ax?)

92 d(a 0 YHAY)—U(Xy—A
= a_x(a_ij/) = a—x(u(xy Y oy +ﬁ(ﬂy2)) =

AXYFAY) —UX=AXY+AY) —UX+AXY—A —AXy—A
_ U+AXY+AY)—U(X=AXy+ 4>2X2(;<+ Xy—AY)+U(X—AXY y)+ﬁ(Ax2Ay2).

A nonequidistant mesh

In the section above we have considered different numeaagadoximations for the
derivatives using the equidistant mesh. However, in marplieations it is con-
vinient to use a nonequidistant mesh, where the spatia$ $téfill the following
rule:

AX = aAX_1.

If o =1 the mesh is said to be equidistant. Let us now calculaterstedrivative
of the functionu(x) of the second-order accurance:

_ du (aAx)?20%u  (aAx)®o3u

u(x+an)fu(x)+an&+ o WJr 3 mqt...
Adding the last equation with Eq. (1.4) multiplied lyone obtains the expression
for the second derivative

(1.13)



0% u(x+aAx) — (14 a)u(x) + au(x— Ax)
o2 sa(a+1)Ax2

+O(AX) (1.14)

Substitution of the last equation into Eq. (1.4) yields

u _ u(x+aAx)—(1-a?u(x) — a?u(x— Ax)

= TR +0(LX%) |. (1.15)

1.3 von Neumann stability analysis

One of the central questions arising by numerical treatragtite problem in ques-
tion is stability of the numerical scheme we are interested ]. An algorithm for
solving an evolutionary partial differential equation &dsto bestable if the nu-
merical solution at a fixed time remains bounded as the sgpggies to zero, so
the perturbations in form of, e.g., rounding error does notéase in time. Unfortu-
nately, there are no general methods to verify the numesteaility for the partial
differential equations in general form, so one restrictsaffeto the case of linear
PDE'’s. The standard method for linear PDE’s with periodicidary conditions
was proposed by John von Neumann [6, 2] and is based on tresesyation of the
rounding error in form of the Fouirer series.
In order to illustrate the procedure, let us introduce thiefdng notation:

uwtl = 7). (1.16)

Here 7 is a nonlinear operator, depending on the numerical schameestion.
The successive application &f results in a sequence of values

that approximate the exact solution of the problem. Howeategach time step we
add a small errog!, i.e., the sequence above reads

W+l ul+el uP+e?,. ..,
wheree! is a cumulative rounding error at tinie Thus we obtain
Wty el 7wl +¢l). (1.17)

After linearization of the last equation (we suppose thaidiaexpansion of7 is
possible) the linear equation for the perturbation takesdhm:

) A )
gl = %LE;J)SJ = Gel |. (1.18)




This equation is callethe error propagation lawwhereas the linearization matrix
G is said to bean amplification matri{10]. Now, the stability of the numerical
scheme in question depends on the eigenvaiyed the matrixG. In other words,
the scheme is stable if and only if

lgul <1 Vu

Now the question is how this information can be used in pcactlhe first point to
emphasize is that in general one deals withupe,tj) := u/, so one can write

S-j+1 = Gii/:":-j/, (119)
i .Z i
where j
0.7 (uh);
Gii’ = #
(3ui,

Futhermore, the spatial variationqif (rounding error at the time stepat the point
x;) can be expanded in a finite Fourier series in the intrgyal]:

g = Ze”‘xiéj (k), (1.20)

wherek is the wavenumber ar&d (k) are the Fourier coefficients. Since the rounding
error tends to grow or decay exponentially with time, it isgenable to assume that
&) (k) varies exponentially with time, i.e.,

giJ — Zewtj gkxi ,

wherew is a constant. The next point to emphasize is that the funsg* are
eigenfunctions of the matri&, so the last expansion can be interpreted as the ex-
pansion in eigenfunctions @. In addition, the equation for the error is linear, so it
is enough to examine the grows of the error of a typical terthesum. Thus, from
the practical point of view one take the ergdrjust as

g = e,
The substitution of this expression into Eqg. (1.20) resalthe following relation

g™t = g(k)e/. (1.21)

That is, one can interped as an eigenvector corresponding to the eigenvalue
g(k). The valueg(k) is often calledan amplification factor Finally, the stability
criterium is then given by

lg(k)| <1 Vki|. (1.22)

This criterium is calledron Neumann stablity criterium



Notice that presented stability analysis can be appliediordertain cases. Namely,
the linear PDE in question schould be with constant coefftsiand satisfies peri-
odic boundary conditions. In addition, the correspondiifigiience scheme should
possesses no more than two time levels [19]. However, iténafsed in more com-
plicated situations as a good estimation for the step sized in the approximation.






Chapter 2
Advection Equation

Let us consider a continuity equation for the one-dimerdidnift of incompress-
ible fluid. In the case that a particle densitfk,t) changes only due to convection
processes one can write

u(x,t+ At) = u(x—cAt,t).

If At is sufficient small, the Taylor-expansion of both sides give

au(x,t) du(x,t)
u(x,t) + AtT ~ u(x,t) — cAtT
or, equivalently
Jdu Jdu

Hereu = u(x,t), x € R, andc is a nonzero constant velocity. Equation (2.1) is called
to bean advection equatioand describes the motion of a scalas it is advected by
a known velocity field. According to the classification givarsec. 1.1, Eq. (2.1) is
a hyperbolic PDE. The unique solution of (2.1) is determibgdn initial condition
Up := u(x,0)

u(x,t) = up(x—ct), (2.2)
whereup = up(X) is an arbitrary function defined dg.

One way to find this exact solution is the method of charasties (see App. B). In
the case of Eq. (2.1) the coefficiedts=c, B=1,C =0 and Eqgn. (B.2) read

dt

—=1s5t0)=0et=
L=1et0=0et=s
dx
d—S:c<:>|x(O):xo|<:>x:xo+ct.

That is, for the advection equation (2.1) characteristitves are represented by
straight lines (see Fig. 2.1). Hence, Eq. (B.3) becomes

13
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are shown for different values %
ofc.

0

10,
Fig. 2.1 Chareacteristic
curvesx =Xp+C€s s=t
for advection equation (2.1)
2 4 6 8 1
X

du

as 0 with u(0) =up(xo)
Alltogether the solution of (2.1) takes the form (2.2). Tiodusion (2.2) is just an
initial function ug shifted byct to the right (forc > 0) or to the left ¢ < 0), which

remains constant along the characteristic curdegds= 0).

2.1 FTCS Method

Now we focus on different explicit methods to solve adveat#guation (2.1) nu-
merically on the periodic domai, L] with a given initial conditiorup = u(x,0).

We start the discussion of Eq. (2.1) with a so-called FTC3w#od in time,
centered in space) method. As discussed in Sec. 1.2 we urtedtie discretization
in time on the uniform grid

ti=to+jAt, j=0..T.

Furthermore, in the-direction, we the uniform grid in the same manner

X =a+iAXx, i=0...M, Ax:m.

Adopting a forward temporal difference scheme (1.3), andrdered spatial differ-
ence scheme (1.7), Eq. (2.1) yields

P . ,
T
At 2AX
W =ul - > Ax (Uij+1— uijl) : (2.3)

Here we use a notatiojﬂ = u(x;, tj). Shematic representation of the FTCS approx-
imation (2.3) is shown on Fig. 2.2.



von Neumann Stability Analysis

To investigate stability of the scheme (2.3) we follow theoept of von Neumann,
introduced in Sec. 1.3. The usual ansatz

8|J ~ eikxi

leads to the following relation

P+l _ kg GO arax)  dkoi-ox) ) _ (1 COU [ kax  o-ikax §
gti_d ZAX(é ¢ — (1 L (e .

g(k)

whereg! ™! stands for the cumulative rounding error at titpeThe von Neumann’s
stability condition (1.22) for the amplification factg(k) reads:

gll<1 vk

In our case one obtains:

2 At2
2 C°AtS .
9(K)[* = 1+ =5 sin’(kAX),
One can see that the magnitude of the amplification fag{foris greater than unity
for all k. This implies that the instability occurs for all givenAt andAx, i.e., the
FTCS scheme (2.3) isnconditionally unstable

2.2 Upwind Methods

The next simple scheme we are intersted in belongs to the efa®-calledipwind
methods- numerical discretization schemes for solving hyperb@lxEs. The idea
of this method is that the spatial differences are skeweberfpwind” direction,
i.e., the direction from which the advecting flow originatése origin of upwind
methods can be traced back to the work of R. Courant et al. [5].

The simplest upwind schemes possible are given by

i1

(

Fig. 2.2 Schematic visu-

alization of the FTCS-

method (2.3). t]
Xi—1 X Xit+1




_ —u
A IAXH(:}
L 1 Gt ) BT M)
and
UiHl—Uij :_Cuij+1 Uij N
At AX
=S (W) <o @5)

Note that the upwind scheme (2.4) corresponds to the casesiive velocities
¢, whereas Eq. (2.5) stands for the case 0. The next point to emphasize is that
both schemes (2.4)—(2.5) are only first-order in space anel tShematic represen-
tations of both upwind methods is presented on Fig. 2.3

In the matrix form the upwind scheme (2.4) takes the form

ul ™t = Aul, (2.6)
whereul is a vector on the time stejpandA is an x n matrix (h:= At/AX),

1-ch 0 0 ..[ch]

ch 1—-ch O ...0
A= 0 ch 1—-ch ...0
0 ch 1-ch

The boxed elemery, indicates the influence of the periodic boundary conditions
Similary, one can also represent the scheme (2.5) in the 2:@) with matrix

(@) (b)

tjr1 < tjt1

@ t —@ tj
R X Xit1 ) X X X1
Fig. 2.3 Schematic visualization of the first-order upwind methde¥.Upwind scheme (2.4) for
¢ > 0. (b) Upwind scheme (2.5) far< 0.



1+ch —ch 0 ...0
0O 14+ch —ch ...0

Again, the boxed elemem,; displays the influence of periodic boundary condi-
tions.

von Neumann Stability Analysis
In order to investigate the stability of the upwind schemed)2or (2.5) ) we start

with the usual ansatz o
€|J ~ elkXi 5

leading to the equation for the cumulative rounding errdinagt; 1
1 :
g =gk

where the amplification factayk) for, e.g., the upwind scheme (2.4) is given by

g(k) = 1CA—A):<1e"‘AX> = ‘a = CA—A):, ¢ =—kAX|=1—a+a€?.

The stability condition (1.22) is fulfilled for akk as long as

A A
C—t<1<:>c<—x. (2.7)

< —a<
gk)|<lel-a<0s iy = SN

That is, the method (2.4) isonditionally stablei.e., is stable if and only if the
"physical” velocity c is not bigger than the spreading velocityx/ At of the nu-
merical method. This is equivalent to the condition thattthee step,At, must be
smaller than the time taken for the wave to travel the digtari¢he spatial stepx.
Schematic illustration of stability condition (2.7) is stioon Fig. . Condition (2.7)
is calleda Courant-Friedrichs-Lewy (CFL3tability criterion, whereaq is calleda
Courant numberThe condition (2.7) is named after R. Courant, K. Friedsjend
H. Lewy, who described it in their paper in 1928 [16].

Numerical results

Figure 2.5 shows an example of the calculation in which th&ing scheme (2.4)
is used to advect a Gaussian pulse. Parameters of the ¢alnwdee choosen as



Fig. 2.4 Advection of a one- vl

dimensional Gaussian shaped 08 =200
pulseup = exp(—(x— 0.2)?)
with the scheme (2.4). Numer- ™

ical calculation performed on
the intervalx € [0, 10] using
c=0.5,At=005Ax=0.1.
Numerical solutions at dif-
ferent timest = 0,t = 50,

t= lOO,t = 150,t =200 are 0 2 4 6 8 10
shown.

Re(g)

Fig. 2.5 Scematic illustration
of the stability condition (2.7)
for the upwind-method (2.4).

Space interval L=10

Initial condition Up(X) = exp(—(x—2)?)
Space discretization step|Ax=0.1

Time discretization step [|[At=0.05

Vel ocity c=05

Amount of time steps T =200

For parameter values given above the stability conditioi) (% fulfilled, so the
scheme (2.4) is stable. On the other hand, one can see, ¢hafatre-form shows
evidence of dispersion. We discuss this problem in detailsé next section.

2.3 The Lax Method

Let us consider a minor modification of the FTCS-method (2rB)vhich the term
ul has been replaced by an average over its two neighboursitsez 6):

1 1/ i CAt [ '
u’™" §<uij+1+uijl>m<uij+luijl>' (2:8)



In this case the matriR of the linear system (2.6) is given by a sparse matrix with
zero main diagonal

0a00...00[b]
b 0a0...00 0
0b0a...000

where
B } c/\t
T2 2AX]
b— 1 n c/At
T2 2AX]

and the boxed elements represent the influence of perioditdawy conditions.

von Neumann stability analysis

In the case of the scheme (2.8) the amplification fagtly becomes
.CAL .
g(k) = coskAx—i X sinkAX.

With a = £ and¢ (k) = k/Ax one obtains
l9(k)|? = cog ¢ (k) + a?sir ¢ (k) = 1— (1— a?)si ¢ (k).

The stability condition (1.22) is fulfilled for akk as long as

cAt
1-a%>0e —<1
a= @Ax ’

O tj+l

Fig. 2.6 Schematic visualiza-
tion of the Lax method (2.8). PS t]
X Xit1




which is again the Courant-Friedrichs-Lewy condition §2I@ fact, all stableex-
plicit differencing schemes for solving the advection equatioh)(are subject to
the CFL constraint, which determines the maximum allowéibie-stepAt.

Numerical results

Consider a realization of the Lax method (2.8) on the coeanamerical example:

Space interval

Initial condition

Space di scretization step
Time discretization step
Vel ocity

Amount of time steps

L=10

Up(X) = exp(—10(x — 2)?)
Ax=0.05

At =0.05

c=05

T =200

As can be seen from Fig. 2.7 (a) like the upwind method (2h8,ltax scheme
introduces a spurioudispersioneffect into the advection problem (2.1). Although
the pulse is advected at the correct speed (i.e., it appppreximately stationary

in the co-moving frame — ct (see Fig. 2.7 (b))), it does not remain the same shape

as it should.

Fourier Analysis

One can try to understand the origin of the dispersion efféttt the help of the
dispersion relation. The ansatz of the Fourier mode of tha fo

@)

(b)

10

—1t=0
- - -t=100|]|
S 12200

0.8

0.6

0.4

0.2

Fig. 2.7 Numerical implementation of the Lax method (2.8). Paramset&dvection velocity is
¢=0.5, length of the space intervallis= 10, space and time discretization steps/are= 0.05 and
At = 0.05, amount of time steps ®= 200, and initial condition isip(x) = exp(—10(x— 2)?). (a)
Time evolution ofu(x,t) for different time moments. Solutionsa& 0, 100 150, 200 are shown.
(b) Time evolution in the co-moving frame- ct att = 0, 100, 200.



(b)

14 ‘ ‘
—a=1 —a=0.75
124---g=05| e ---a=05 |
. 4=0.25 S 0=0.25
10
4
3 8r g 3
<, <
3" 6 -t <h
Lo 2
af .t
2t B 1
0 : : : : o— : : =
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

kA x/Tt

Fig. 2.8 lllustration of the dispersion relation for the Lax methadatlated for different values of
the Courant numbaex. (a) Real part otv. (b) Imaginary part ot.

Uij ~ dki—iat;
for Eq. (2.8) results in the following relation
e 198 — coskAX — iar sinkAx,

where agairo = cAt/Ax. Fora = 1 the right hand side of this relation is equal to
exp(—ikAx) and one otbaines

AX
=k— =k-c.
w I c
Thatis, in this case the Lax method (2.8) is exact (the pheleeity w/k is equak).
However, in general case one should supposew; — iy, i.e., the Fourier modes

are of the form
U(X,t) -~ eikxfi(wlfiwz)t _ ei(kxfwlt)efwzt

and the corresponding dispersion relation reads

WAt = (w1 —iwp) At =i In(coskAx— ia sinkAX) . (2.9)
Hence, ifayp > 0 one has deal with damped waves, that decay exponentiah i

time contstant 1ay,. Furthermore, from Eq. (2.9) can be seen, thatfer 1 Fouirer
modes with wavelength about some grid constahts-271/k ~ 4AX) are not only
damped (see Fig 2.8 (b)) but, on the other hand, propagaidivétessential greater
phase velocityw; /k as long-wave components (see Fig. 2.8 (a)). Now the question
we are interested in is what is the reason for this unphybiehhvior? To answer
this question let us rewrite the differencial scheme (2.8):
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or, in the continuous limit,

ot 20t0¢ Sox 2 o (2.10)

Althougth the last term in (2.10) tends to zero/as— 0, the behavior of the first
term depends on the behavior&f and/Ax. That is, the Lax method is not a consis-
tent way to solve Eq. (2.1). This message becomes clear iCaloalates the partial
derivative

0%u (21) ,0%

a2~ o
Substitution of the last expresssion into Eqg. (2.10) relintthe equation, which in
addition to the advection term includes diffusion term a#i,we

ot Tox ox2’
where
AY'S 20
- 2At 2
is a positive diffusion constant. Now the unphysical bebawf the Fourier modes
becomes clear—we have integratbé wrong equationThat is, other numerical
approximations should be used to solve Eq. (2.1) in a mom@cbway.

2.4 The Lax-Wendroff method

The Lax-Wendroff method, named after P. Lax and B. Wendddff,[can be derived
in a variety of ways. Let us consider two of them. The first wapased on the idea
of so-callednultistepmethods. First of all let us calculam{irl using the information
on the half time step:

Tis: j+§<c@ )

! 2 [7) 4 i.0) ’

u”l_uJ+At< z;u )
Xl,j+3)

Now we use the central difference to approximate the dévivay| i.e.,

ij+3e
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Fig. 2.9 Schematical visual- A L
ization of the Lax-Wendroff

method (2.11). g
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On the second step, both quantiui%ff can be calculated using the Lax method (2.8).
2
As the result, following two-steps scheme is obtained (3geZ9):

= () g,

j+; 1 . . c/\t . .
ui+%2 - E <u|J +uij+1> - 2/AX L'IiJ+17 L'IiJ ’

j#1_ i _CAU[ i i3

U= <Ui+% uii% . (2.11)

The approximation scheme (2.11) can also be rewritten as

u ™t =b_gu! ; +boul +buul, (2.12)

where constantis_1, by andb; are given by

a
bo1=Z(a+1),

2

by = 170{2,
a

b1 5(071)

anda is the Courant number. The matixof the linear system (2.6) is a sparse
matrix of the form

bp by 0 O...




where boxed elements stays for influence of the periodic taynconditions.
Notice that the three-point scheme (2.12) is second-ormarrate in space and
time. The distinguishing feature of the Lax—Wendroff meth& that for the linear
advection equation (2.1) it is the ondxplicit scheme of second-order accuracy in
space and time.
The second way to derive the Lax-Wendroff diffrential scleedmbased on the idea
that we would like to get a scheme with second-order accumatpace and time.
First of all, we use Taylor series expansion in time, namely

At?
u(Xi,tr1) = U(X, tj) + Atau(x, tj) + TatZU(Xi,tj) +O0(A?).

In the next place one replaces time derivatives in the lgstession by space deriva-
tives according to the relation

6" u=(—c)"a"u.

Hence

2 At2

cAt
u(Xi,tj+1) = u(x;,tj) — cAtau(x,tj) + Td)(ZU(Xi,tj)+ ﬁ(Atz).

Finally, the space derivatives are approximated by cediff@rences (1.7), (1.12),
resulting in the Lax-Wendroff scheme (2.12).

von Neumann stability analysis

In the case of the method (2.12) the amplification fagtéy becomes
g(k) = (1+ a?(cogkAx) — 1)) —iasin(kAX)

and 5
I9(K)[>=1-a?(1-a?)(1-cogkAX))”.
Hence, the stability condition (1.22) reads

1701220@0:%31
At

3

and one becomes (as expected) the CFL-condition (2.7) again

Fourier analysis

In order to check availability of dispersion, let us caltalthe dispersion relation
for the scheme (2.12). The ansatz of the form(eqx — wt;)) results in



and withw = w; — iy one obtaines

e '@ = (14 a®(cogkAx) — 1)) —iasin(kAX),

WAt = WAt —iwpAt =iln ((1+ a?(cogkAxX) — 1)) — iasin(kAx)) .

One can easily see, that in the case of (2.12) dispersiorr{ge2.10 (a)) as well
as damping (diffusion) (see Fig. 2.10 (b)) of Fourier modd®tplace. However,
as can be seen on Fig. 2.10 and Fig. 2.11, dispersion andidiffare weaker as
for the Lax method (2.8) and appear by much smaller wave hesnd@ecause of
these properties and taking into account the fact that thihade(2.12) is of the
second order, it becomes a standard scheme to approximg EqMoreover, the
scheme (2.12) can be generalized to the case of conseregtiation in general

form.

Lax-Wendroff method for 1D conservation equations

A typical one-dimensional conservation equation takegdahma

au

ot

Y _o

(2.13)

whereu = u(x, t) and the form of a functiofr (u) depends on the problem we are
interested in. One can try to apply the Lax-Wendroff methdd %) to Eq. (2.13).
With K’ := F(u/) one obtains the following differential scheme
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Fig. 2.10 lllustration of the dispersion relation for the Lax-Wenffirmethod calculated for differ-
ent values ofx. (a) Real part otv (dispersion). (b) Imaginary part @b (diffusion).
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Fig. 2.11 Numerical implementation of the Lax-Wendroff method (3.1Rarameters are: Ad-
vection velocity isc = 0.5, length of the space interval is= 10, space and time discretization
steps areAx = 0.05 and/At = 0.05, amount of time steps i = 800, and initial condition is
Uo(X) = exp(—(x—2)2). (@) Time evolution ofu(x, t) for different time moments. (b) Time evolu-
tion in the co-moving frame — ct att = 0, 400, 800.

Ui,%ﬁ §<UiJ +Ui11> T 5Ax F'—F.,),
i3 _ L0 A ES Y
UH%? = E(ui tuUg )~ oA\ R =R )

; ; At il il
+1 0 I+  lt3
ut = - (FH% F ) (2.14)



Chapter 3
Burgers Equation

One of the major challenges in the field of complex systemstimeough under-

standing of the phenomenon of turbulence. Direct numestallations (DNS)

have substantially contributed to our understanding ofdiserdered flow phe-
nomena inevitably arising at high Reynolds numbers. Howevsuccessful theory
of turbulence is still lacking which would allow to prediadtures of technologi-
cally important phenomena like turbulent mixing, turbuleanvection, and turbu-
lent combustion on the basis of the fundamental fluid dynah@quations. This is
due to the fact that already the evolution equation for thepest fluids, which are
the so-called Newtonian incompressible fluids, have to tateeaccount nonlinear
as well as nonlocal properties:

%u(x,t)+u(x,t) -Ou(x,t) = —0p(x,t) + vAu(x,t),
O-u(x,t) = 0. (3.2)

Nonlinearity stems from the convective term and the pressenm, whereas non-
locality enters due to the pressure term. Due to incomgriitgi the pressure is
defined by a Poisson equation

Ap(x,t) = —0-u(x,t) - Ou(x,t). (3.2)

In 1939 the dutch scientist J.M. Burgers [1] simplified thevidaStokes equa-
tion (3.1) by just dropping the pressure term. In contragido(3.1), this equation
can be investigated in one spatial dimension (Physicikéstt denote this as 1+1
dimensional problem in order to stress that there is onaapatd one temporal
coordinate):

4 9 0* F 3.3
Eu(x,t) +u(x,t)a—xu(x,t) = qu(x,t) +F(x.t) (3.3)

Note that usually the Burgers equation is considered withgternal force (x,t).
However, we shall include this external force field.
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The Burgers equation 3.3 is nonlinear and one expects to fisdgmena sim-
ilar to turbulence. However, as it has been shown by Hopf [@] &ole [3], the
homogeneous Burgers equation lacks the most importanepyogttributed to tur-
bulence: The solutions do not exhibit chaotic features $i&esitivity with respect
to initial conditions. This can explicitly shown using tiwopf-Cole transforma-
tion which transforms Burgers equation into a linear parabajica¢ion. From the
numerical point of view, however, this is of importance siitcallows one to com-
pare numerically obtained solutions of the nonlinear equawith the exact one.
This comparison is important to investigate the quality e aipplied numerical
schemes. Furthermore, the equation has still interesfiplications in physics and
astrophysics. We will briefly mention some of them.

Growth of interfaces: Deposition models

The Burgers equation (3.3) is equivalent to the so-caleddar-Parisi-Zhang
(KPZ-) equationwhich is a model for a solid surface growing by vapor deposi-
tion, or, the opposite case, erosion of material from a saliface. The location of
the surface is described in terms of a height funchipnt). This height evolves in
time according to the KPZ-equation

0 1 2 0?
Eh(x,t) -5 (Oh(x,t))* = Vo
This equation is obtained from the simple advection equédtio a surface ar =

h(x,t) moving with velocityU(x,t)

h(x,t)+ F(xt). (3.4)

%h(x,t) +U-Oh(x,t)=0. (3.5)
The velocity is assumed to be proportional to the gradieh{xft), i.e. the surface
evolves in the direction of its gradient. Surface diffus®described by the diffusion
term.

Burgers equation (3.3) is obtained from the KPZ-equatiah y forming the
gradient ofh(x;t):
u(x,t) = —0Oh(x,t). (3.6)

3.1 Hopf-Cole Transformation

The Hopf-Cole transformation is a transformation, whichpmthe solution of the
Burgers equation (3.3) to the heat equation
0

SrYO6) =VAP(xt). 3.7)



We perform the ansatz

Y(x,t) =Xt/ (3.8)
and determine L L
_ = il 2 /2v
Ay = [Ath o (Oh) }eh (3.9)
leading to
9o }(Dh)z = vAh (3.10)
a2 B ' '

However, this is exactly the Kardar-Parisi-Zhang equatos). The complete trans-
formation is then obtained by combining

u(x,t) = 721‘/ Oinyg(x,t). (3.12)

We explicitly see that the Hopf-Cole transformation turhe tonlinear Burgers
equation into the linear heat conduction equation. Sineeh#hat conduction equa-
tion is explicitly solvable in terms of the so-called heatried we obtain a general
solution of the Burgers equation. Before we construct teisagal solution, we want
to emphasize that the Hopf-Cole transformation appliechéonulti-dimensional
Burgers equation only leads to the general solution pralitie initial condition
u(x,0) is a gradient field. For general initial conditions, esplgifr initial fields
with O x u(x,t), the solution can not be constructed using the Hopf-Colestra-
mation and, consequently, is not known in analytical tetmene dimension spatial
dimension it is not necessary to distinguish between theseases.

3.2 General Solution of the 1D Burgers Equation

We are now in the position to formulate the general solutibthe Burgers equa-
tion (3.3) in one spatial dimension with initial condition

u(x,0), W(x,0) = e~ 2 [ XUX.0) (3.12)

The solution of the 1D heat equation can be expressed by #tekhenel

Wixt) = /d)(G(x—x’,t)qJ(x’,O) (3.13)
with the kernel -
G(x—X,t) = \/i_me“ﬁ) (3.14)

In terms of the initial condition (3.12) the solution exjillig reads

x—x)2 X (!
Wxt) = —i_m/der B~ [ U 0) (3.15)



Then-dimensional solution of the Burgers equation (3.3) fotiatfields, which are
gradient fields, are obtained analogously:

1 (X*X,)z 1 X o "
Xt)=——— [dxe  ar —av ) &UKL0) 3.16
Agian, we see that the solution exist provided the integgahdependent of the
integration contour:

/x, dx”-u(x”,0) = h(x,t). (3.17)

We can investigate the limiting case of vanishing viscosity 0. In the expression
for @(x,t), eq. (3.16), the integral is dominated by the minimum of tkgomential

function, , y
; (X*X,) i / !
min [ Y 2v/ dxX'u(x’,0)| . (3.18)

This leads to the so-called characteristics (see App. (B))

x=X —tu(x,0), (3.19)

which we have already met in the discussion of the advectipraton (2.1) (see
Chapter 2). A special solution for the viscid Burgers equrais

u(x,t)y=1— tanh(xzix‘c)t> . (3.20)

3.3 Forced Burgers Equation

The Hopf-Cole transformation can be applied to the forcethBrs equation. It is
straightforward to show that this leads to the parabolifed#ntial equation

% (x,t) = VAY(x,t) —U (X,t)P(x,t1), (3.22)

where the potential is related to the force

1
F(x,t) = > OU (x,t). (3.22)
The relationship with the Schrodinger equation for a pletinoving in the potential
U (x,t) is obvious. Recently, the Burgers equation with a fluctuptionce has been
investigated [14]. Interestingly, Burgers equation wilinaar force, i.e. a quadratic
potential
U (x,t) = a(t)x? (3.23)

for an arbitrary time dependent coefficiexit) could be solved analytically [8].



3.4 Numerical Treatment

Let us consider a one-dimensional Burgers equation (3 tBjowt forcing.

ou, ou_ 0
ot ax  ox2’

Whenv = 0, Burgers equation becomte inviscid Burgers equation:

Jdu du
ot + Uz = 0, (3.24)
which is a prototype for equations for which the solution ckvelop disconti-
nuities (shock waves)As was mentioned above, as the solution of the advection
equation (2.1), the solution of Eq. (3.24) can be constrdubjethe method of char-
acteristics (see App. B). Suppose we have an initial valoblpm, i.e., a smooth
functionu(x,0) = up(x), x € R is given. In this case the coefficierAsB andC are

A=u, B=1 C=0.

Equations (B.2-B.3) read

dt

ds— le t(0)=0<t=s

du

gs = 0 [u(0) = o(x0)| + u(s, Xo) = Uo(¥o),
dx

G- u® [X(0) = Xg| < X = Up(Xo)t + Xo.

Hence the general solution of (3.24) takes the form
u(X,t) = Uo(X— Uo(Xo)t, ). (3.25)

Eq. (3.25) is an implicit relation that determines the dolubf the inviscid Burgers’

equation. Note that the characteristics are straight libesnot all the lineas have
the same slope. It will be possible for the characteristiéatersect. If we write the
characteristics as X X0

" Up(x0) Uo(x0)’
one can see, that the slopgug(xp) of the characteristics depends on the paint
and on the initial functionu. For inviscid Burgers’ equation (3.24), the tinie
at which the characteristics cross and a shock forms, theaking” time, can be
determined exactly as

-1
To=——
©7 minf{uy(x,0)}

This relation can be used if Eqg. (3.24) has smooth initishdab that it is differen-
tiable). From the formula fof, we can see that the solution will break and a shock



will form if ux(x,0) is negative at some point.

From numerical point of view it is convenient to rewrite therBers’ equation as

du 190 ,,
EJrEd—X(u)fO (3.26)
Equation (3.26) describes a one-dimensional conserviatio(2.13) withF = %uz
and can be solve, e.g., with the upwind method (2.4) or with lthx-Wendroff
method (2.14).

Space i nterval L=10

Initial condition Up(X) = exp(—(x— 3)?)
Space discretization step||Ax=0.05

Ti me discretization step [[At=0.05

Amount of time steps T=36

10,

2 /
Fig. 3.1 Characteristics /
curves for the inviscid Burg— GQ 2 4 6 8 10
ers’ equation (3.24) X

Fig. 3.2 Numerical solu-
tion of the inviscid Burgers’ % 2 2 6 s 10
equation (3.24) X




3.4.0.1 The Riemann Problem

A Riemann problem, named aftBernhard Riemanyconsists of a conservation law,
e.g., Eq. (3.24) together with a piecewise constant datmbasingle discontinuity,
ie.,

u, X< g

u(x,0) = upg(x) = 3.27
(x,0) = up(x) {Un X>a. (3.27)

The form of the solution depends on the relation betwgemdu, .

e U > U;: The unique weak solution (see Fig. 3.2 (a)) is
u, X < a-+ct;

u(x,0) = up(x) = 3.28
(x.0) = Uo(¥ hh ot (3.28)

with the shock velocity

1
c= E(u| +ur).

Note, that in this case the characteristics in each of themeghereu is constatnt
go into the shocls time advances (see Fig. 3.3 (b) ).

Space interval L=10

Initial condition u=08u=0.2
Space discretization step|Ax=0.05
Time discretization step [|[At=0.05
Amount of tine steps T =100

The initial condition is:

0.8, X< 5;

3.29
0.2, X>5. ( )

ummzmmz{

e U < Uy: In this case there are infinitely many weak solutions. On¢hefn

is again (3.28) with the same velocity (see Fig. 3.4 (a)).eNbat in this case the
characteristicgio out of the shockFig. 3.4 (b)) and the solution is not stable to
perturbations.
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Fig. 3.3 a) Numerical solution of the inviscid Burgers’ equation2@. for the Riemann problem
for uy < ur. b) Characterics of Eq. (3.24) with initial conditions (8)2The red line indicates the

curvex = a+-ct.
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Fig. 3.4 a) Numerical solution of the inviscid Burgers’ equati@?)for the Riemann problem for
U < ur. b) Characterics of the inviscid Burgers’ equation withialiconditions £?). The red line

indicates the curve = a+-ct.



Chapter 4
The Wave Equation

Another classical example of a hyperbolic PDE is a wave égouathe wave equa-
tion is a second-order linear hyperbolic PDE that descrthespropagation of a
variety of waves, such as sound or water waves. It arisedfereint fields such as
acoustics, electromagnetics, or fluid dynamics. In its #stform, the wave equa-
tion refers to a scalar functian= u(r,t), r € R" that satisfies:

J%u

W :CZDZU. (41)

Here[J? denotes the Laplacian R" andc is a constant speed of the wave propaga-
tion. An even more compact form of Eq. (4.1) is given by

Ou=0,

where[] = 12 — C% g—tzz is the d’Alembertian.

4.1 The Wave Equation in 1D

The wave equation for the scalain the one dimensional case reads

otz 7 9’

The one-dimensional wave equation (4.2) can be solved lgxagtd’Alembert’s
method, using a Fourier transform method, or via separatioariables. To illus-
trate the idea of the d’Alembert method, let us introduce newardinatesé, n) by
use of the transformation

4.2)

& =x—ct, n =x+ct. 4.3)
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In the new coordinate system one can write

1
uXX:UEE+2UEn+Unna gutt:USEleJEn‘i’Unn,
and Eq. (4.2) becomes
ou
o&an

That is, the functioru remains constant along the curves (4.3), i.e., Eq. (4.3) de-
scribes characteristic curves of the wave equation (42 App. B). Moreover, one
can see that the derivativki/d& does not depends ap i.e.,

Jd (du du
After integration with respect t§ one obtains

u(&,n)=F(&)+Gn),

whereF is the primitive function off and G is the "constant* of integration, in
general the function ofy. Turning back to the coordinatég, t) one obtains the
general solution of Eq. (4.2)

(4.4)

|u(x,t) = F(x—ct) + G(x+ct).| (4.5)

4.1.1 Solution of thel VP

Now let us consider an initial value problem for Eq. (4.2):
Ut = CZUxx; t>0,
u(x,0) = f(x), (4.6)
U (%,0) = g(x).

To write down the general solution of the IVP for Eq. (4.2)eareeds to exspress
the arbitrary functiorr andG in terms of initial dataf andg. Using the relation

%F(x—ct) = —cF/(x—ct), where F'(x—ct):= 9

one becomes:



After differentiation of the first equation with respectt@ne can solve the system
in terms ofF’(x) andG'(x), i.e.,

Fo=3(00-ga).  Gw=5(1x+aw).

F(x)zéf(x)_zic/:

where the integration consta@tis chosen in such a way that the initial condition
F(x) + G(x) = f(x) is fullfield. Alltogether one obtains:

gy)dy+C. G =51+ 5 [ gdy-c.

X+ct

ux.t) = %(f(xct)Jr F(x+ ct)) +i/ gy)dy|. @4.7)

2C Jx—ct

4.1.2 Numerical Treatment

4.1.2.1 A Simple Explicit Method

The first idea is just to use central differences for both tand space derivatives,
ie.,

i . o
A 2 u g —2u +ul 4.8)
A\t2? X2 ’ '
or, with a = cAt/Ax
uWt =t 21— el Fa?l Ul ) (4.9)

Schematical representation of the scheme (4.9) is showrigod B.
Note that one should also implement initial conditions Y4l order to imple-
ment the second initial condition one needs the virtual pgit,

00,0 =gx) = U0 4 (o
W(X,Y) =9g(X) = At .

H \ "
Fig. 4.1 Schematical visu- B - - - 7h
alization of the numerical
scheme (4.9) for (4.2). tj 4



With g := g(x;) one can rewrite the last expression as
ut=ul - 2Atg + O(A?),

and the second time row can be calculated as

1
ut = Atgi+ (1—ad)fi + Eorz(fH + fiv1), (4.10)

whereu(x;,0) = W0 = f(x) = fi.

von Neumann Stability Analysis

In order to investigate the stability of the explicit schent®e9) we start with the
usual ansatz (1.21) o
£iJ — gJelkXi ,

which leads to the following expression for the amplificatfactorg(k)
¢? =2(1-a?g—1+2a’gcogkAXx).

After several transformations the last expression becqus¢s quadratic equation
for g, namely
9> -2Bg+1=0, (4.11)

where KA
B =1-2a?sir? (TX) .

Solutions of the equation fak) read

g2=B++vB?—1.

Notice that if| 3| > 1 then at least one of absolute valuegeb is bigger that one.
Therefor one should desire f(B| < 1, i.e.,

g12=B+ivp2-1

and
97 =p*+1-p*=1.

That is, the scheme (4.9) is conditional stable. The stgliindition reads
—1<1-2a?sir? (%‘) <1,

what is equivalent to the standart CFL condition (2.7)



Fig. 4.2 Schematical visual-
ization of the implicit numeri-
cal scheme (4.12) for (4.2). — o ® ®

4.1.2.2 An Implicit Method

One can try to overcome the problems with conditional sitglily introducingan
implicit schemeThe simplest way to do it is just to replace all terms on tigétri
hand side of (4.8) by an average from the values to the tinps$te 1 andj — 1,
i.e,

Wttt 2
Uiir — i+1

j—1 j—1 j+1 j+1 j+1
INE =5 (Wi 2 +u T+ - 2! +u{1).(4.12)

Schematical diagramm of the numerical scheme (4.12) is stoowFig. (4.2).
Let us check the stability of the implicit scheme (4.12). fistaim we use the

standart ansatz ) .
gij — g] elkxi

leading to the equation fay(k)
Bg’—29+B=0
with

B=1+ 2a2sin2<%() .

One can see thg > 1 for all k. Hence the solutiong » take the form

i _ R2
oo - HEVIE

and 1 (1_g?
|g|2: _(B;B):l

That is, the implicit scheme (4.12)&bsolute stable

Now, the question is, whether the implicit scheme (4.12)etdy than the explicit

scheme (4.9) form numerical point of view. To answer thissgjoa, let us analyse
dispersion relation for the wave equation (4.2) as well abéwh schemes (4.9) and
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Fig. 4.3 Dispersion relation
for the one-dimensional wave 1 .
equation (4.2), calculated us- 05
ing the explicit (blue curves)
and implicit (red curves) % 02 04 06 08 1
methods (4.9) and (4.12). ka xim
(4.12). The exact dispersion relation is
w = +ck,

i.e, all Fourier modes propagate without dispersion with same phase velocity
w/k = +c. Using the ansata’' ~ &k~ for the explicit method (4.9) one obtains:

cogwAt) = 1— a?(1— cogkAx)), (4.13)
while for the implicit method (4.12)

1
coq wAt) = 17 o2(1— coskix) (4.14)

One can see that far — 0 both methods provide the same result, otherwise the
explicit scheme (4.9) always exceeds the implicit one (sge(#.3)). Fora = 1 the
scheme (4.9) becomes exact, while (4.12) deviates more anel from the exact
value of w for increasinga. Hence, for Eq. (4.2) there are no motivation to use
implicit scheme instead of the explicit one.

4.1.3 Examples

Example 1.

Use the explicit method (4.9) to solve the one-dimansioraaerequation (4.2):
ut =4uy for xe[0,L] and tel0,T] (4.15)

with boundary conditions

u(0,t)=0 u(L,t)=0.
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Fig. 4.4 Space-time evolution
of Eq. (4.15) with the initial
distributionu(x, 0) = sin(7x),
U (x,0) =0.
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Assume that the initial position and velocity are
u(x,0) = f(x) =sin(mx), and uw(x,0)=g(x) =0.

Other parameters are:

Space i nterval L=10
Space discretization step|Ax=0.1
Time discretization step [|[At=0.05
Amount of tinme steps T=20

First one can find the d’Alambert solution. In the case of zmital velocity
Eq. (4.7) becomes

U(x.) = f(x—Zt)jZL f(x+2t) _ sinn(x—Zt)szsimT(xnL 2t) _ sin(1x) cos(27t),

i.e., the solution is just a sum of a travelling waves withialiform, given by@.

Numerical solution of (4.15) is shown on Fig. (4.4).
Example 2.

Solve Eq. (4.15) with the same boundary conditions. Assuowg that initial dis-
tributions of position and velocity are

0, x€][0,xq];
ux,0)=f(x)=0 and w(x,0)=9g(X)=1{do, XE€ [x1,X);
0, X€&[x,L].

Other parameters are:



Fig. 4.5 Space-time evolu-
tion of Eq. (4.15) with the
initial distributionu(x,0) = 0,
U (x,0) = g(x).

Initial nonzero velocity [gp=0.5

Initial space intervals x1=L/4, x=3L/4
Space i nterval L=10

Space di scretization step|Ax=0.1

Time discretization step [|[At=0.05

Amount of tinme steps T =400

Numerical solution of the problem is shown on Fig. (4.5).

Example 3. Vibrating String
Use the explicit method (4.9) to solve the wave equation fabeating string:
Ut = C?Uyx for xe[0,L] and tel0,T], (4.16)
wherec = 1 with the boundary conditions
u0,t)=0  u(L,t)=0.
Assume that the initial position and velocity are
u(x,0) = f(x) =sin(nrix/L), and w(x,0)=g(x)=0, n=123,....

Other parameters are:

Space i nterval L=1

Space discretization step||Ax=0.01
Time discretization step [[At=0.0025
Amount of time steps T =2000

Usually a vibrating string produces a sound whose frequéncypnstant. There-
fore, since frequency characterizes the pitch, the soundijoed is a constant note.
Vibrating strings are the basis of any string instrumeng lguitar or cello. If the
speed of propagatianis known, one can calculate the frequency of the sound pro-



duced by the string. The speed of propagation of a wasequal to the wavelength
multiplied by the frequency:
c=Af

If the length of the string i&, the fundamental harmonic is the one produced by the
vibration whose nodes are the two ends of the strind, sohalf of the wavelength
of the fundamental harmonic, so

f=a

Solutions of the equation in question are given in form afidtag waves. The stand-
ing wave is a wave that remains in a constant position. Thimpmenon can occur
because the medium is moving in the opposite direction tevines, or it can arise
in a stationary medium as a result of interference betweenwaves traveling in

opposite directions (see Fig. (4.6))

n=1 n=2 n=3
1 1 1
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Of 0f Of
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Fig. 4.6 Standing waves in a string. The fundamental mode and théifiesbvertones are shown.
The red dots represent the wave nodes.
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4.2 The Wave Equation in 2D
4.2.1 Examples
4.2.1.1 Example 1.

Use the standart five-point explicit method (4.9) to solveva-tlimansional wave
equation

Ut = C*(Uxx+Uyy), U= U(X,Y,t)

on the rectangular domaif, L] x [0,L] with Dirichlet boundary conditions. Other
parameters are:
Space interval L=1

Space discretization step|[Ax=Ay=0.01
Time discretization step [[At=0.0025
Amount of time steps T =2000

Initial condition ux,y,0) = 4x2y(1—x)(1—y)

Numerical solution of the problem for two different time mentst = 0 andt = 500
can be seen on Fig. (4.7)

t =500

u(x,y.t)
S
o
A ;
u(x,y.t)

B 1o

— 05 e
S 05 . e 0.5
0 y 00

Fig. 4.7 Numerical solution of the two-dimensional wave equatidraven fort = 0 andt = 500.



Chapter 5
Sine-Gordon Equation

The sine-Gordon equation is a nonlinear hyperbolic padifédrential equation in-
volving the d’Alembert operator and the sine of the unknownction. The equa-
tion, as well as several solution techniques, were knowhénnineteenth century
in the course of study of various problems of differentiabigetry. The equation
grew greatly in importance in the 1970s, when it was realthedlit led tosolitons
(so-called "kink" and "antikink“). The sine-Gordon equattiappears in a number of
physical applications [11, 7, 21], including applicatidngelativistic field theory,
Josephson junctions [17] or mechanical trasmission lih8s17].
The equation reads

Ut — Uxx+Sinu= 10, (5.1)

whereu = u(x, t). In the case of mechanical trasmission lingx, t) describes an
angle of rotation of the pendulums. Note that in the low-dtage case (sin = u)
Eq. (5.1) reduces to the Klein-Gordon equation

Ut — Uxx+U= 10,
admiting solutions in the form
u(x, t) = up cogkx— wt), w=v1+k2.

Here we are interested in large amplitude solutions of EG4)(5

5.1 Kink and antikink solitons

Let us look for travelling wave solutions of the sine-Gordaquation (5.1) of the
form

u(é):=u(x—ct),
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Fig. 5.1 Representation of
the kink (blue) and antikink
(red) solutions (5.4)

wherec is an arbitrary velocity of propagation and— 0, usg — 0, whené —
400 [17, 21]. In the co-moving frame Eg. (5.1) reads

(1-c?)ugg = sinu.

Multiplying both sides of the last equation by and integrating yields

NI =

uf (1—-¢%) = —cosu+cy, (5.2)

wherec; is an arbitrary constant of integration. Notice that we lémsolutions for
whichu — 0 andug — 0 when¢ — £, soc; = 1. Now we can rewrite the last
equation as

du 2
sin%:i\/l_—chE' (5.3)
Integrating Eq. (5.3) yields
2 u
VA 2'”(“”‘1) ’

or

B ¢ —&o
ué)=4 arctar(exp(i = C2)> .

That is, the solution of Eq. (5.1) becomes

uix,t) =4 arctar(exp(i %—_c;t) ) . (5.4

Equation (5.4) represents a localized solitary wave, tliageat any velocityic| < 1.
The + signs correspond to localized solutions which are caliet andantikink
respectively. For the mechanical transmission line, wdianoreases from-oo to 4-co
the pendlums rotate from 0 torefor the kink and from O to-2 17 for the antikink.
(see Fig. 5.1)

One can show [11, 17], that Eq. (5.1) admits more solutiorteform

uix,t) =4 arctar(%) .



Fig. 5.2 The kink-kink col- u

lision, calculated at three g Ve
different times: Att = —7 af
(red curve) both kinks propa- St
gate with opposite velocities s

c==0.5; Att =0 they collide 0 5 5 I
at the origin (green curve); At /o Lb
t = 10 (blue curve) they move
away from the origin with /
velocitiesc = F0.5. = -6p

whereF andG are arbitrary functions. Namely, one distinguishes th&#iimk and
the kink-antikink collisions as well as the breather santiThekink-kink collision
solution reads

csinh(—*—)
u(x,t) =4 arcta (:037\/;_0)) (5.5)
Vi-¢&

and describes the collision between two kinks with respeactelocitiesc and—c
and approaching the origin from— —co and moving away from it with velocities
+c fort — o (see Fig. 5.2). In a similar way, one can construct soluttamre-
sponding to théink-antikink collision The solution has the form:

sinh(—&
u(xt) =4 arctar<$) (5.6)
Vi-e&

The breather soliton solution, which is also called lareather modeor breather
soliton[17], is given by

(5.7)

ug(x,t) =4 arctar( wctsr(ai/wti))

which is periodic for frequencie® < 1 and decays exponentially when moving
away fromx = 0. Now we are in the good position to look for numerical sao§

Fig. 5.3 The breather so- / b \
lution, oscillating with the ‘ = = -
frequencyw = 0.2, calcu- 0 - ° 10

lated for three different times -2r
t =0 (red curve)t = 5 (green
curve) and = 10 (blue curve).

of Eq. (5.1).



5.2 Numerical treatment

A numerical scheme
Consider an IVP for the sine-Gordon equation (5.1):
Ut — Uxx+Sin(u) =0
on the intervak € [a, b] with initial conditions
ux,0)=f(x),  w(x0)=g(X, (5.8)
and with, e.g., no-flux boundary conditions

Ju

— =0.
ox x=a,b

Let us try to apply a simple explicit scheme (4.9) to Eq. (5The discretization
scheme reads
Wt =—u 21 -0 Fa?l, Ful ) - Asinu)  (5.9)

with a = At/Ax,i=0,...,M andt =0,...,T. To the implementation of the sec-
ond initial condition one needs again the virtual p(njﬁf,

o uteut
u(x,0) =9g(x) = SAT

+O(A?).

Hence, one can rewrite the last expression as
ut=ul - 2Atg(x) + O(AE2),

and the second time rou} can be calculated as

2

ul = Atg(x) + (1—a?) f(x)+ % a?(f(x 1)+ f(X11)) — ATt sin(f(x)). (5.10)

In addition, no-flux boundary conditions lead to the follagriexpressions for two
virtual space pointa’ ; anduy,, ;:
i :

i
du up—u

_ -1 _ ooy
ox|, 0% Taax TO0FUa=w
du Ulps — Uj | -
— +1 M-1 _ ] . |
&X:b_o — oAx =0& Uy 1 =Uy-




One can try to rewrite the differential scheme to more gdmeadrix form. In matrix
notation the second time-row is given by

1 o At
u :Atyj_‘i’AU *TB:]_, (511)

where

% = (9(2).904),90%).-..gbw-1).g(b)) " and
By = (sin(u3),sin(u), ..., sin(u$y_4),sin(ud))"

areM + 1-dimensional vectors anilis a tridiagonal squark! + 1 x M + 1 matrix
of the form
1-a? 0o ...0
a?/2 1—a? a?/2 ...0
A= 0 a?/21-a% ...0

The boxed elements indicate the influence of boundary conditOther time rows
can also be written in the matrix form as

uj+l:—uj71+BUj*AtZB7 j=1,...,T-1 (5.12)

Here

B= (sin(ué),sin(ui), . ,sin(u,j\,lil),sin(u{'\,,))T

is aM + 1-dimensional vector anl is a square matrix, defined by an equation
B=2A

Now we can apply the explicit scheme (5.9) described aboveqto(5.1). Let us
solve it on the interval-L, L] with no-flux boundary conditions using the following
parameters set:

Space i nterval L=20
Space discretization step||[Ax=0.1
Ti me discretization step [[At=0.05
Amount of tine steps T =1800
Vel ocity of the kink c=02

We start with the numerical representation of kink and ankikolutions. The initial
condition for the kink is



f(x)y=4 arctar(exp(ﬁ) ) ,

c X
g(x) = —2\/1__023ecl'<\/1__02) .

Figure 5.4 (a) shows the space-time plot of the numericat kimlution. For the
antikink the initial condition reads

f(x) = 4arctar<exp< \/1X_—Cz> >,

C X
g(x) = _2\/1——c258d-(\/1——c2) .

Numerical solutions is shown on Fig. 5.4 (b).

@) (b)
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Fig. 5.4 Numerical solution of Eq. (5.1), calculated with the schegf®) for the case of (a) the
kink and (b) antikink solitons, moving with the velocity= 0.2. Space-time information is shown.

Now we are in position to find numerical solutions, correstiog to kink-kink
and kink-antikink collisions. For the kink-kink collisiome choose

f(x) =4 arctar(exp( i(/JlrL_/CZZ) > +4 arctar<exp< i(/lL—/(:22> ) ,

gx) = —2—°_sec X+L/2>+2 sec M),
V1-c? V1-c? V1-c? V1-c?

whereas for the kink-antikink collision the initial conidins are

f(x) =4 arctar<exp< T/IL—/CZ?)) +4 arctar(exp( i(/lL—/cZ?)) ;

g(x) = 22— sec X+L/2)2 ¢ sec M)
Vi-¢c? Vi-¢c? Vi-c? Vi-¢2




Numerical solutions, corresponding to both cases is pteden Fig. 5.5 (a)-(b),
respectively. Finally, for the case of breather we choose

(@) (b)

2000

1500 1000 500 -20

Fig. 5.5 Space-time representation of the numerical solution ofE4) for (a) kink-kink collision
and (b) kink-antikink collision.

f(x) =0,

g(x) = 4\/@secl-<x \/m> .

Corresponding numerical solution is presented on Fig. 5.6.

Fig. 5.6 Space-time plot / TN .
of the numerical breather 2000 e e
solution, oscillating with the . 1000 T 0
frequencycw = 0.2. 0 -20 X







Appendix A
Tridiagonal matrix algorithm

The tridiagonal matrix algorithm (TDMA), also known alfiomas algorithmis a
simplified form of Gaussian elimination that can be used teesmidiagonal system
of equations

aiXi_1+biXi +cXi1 =V, i=1,...n, (A1)

or, in matrix form (a; = 0,¢, = 0)

bj_ ct 0 ...... 0 X1 Y1
ap b2 Co ... ... 0 X2 Yo
0 a3 b3 C3 0 =

............... Ch—1 .
0...... 0 a, by Xn Yn

The TDMA is based on the Gaussian elimination procedure anslist of two parts:
a forward elimination phase and a backward substitutios@fEb]. Let us consider
the system (A.1) for=1...nand consider following modification of first two equa-
tions:
EG_>-b1i—Eq_;-a
which relults in
(b1bz — c1a2)%2 + Cobixz = b1y, — apy;.

The effect is thak; has been eliminated from the second equation. In the same
manner one can eliminaig, using the modifiedecond equation and the third one
(fori =3):

(b1bz — c1a2)EG_3 — az(mod. Eq_,),

which would give
(ba(b1by — c1a2) — cobgag)xz + ca(biby — c1a2)xa = y3(b1bo — cra2) — (yoby — y1@2)a3

If the procedure is repeated until the n’'th equation, thé éagiation will involve
the unknown functiorx, only. This function can be then used to solve the mod-
ified equation fori = n— 1 and so on, until all unknowr; are found (backward

53



substitution phase). That is, we are looking for a backwasatz of the form:
Xi—1= VX + B (A.2)

If we put the last ansatz in Eq. (A.1) and solve the resultingegion with respect to
X;, the following relation can be obtained:

—Gi yi—af
Xj = Xir1+ A.3
i ayi+ bi i+1 ayi+ bi ( )
This relation possesses the same form as Eq. (A.2) if weifglent
—Ci yi —af
=—, 1= . A4
Yit1 ay+b Bi1 ay 1 b (A.4)

Equation (A.4) involves the recursion formula for the caréintsy; andp; fori =
2,...,n—1. The missing valueg; and 3; can be derived from the first & 1)
equation (A.1):

_n_a __ G5 1 — B —
g G bl’BZ*blé

The last what we need is the value of the functigior the first backward substitu-
tion. We can obtain if we put the ansatz

Xn—1 = Y*n+ Bn
into the last (= n) equation (A.1):
an (Y% + Bn) + bnXn = Yn,

yielding

~ Yn—anbn

B anyh+bn

One can get this value directly from Eq. (A.2), if one formatp

Xn

Xny1=0.

Altogether, the TDMA can be written as:



1.Set w=pL1=0;
2. Evaluate fori=1,...,.n—-1
G o Yi—aB,
VIH_iaiVmei’ B|+1—aiyl+bi,
3. Set X1 =0;
4. Find fori=n+1,...,2
Xi—1= %X + B

The algorithm admits’(n) operations instead of’(n®) required by Gaussian
elimination.
Limitation
The TDMA is only applicable to matrices that are diagonaltyrdnant, i.e.,

lbi| > |ai| +[c|, i=1,...,n






Appendix B
The Method of Characteristics

The method of characteristics is a method which can be usatean initial value
problemfor general first order PDEs [4]. Let us consider a quasilimggation of

the form
Ju Ju

Aax+Bdt +Cu=0, u(x,0) = u, (B.1)
whereu = u(x;t), andA, B andC can be functions of independent variables and
u. The idea of the method is to change coordinates ffri) to a new coordinate
system(xo, s), in which Eq. (B.1) becomean ordinary differential equatioalong
certain curves in théx,t) plane. Such curve$x(s),t(s)) along which the solution
of (B.1) reduces to an ODE, are called tferacteristic curvesThe variables can
be varied, whereag changes along the line= 0 on the planéx,t) and remains
constant along the characteristics. Now if we choose

dx dt
Z_A d —=B B.2
ge= /A and =B (B.2)
then we have
du_ u 9(-1- a_ Au+B
ds~ XgsTHgs T Ak TEW
and Eq. (B.1) becomes the ordinary differential equation
du
— +Cu=0 B.3
g TCU (B-3)

Equations (B.2) and (B.3) give the characteristics of (B.1)
That is, a general strategy to find out the characteristitk@tystem like (B.1) is
as follows:

e Solve Eq. (B.2) with initial conditiong(0) = Xo, t(0) = 0. Solutions of (B.2)
give the transformatiofx,t) — (xo,S);

e Solve Eqg. (B.3) with initilal conditioru(0) = upg(xp) (wherexg are the initial
points on the characteristic curves along the 0 axis). So, we have a solution
u(Xo, s);
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e Using the results of the first step fisdandxp in terms ofx andt and substitute
these values in(xp, s) to get the solutiom(x,t) of the original equation (B.1).
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