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Chapter 1
Introduction

1.1 Definition, Notation and Classification

A differential equation involving more than one independent variable and its partial
derivatives with respect to those variables is called apartial differential equation
(PDE).
Consider a simple PDE of the form:

∂
∂x

u(x,y) = 0.

This equation implies that the functionu(x,y) is independent ofx. Hence the general
solution of this equation isu(x,y) = f (y), wheref is an arbitrary function ofy. The
analogous ordinary differential equation is

du
dx

= 0,

its general solution isu(x) = c, wherec is a constant. This example illustrates that
general solutions of ODEs involve arbitrary constants, whereas solutions of PDEs
involvearbitrary functions.

In general, one can classify PDEs with respect to different criterion, e.g.:

• Order;
• Dimension;
• Linearity;
• Initial/Boundary value problem, etc.

By order of PDE we will understand the order of the highest derivativethat occurs.
A PDE is said to belinear if it is linear in unknown functions and their derivatives,
with coefficients depending on the independent variables. The independent variables
typically include one or morespace dimensionsand sometimes time dimension as
well.
For example, the wave equation
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∂ 2u(x,t)
∂ t2 = a2 ∂ 2u(x,t)

∂x2

is a one-dimensional, second-order linear PDE. In contrast, the Fisher Equation of
the form

∂u(r , t)
∂ t

= △u(r ,t)+u(r ,t)−u(r ,t)2,

wherer = (x, y) is a two-dimensional, second-order nonlinear PDE.

Linear Second-Order PDEs

For linear PDEs in two dimensions there is a simple classification in terms of the
general equation

auxx+buxy+cuyy+dux +euy+ f u+g= 0, u = u(x, y) ,

where the coefficientsa, b, c, d, e, f andg are real and in general can also be func-
tions ofx andy. The PDE’s of this type are classified by the value of discriminant
Dλ = b2−4acof the eigenvalue problem for the matrix

A =

(
a b/2

b/2 c

)

,

build from the coefficients of the highest derivatives. A simple classification is
shown on the following table [20, 13]:

Dλ Typ Eigenvalues
Dλ < 0 elliptic the same sign
Dλ > 0 hyperbolic different signs
Dλ = 0 parabolic zero is an eigenvalue

For instance,the Laplace equationfor the electrostatic potentialϕ in the space
without a charge

∂ 2ϕ
∂x2 +

∂ 2ϕ
∂y2 = 0

is elliptic, asa = c = 1, b = 0, Dλ = −4 < 0. In general, elliptic PDEs describe
processes that have already reached steady state, and henceare time-independent.
One-dimensionalwave equationfor some amplitudeA(x,t)

∂ 2A
∂ t2 −v2 ∂ 2A

∂x2 = 0

with the positive dispersion velocityv is hyperbolic (a = 1, b = 0, c = −v2, Dλ =
4v2 > 0). Hyperbolic PDEs describe time-dependent, conservative processes, such
as convection, that are not evolving toward steady state.
The next example is adiffusion equationfor the patricle’s densityρ(x,t)



∂ρ
∂ t

= D
∂ 2ρ
∂x2 ,

where D > 0 is a diffusion coefficient. This equation is called to be parabolic
(a = −D, b = c = 0,Dλ = 0). Parabolic PDEs describe time-dependent, dissipative
processes, such as diffusion, that are evolving toward steady state.

Each of these classes should be investigated separately as different methods are
required for each class. The next point to emphasize is that as all the coefficients of
the PDE can depend onx andy, this classification concept islocal.

Initial and Boundary-Value Problems

As it was mentioned above the solution of PDEs involve arbitrary functions. That
is, in order to solve the system in question completely, additional conditions are
needed. These conditions can be given in the form ofinitial andboundarycondi-
tions. Initial conditions define the values of the dependentvariables at the initial
stage (e.g. att = 0), whereas the boundary conditions give the information about
the value of the dependent valiable or its derivative on the boundary of the area of
interest. Typically, one distinguishes

- Dirichlet conditionsspecify the values of the dependent variables of the boundary
points.

- Neumann conditionsspecify the values of the normal gradients of the boundary.
- Robin conditionsdefines a linear combination of the Drichlet and Neumann con-

ditions.

Moreover, it is useful to classify the PDE in question in terms of initial value
problem (IVP)andboundary value problem (BVP).

- Initial value problem:PDE in question describestime evolution, i.e., the initial
space-distribution is given; the goal is to find how the dependent variable propa-
gates in time ( e.g., the diffusion equation).

- Boundary value problem:A static solution of the problem should be found in
some region-and the dependent variable is specified on its boundary ( e.g., the
Laplace equation).

1.2 Finite difference method

Let us consider a one-dimensional PDE for the unknown functionu(x,t). One way to
numerically solve the PDE is to approximate all the derivatives byfinite differences.
We divide the domain in space usinga mesh x0,x1, . . . ,xN and in time using a mesh
t0, t1, . . . ,tT . Fisrt we assumea uniform partitionboth in space and in time, so that
the difference between two consecutive space points will be△x and between two
consecutive time points will be△t, i.e.,



xi = x0 + i△x, i = 0,1, . . . ,M;

t j = t0 + j△t, j = 0,1, . . . ,T;

The Taylor series method

Consider a Taylor expansion of an analytical functionu(x).

u(x+△x) = u(x)+
∞

∑
n=1

△xn

n!
∂ nu
∂xn = u(x)+△x

∂u
∂x

+
△x2

2!
∂ 2u
∂x2 +

△x3

3!
∂ 3u
∂x3 + . . .

(1.1)
Then for the first derivative one obtains:

∂u
∂x

=
u(x+△x)−u(x)

△x
− △x

2!
∂ 2u
∂x2 − △x2

3!
∂ 3u
∂x3 − . . . (1.2)

If we break the right hand side of the last equation after the first term, for△x≪ 1
the last equation becomes

∂u
∂x

=
u(x+△x)−u(x)

△x
+O(△x) =

△iu
△x

+O(△x) , (1.3)

where
△iu = u(x+△x)−u(x) := ui+1−ui

is calleda forward difference. The backward expansion of the functionu can be
written as△x≪ 1 the last equation reads

u(x+(−△x)) = u(x)−△x
∂u
∂x

+
△x2

2!
∂ 2u
∂x2 − △x3

3!
∂ 3u
∂x3 + . . . , (1.4)

so for the first derivative one obtains

∂u
∂x

=
u(x)−u(x−△x)

△x
+O(△x) =

∇iu
△x

+O(△x) , (1.5)

where
∇iu = u(x)−u(x−△x) := ui −ui−1

is calleda backward difference. One can see that both forward and backward dif-
ferences are of the orderO(△x). We can combine these two approaches and derive
a central difference, which yields a more accurate approximation. If we substract
Eq. (1.5) from Eq. (1.3) one obtains

u(x+△x)−u(x−△x)= 2△x
∂u
∂x

+2
△x3

3!
∂ 3u
∂x3 + . . . , (1.6)



what is equivalent to

∂u
∂x

=
u(x+△x)−u(x−△x)

2△x
+O(△x2) (1.7)

Note that the central difference (1.7) is of the order ofO(△2x).
The second derivative can be found in the same way using the linear combination of
different Taylor expansions. For instance, consider

u(x+2△x) = u(x)+2△x
∂u
∂x

+
(2△x)2

2!
∂ 2u
∂x2 +

(2△x)3

3!
∂ 3u
∂x3 + . . . (1.8)

Substracting from the last equation Eq. (1.1), multiplied by two, one gets the fol-
lowing equation

u(x+2△x)−2u(x+△x)= −u(x)+△x2 ∂ 2u
∂x2 +△x3 ∂ 3u

∂x3 + . . . (1.9)

Hence one can approximate the second derivative as

∂ 2u
∂x2 =

u(x+2△x)−2u(x+△x)+u(x)
△x2 +O(△x). (1.10)

Similarly one can obtain the expression for the second derivative in terms of back-
ward expansion, i.e.,

∂ 2u
∂x2 =

u(x−2△x)−2u(x−△x)+u(x)
△x2 +O(△x). (1.11)

Finally, if we add Eqn. (1.3) and (1.5) an expression for the cental second derivative
reads

∂ 2u
∂x2 =

u(x+△x)−2u(x)+u(x−△x)
△x2 +O(△x2). (1.12)

One can see that approximation (1.12) provides more accurate approximation as
(1.10) and (1.11).
In an analogous way one can obtain finite difference approximations to higher or-
der derivatives and differential operators. The coefficients for first three deriva-
tives for the case of forward, backward and central differences are given in Ta-
bles 1.1, 1.2, 1.3.

Mixed derivatives

A finite difference approximations for the mixed partial derivatives can be calculated
in the same way. For example, let us find the central approximation for the derivative



ui ui+1 ui+2 ui+3 ui+4

△x∂u
∂x -1 1

△x2 ∂2u
∂x2 1 -2 1

△x3 ∂3u
∂x3 -1 3 -3 1

△x4 ∂4u
∂x4 1 -4 6 -4 1

Table 1.1 Forward difference quotient,O(△x)

ui−4 ui−3 ui−2 ui−1 ui

△x∂u
∂x -1 1

△x2 ∂2u
∂x2 1 -2 1

△x3 ∂3u
∂x3 -1 3 -3 1

△x4 ∂4u
∂x4 1 -4 6 -4 1

Table 1.2 Backward difference quotient,O(△x)

ui−2 ui−1 ui ui+1 ui+2

2△x∂u
∂x -1 0 1

△x2 ∂2u
∂x2 1 -2 1

2△x3 ∂3u
∂x3 -1 2 0 -2 1

△x4 ∂4u
∂x4 1 -4 6 -4 1

Table 1.3 Central difference quotient,O(△x2)

∂ 2u
∂x∂y = ∂

∂x

(

∂u
∂y

)

= ∂
∂x

(

u(x,y+△y)−u(x,y−△y)
2△y +O(△y2)

)

=

= u(x+△x,y+△y)−u(x−△x,y+△y)−u(x+△x,y−△y)+u(x−△x,y−△y)
4△x△y +O(△x2△y2) .

A nonequidistant mesh

In the section above we have considered different numericalapproximations for the
derivatives using the equidistant mesh. However, in many applications it is con-
vinient to use a nonequidistant mesh, where the spatial steps fulfill the following
rule:

△xi = α△xi−1.

If α = 1 the mesh is said to be equidistant. Let us now calculate the first derivative
of the functionu(x) of the second-order accurance:

u(x+ α△x) = u(x)+ α△x
∂u
∂x

+
(α△x)2

2!
∂ 2u
∂x2 +

(α△x)3

3!
∂ 3u
∂x3 + . . . (1.13)

Adding the last equation with Eq. (1.4) multiplied byα one obtains the expression
for the second derivative



∂ 2u
∂x2 =

u(x+ α△x)− (1+ α)u(x)+ αu(x−△x)
1
2α(α +1)△x2

+O(△x) (1.14)

Substitution of the last equation into Eq. (1.4) yields

∂u
∂x

=
u(x+ α△x)− (1−α2)u(x)−α2u(x−△x)

α(α +1)△x
+O(△x2) . (1.15)

1.3 von Neumann stability analysis

One of the central questions arising by numerical treatmentof the problem in ques-
tion is stability of the numerical scheme we are interested in [15]. An algorithm for
solving an evolutionary partial differential equation is said to bestable, if the nu-
merical solution at a fixed time remains bounded as the step size goes to zero, so
the perturbations in form of, e.g., rounding error does not increase in time. Unfortu-
nately, there are no general methods to verify the numericalstability for the partial
differential equations in general form, so one restrict oneself to the case of linear
PDE’s. The standard method for linear PDE’s with periodic boundary conditions
was proposed by John von Neumann [6, 2] and is based on the representation of the
rounding error in form of the Fouirer series.

In order to illustrate the procedure, let us introduce the following notation:

u j+1 = T [u j ]. (1.16)

HereT is a nonlinear operator, depending on the numerical scheme in question.
The successive application ofT results in a sequence of values

u0, u1, u2, . . . ,

that approximate the exact solution of the problem. However, at each time step we
add a small errorε j , i.e., the sequence above reads

u0 + ε0, u1 + ε1, u2+ ε2, . . . ,

whereε j is a cumulative rounding error at timet j . Thus we obtain

u j+1 + ε j+1 = T (u j + ε j) . (1.17)

After linearization of the last equation (we suppose that Taylor expansion ofT is
possible) the linear equation for the perturbation takes the form:

ε j+1 =
∂T (u j)

∂u j ε j := Gε j . (1.18)



This equation is calledthe error propagation law, whereas the linearization matrix
G is said to bean amplification matrix[10]. Now, the stability of the numerical
scheme in question depends on the eigenvaluesgµ of the matrixG. In other words,
the scheme is stable if and only if

|gµ | ≤ 1 ∀µ

Now the question is how this information can be used in practice. The first point to
emphasize is that in general one deals with theu(xi,t j ) := u j

i , so one can write

ε j+1
i = ∑

i′
Gii ′ε

j
i′ , (1.19)

where

Gii ′ =
∂T (u j)i

∂u j
i′

.

Futhermore, the spatial variation ofε j
i (rounding error at the time stept j at the point

xi) can be expanded in a finite Fourier series in the intreval[0, L]:

ε j
i = ∑

k

eikxi ε̃ j(k), (1.20)

wherek is the wavenumber and̃ε j(k) are the Fourier coefficients. Since the rounding
error tends to grow or decay exponentially with time, it is reasonable to assume that
ε̃ j(k) varies exponentially with time, i.e.,

ε j
i = ∑

k

eω t j eikxi ,

whereω is a constant. The next point to emphasize is that the functions eikxi are
eigenfunctions of the matrixG, so the last expansion can be interpreted as the ex-
pansion in eigenfunctions ofG. In addition, the equation for the error is linear, so it
is enough to examine the grows of the error of a typical term ofthe sum. Thus, from
the practical point of view one take the errorε j

i just as

ε j
i = eωt j eikxi .

The substitution of this expression into Eq. (1.20) resultsin the following relation

ε j+1
i = g(k)ε j

i . (1.21)

That is, one can interperteikxi as an eigenvector corresponding to the eigenvalue
g(k). The valueg(k) is often calledan amplification factor. Finally, the stability
criterium is then given by

|g(k)| ≤ 1 ∀k . (1.22)

This criterium is calledvon Neumann stablity criterium.



Notice that presented stability analysis can be applied only in certain cases. Namely,
the linear PDE in question schould be with constant coefficients and satisfies peri-
odic boundary conditions. In addition, the corresponding difference scheme should
possesses no more than two time levels [19]. However, it is often used in more com-
plicated situations as a good estimation for the step sizes used in the approximation.





Chapter 2
Advection Equation

Let us consider a continuity equation for the one-dimensional drift of incompress-
ible fluid. In the case that a particle densityu(x,t) changes only due to convection
processes one can write

u(x, t +△t) = u(x−c△t, t).

If △t is sufficient small, the Taylor-expansion of both sides gives

u(x, t)+△t
∂u(x,t)

∂ t
≃ u(x,t)−c△t

∂u(x,t)
∂x

or, equivalently
∂u
∂ t

+c
∂u
∂x

= 0. (2.1)

Hereu = u(x, t), x∈ R, andc is a nonzero constant velocity. Equation (2.1) is called
to bean advection equationand describes the motion of a scalaru as it is advected by
a known velocity field. According to the classification givenin Sec. 1.1, Eq. (2.1) is
a hyperbolic PDE. The unique solution of (2.1) is determinedby an initial condition
u0 := u(x,0)

u(x,t) = u0(x−ct) , (2.2)

whereu0 = u0(x) is an arbitrary function defined onR.
One way to find this exact solution is the method of characteristics (see App. B). In
the case of Eq. (2.1) the coefficientsA = c, B = 1,C = 0 and Eqn. (B.2) read

dt
ds

= 1⇔ |t(0) = 0| ⇔ t = s,

dx
ds

= c⇔ |x(0) = x0| ⇔ x = x0 +ct.

That is, for the advection equation (2.1) characteristic curves are represented by
straight lines (see Fig. 2.1). Hence, Eq. (B.3) becomes
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Fig. 2.1 Chareacteristic
curvesx = x0 + cs, s = t
for advection equation (2.1)
are shown for different values
of c.
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x

t

du
ds

= 0 with u(0) = u0(x0) .

Alltogether the solution of (2.1) takes the form (2.2). The solution (2.2) is just an
initial function u0 shifted byct to the right (forc > 0) or to the left (c < 0), which
remains constant along the characteristic curves (du/ds= 0).

2.1 FTCS Method

Now we focus on different explicit methods to solve advection equation (2.1) nu-
merically on the periodic domain[0, L] with a given initial conditionu0 = u(x,0).

We start the discussion of Eq. (2.1) with a so-called FTCS (forward in time,
centered in space) method. As discussed in Sec. 1.2 we introduce the discretization
in time on the uniform grid

t j = t0 + j△t , j = 0 . . . T .

Furthermore, in thex-direction, we the uniform grid in the same manner

xi = a+ i△x, i = 0 . . . M , △x =
L
M

.

Adopting a forward temporal difference scheme (1.3), and a centered spatial differ-
ence scheme (1.7), Eq. (2.1) yields

u j+1
i −u j

i

△t
= −c

u j
i+1−u j

i−1

2△x
⇔

u j+1
i = u j

i −
c△t
2△x

(

u j
i+1−u j

i−1

)

. (2.3)

Here we use a notationu j
i := u(xi , t j). Shematic representation of the FTCS approx-

imation (2.3) is shown on Fig. 2.2.



von Neumann Stability Analysis

To investigate stability of the scheme (2.3) we follow the concept of von Neumann,
introduced in Sec. 1.3. The usual ansatz

ε j
i ∼ eikxi

leads to the following relation

ε j+1
i = eikxi − c△t

2△x

(

eik(xi+△x)−eik(xi−△x)
)

=

(

1− c△t
2△x

(

eik△x−e−ik△x
))

︸ ︷︷ ︸

g(k)

ε j
i ,

whereε j+1
i stands for the cumulative rounding error at timet j . The von Neumann’s

stability condition (1.22) for the amplification factorg(k) reads:

|g(k)| ≤ 1 ∀k.

In our case one obtains:

|g(k)|2 = 1+
c2△t2

△x2 sin2(k△x),

One can see that the magnitude of the amplification factorg(k) is greater than unity
for all k. This implies that the instability occurs for all givenc, △t and△x, i.e., the
FTCS scheme (2.3) isunconditionally unstable.

2.2 Upwind Methods

The next simple scheme we are intersted in belongs to the class of so-calledupwind
methods– numerical discretization schemes for solving hyperbolicPDEs. The idea
of this method is that the spatial differences are skewed in the “upwind” direction,
i.e., the direction from which the advecting flow originates. The origin of upwind
methods can be traced back to the work of R. Courant et al. [5].
The simplest upwind schemes possible are given by

Fig. 2.2 Schematic visu-
alization of the FTCS-
method (2.3). t j

u
xi−1

�
�

�
�

��7

u

6

xi

u
xi+1

S
S

S
S

SSo
t j+1

e



u j+1
i −u j

i

△t
= −c

u j
i −u j

i−1

△x
⇔

u j+1
i = u j

i −
c△t
△x

(

u j
i −u j

i−1

)

, (c > 0) . (2.4)

and

u j+1
i −u j

i

△t
= −c

u j
i+1−u j

i

△x
⇔

u j+1
i = u j

i −
c△t
△x

(

u j
i+1−u j

i

)

(c < 0) . (2.5)

Note that the upwind scheme (2.4) corresponds to the case of positive velocities
c, whereas Eq. (2.5) stands for the casec < 0. The next point to emphasize is that
both schemes (2.4)–(2.5) are only first-order in space and time. Shematic represen-
tations of both upwind methods is presented on Fig. 2.3

In the matrix form the upwind scheme (2.4) takes the form

u j+1 = Au j , (2.6)

whereu j is a vector on the time stepj andA is an×n matrix (h := △t/△x),

A =









1−ch 0 0 . . . ch
ch 1−ch 0 . . .0
0 ch 1−ch . . .0

. . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . ch 1−ch









The boxed elementA1n indicates the influence of the periodic boundary conditions.
Similary, one can also represent the scheme (2.5) in the form(2.6) with matrix
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Fig. 2.3 Schematic visualization of the first-order upwind methods.(a) Upwind scheme (2.4) for
c > 0. (b) Upwind scheme (2.5) forc < 0.



A =









1+ch −ch 0 . . .0
0 1+ch −ch . . .0

. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 1+ch −ch

−ch . . . 0 1+ch









Again, the boxed elementAn1 displays the influence of periodic boundary condi-
tions.

von Neumann Stability Analysis

In order to investigate the stability of the upwind scheme (2.4) (or (2.5) ) we start
with the usual ansatz

ε j
i ∼ eikxi ,

leading to the equation for the cumulative rounding error attime t j+1

ε j+1
i = g(k)ε j

i ,

where the amplification factorg(k) for, e.g., the upwind scheme (2.4) is given by

g(k) = 1− c△t
△x

(

1−e−ik△x
)

=

∣
∣
∣
∣
α =

c△t
△x

, ϕ = −k△x

∣
∣
∣
∣
= 1−α + αeiϕ .

The stability condition (1.22) is fulfilled for allk as long as

|g(k)| ≤ 1⇔ 1−α ≤ 0⇔ c△t
△x

≤ 1⇔ c≤ △x
△t

. (2.7)

That is, the method (2.4) isconditionally stable, i.e., is stable if and only if the
”physical“ velocity c is not bigger than the spreading velocity△x/△t of the nu-
merical method. This is equivalent to the condition that thetime step,△t, must be
smaller than the time taken for the wave to travel the distance of the spatial step,△x.
Schematic illustration of stability condition (2.7) is shown on Fig. . Condition (2.7)
is calleda Courant-Friedrichs-Lewy (CFL)stability criterion, whereasα is calleda
Courant number. The condition (2.7) is named after R. Courant, K. Friedrichs, and
H. Lewy, who described it in their paper in 1928 [16].

Numerical results

Figure 2.5 shows an example of the calculation in which the upwind scheme (2.4)
is used to advect a Gaussian pulse. Parameters of the calculation are choosen as



Fig. 2.4 Advection of a one-
dimensional Gaussian shaped
pulseu0 = exp(−(x−0.2)2)
with the scheme (2.4). Numer-
ical calculation performed on
the intervalx∈ [0, 10] using
c= 0.5,△t = 0.05,△x= 0.1.
Numerical solutions at dif-
ferent timest = 0, t = 50,
t = 100,t = 150,t = 200 are
shown.
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Fig. 2.5 Scematic illustration
of the stability condition (2.7)
for the upwind-method (2.4).

Space interval L=10
Initial condition u0(x) = exp(−(x−2)2)
Space discretization step △x = 0.1
Time discretization step △t = 0.05
Velocity c = 0.5
Amount of time steps T = 200

For parameter values given above the stability condition (2.7) is fulfilled, so the
scheme (2.4) is stable. On the other hand, one can see, that the wave-form shows
evidence of dispersion. We discuss this problem in details in the next section.

2.3 The Lax Method

Let us consider a minor modification of the FTCS-method (2.3), in which the term
u j

i has been replaced by an average over its two neighbours (see Fig. 2.6):

u j+1
i =

1
2

(

u j
i+1 +u j

i−1

)

− c△t
2△x

(

u j
i+1−u j

i−1

)

. (2.8)



In this case the matrixA of the linear system (2.6) is given by a sparse matrix with
zero main diagonal

A =















0 a 0 0 . . . 0 0 b
b 0 a 0 . . . 0 0 0
0 b 0 a . . . 0 0 0
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
0 0 0 0. . . b 0 a
a 0 0 0 . . . 0 b 0















,

where

a =
1
2
− c△t

2△x
,

b =
1
2

+
c△t
2△x

.

and the boxed elements represent the influence of periodic boundary conditions.

von Neumann stability analysis

In the case of the scheme (2.8) the amplification factorg(k) becomes

g(k) = cosk△x− i
c△t
△x

sink△x.

With α = c△t
△x andϕ(k) = k△x one obtains

|g(k)|2 = cos2 ϕ(k)+ α2sin2 ϕ(k) = 1− (1−α2)sin2 ϕ(k) .

The stability condition (1.22) is fulfilled for allk as long as

1−α2 ≥ 0 ⇔ c△t
△x

≤ 1,

Fig. 2.6 Schematic visualiza-
tion of the Lax method (2.8). t j
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which is again the Courant-Friedrichs-Lewy condition (2.7). In fact, all stableex-
plicit differencing schemes for solving the advection equation (2.1) are subject to
the CFL constraint, which determines the maximum allowabletime-step△t.

Numerical results

Consider a realization of the Lax method (2.8) on the concrete numerical example:

Space interval L=10
Initial condition u0(x) = exp(−10(x−2)2)
Space discretization step △x = 0.05
Time discretization step △t = 0.05
Velocity c = 0.5
Amount of time steps T = 200

As can be seen from Fig. 2.7 (a) like the upwind method (2.4), the Lax scheme
introduces a spuriousdispersioneffect into the advection problem (2.1). Although
the pulse is advected at the correct speed (i.e., it appears approximately stationary
in the co-moving framex−ct (see Fig. 2.7 (b))), it does not remain the same shape
as it should.

Fourier Analysis

One can try to understand the origin of the dispersion effectwith the help of the
dispersion relation. The ansatz of the Fourier mode of the form
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Fig. 2.7 Numerical implementation of the Lax method (2.8). Parameters: Advection velocity is
c= 0.5, length of the space interval isL = 10, space and time discretization steps are△x= 0.05 and
△t = 0.05, amount of time steps isT = 200, and initial condition isu0(x) = exp(−10(x−2)2). (a)
Time evolution ofu(x, t) for different time moments. Solutions att = 0, 100, 150, 200 are shown.
(b) Time evolution in the co-moving framex−ct at t = 0, 100, 200.
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Fig. 2.8 Illustration of the dispersion relation for the Lax method calculated for different values of
the Courant numberα . (a) Real part ofω. (b) Imaginary part ofω.

u j
i ∼ eikxi−iωt j

for Eq. (2.8) results in the following relation

e−iω△t = cosk△x− iα sink△x,

where againα = c△t/△x. Forα = 1 the right hand side of this relation is equal to
exp(−ik△x) and one otbaines

ω = k
△x
△t

= k ·c.

That is, in this case the Lax method (2.8) is exact (the phase velocityω/k is equalc).
However, in general case one should supposeω = ω1− iω2, i.e., the Fourier modes
are of the form

u(x, t) ∼ eikx−i(ω1−iω2)t = ei(kx−ω1t)e−ω2t

and the corresponding dispersion relation reads

ω△t = (ω1− iω2)△t = i ln
(
cosk△x− iα sink△x

)
. (2.9)

Hence, ifω2 ≥ 0 one has deal with damped waves, that decay exponentially with the
time contstant 1/ω2. Furthermore, from Eq. (2.9) can be seen, that forα < 1 Fouirer
modes with wavelength about some grid constants (λ = 2π/k≈ 4△x) are not only
damped (see Fig 2.8 (b)) but, on the other hand, propagate with the essential greater
phase velocityω1/k as long-wave components (see Fig. 2.8 (a)). Now the question
we are interested in is what is the reason for this unphysicalbehavior? To answer
this question let us rewrite the differencial scheme (2.8):



1
2

u j+1
i +

1
2

u j+1
i

︸ ︷︷ ︸

u j+1
i

−1
2

u j−1
i +

1
2

u j−1
i

︸ ︷︷ ︸

0

=
1
2

(
u j

i+1+u j
i−1

)
+u j

i −u j
i

︸ ︷︷ ︸

0

− c△t
2△x

(
u j

i+1−u j
i−1

)
⇔

1
2

(
u j+1

i −u j−1
i

)
=

1
2

(
u j

i+1−2u j
i +u j

i−1

)
− c△t

2△x

(
u j

i+1−u j
i−1

)
− 1

2

(
u j+1

i −2u j
i +u j−1

i

)
,

or, in the continuous limit,

∂u
∂ t

=
△x2

2△t
∂ 2u
∂x2 −c

∂u
∂x

− △t2

2
∂ 2u
∂ t2 (2.10)

Althougth the last term in (2.10) tends to zero as△t → 0, the behavior of the first
term depends on the behavior of△t and△x. That is, the Lax method is not a consis-
tent way to solve Eq. (2.1). This message becomes clear if onecalculates the partial
derivative

∂ 2u
∂ t2

(2.1)
= c2 ∂ 2u

∂x2 .

Substitution of the last expresssion into Eq. (2.10) relults in the equation, which in
addition to the advection term includes diffusion term as well,

∂u
∂ t

= −c
∂u
∂x

+D
∂ 2u
∂x2 ,

where

D =
△x2

2△t
−c2△t

2

is a positive diffusion constant. Now the unphysical behavior of the Fourier modes
becomes clear–we have integratedthe wrong equation!That is, other numerical
approximations should be used to solve Eq. (2.1) in a more correct way.

2.4 The Lax-Wendroff method

The Lax-Wendroff method, named after P. Lax and B. Wendroff [12], can be derived
in a variety of ways. Let us consider two of them. The first way is based on the idea
of so-calledmultistepmethods. First of all let us calculateu j+1

i using the information
on the half time step:

u
j+ 1

2
i = u j

i +
△t
2

(

−c
∂u
∂x

∣
∣
∣
∣
(i, j)

)

,

u j+1
i = u j

i +△t

(

−c
∂u
∂x

∣
∣
∣
∣
(i, j+ 1

2 )

)

.

Now we use the central difference to approximate the derivative ux|i, j+ 1
2
, i.e.,



Fig. 2.9 Schematical visual-
ization of the Lax-Wendroff
method (2.11). t j
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On the second step, both quantitiesu
j+ 1

2

i± 1
2

can be calculated using the Lax method (2.8).

As the result, following two-steps scheme is obtained (see Fig. 2.9):

u
j+ 1

2

i− 1
2

=
1
2

(

u j
i +u j

i−1

)

− c△t
2△x

(

u j
i −u j

i−1

)

,

u
j+ 1

2

i+ 1
2

=
1
2

(

u j
i +u j

i+1

)

− c△t
2△x

(

u j
i+1−u j

i

)

,

u j+1
i = u j

i −
c△t
△x

(

u
j+ 1

2

i+ 1
2
−u

j+ 1
2

i− 1
2

)

. (2.11)

The approximation scheme (2.11) can also be rewritten as

u j+1
i = b−1u j

i−1+b0u j
i +b1u

j
i+1 , (2.12)

where constantsb−1, b0 andb1 are given by

b−1 =
α
2

(α +1) ,

b0 = 1−α2 ,

b1 =
α
2

(α −1)

andα is the Courant number. The matrixA of the linear system (2.6) is a sparse
matrix of the form

A =
















b0 b1 0 0 . . . 0 0 b−1

b−1 b0 b1 0 . . . 0 0 0
0 b−1 b0 b1 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . b−1 b0 b1

b1 0 0 0 . . . 0 b−1 b0
















,



where boxed elements stays for influence of the periodic boundary conditions.
Notice that the three-point scheme (2.12) is second-order accurate in space and

time. The distinguishing feature of the Lax–Wendroff method is, that for the linear
advection equation (2.1) it is the onlyexplicit scheme of second-order accuracy in
space and time.
The second way to derive the Lax-Wendroff diffrential scheme is based on the idea
that we would like to get a scheme with second-order accuratein space and time.
First of all, we use Taylor series expansion in time, namely

u(xi , t j+1) = u(xi , t j)+△t∂tu(xi ,t j)+
△t2

2
∂ 2

t u(xi ,t j)+O(△t2) .

In the next place one replaces time derivatives in the last expression by space deriva-
tives according to the relation

∂ (n)
t u = (−c)n∂ (n)

x u.

Hence

u(xi , t j+1) = u(xi , t j)−c△t∂xu(xi,t j )+
c2△t2

2
∂ 2

x u(xi ,t j)+O(△t2) .

Finally, the space derivatives are approximated by centraldifferences (1.7), (1.12),
resulting in the Lax-Wendroff scheme (2.12).

von Neumann stability analysis

In the case of the method (2.12) the amplification factorg(k) becomes

g(k) =
(
1+ α2(cos(k△x)−1)

)
− iα sin(k△x)

and
|g(k)|2 = 1−α2(1−α2)

(
1−cos(k△x)

)2
.

Hence, the stability condition (1.22) reads

1−α2 ≥ 0 ⇔ α =
c△x
△t

≤ 1,

and one becomes (as expected) the CFL-condition (2.7) again.

Fourier analysis

In order to check availability of dispersion, let us calculate the dispersion relation
for the scheme (2.12). The ansatz of the form exp(i(kxi −ωt j)) results in



e−iω△t =
(
1+ α2(cos(k△x)−1)

)
− iα sin(k△x) ,

and withω = ω1− iω2 one obtaines

ω△t = ω1△t − iω2△t = i ln

(
(
1+ α2(cos(k△x)−1)

)
− iα sin(k△x)

)

.

One can easily see, that in the case of (2.12) dispersion (seeFig. 2.10 (a)) as well
as damping (diffusion) (see Fig. 2.10 (b)) of Fourier modes take place. However,
as can be seen on Fig. 2.10 and Fig. 2.11, dispersion and diffusion are weaker as
for the Lax method (2.8) and appear by much smaller wave lengths. Because of
these properties and taking into account the fact that the method (2.12) is of the
second order, it becomes a standard scheme to approximate Eq. (2.1). Moreover, the
scheme (2.12) can be generalized to the case of conservationequation in general
form.

Lax-Wendroff method for 1D conservation equations

A typical one-dimensional conservation equation takes theform

∂u
∂ t

+
∂F(u)

∂x
= 0, (2.13)

whereu = u(x, t) and the form of a functionF(u) depends on the problem we are
interested in. One can try to apply the Lax-Wendroff method (2.12) to Eq. (2.13).
With F j

i := F(u j
i ) one obtains the following differential scheme
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Fig. 2.10 Illustration of the dispersion relation for the Lax-Wendroff method calculated for differ-
ent values ofα . (a) Real part ofω (dispersion). (b) Imaginary part ofω (diffusion).
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Fig. 2.11 Numerical implementation of the Lax-Wendroff method (2.12). Parameters are: Ad-
vection velocity isc = 0.5, length of the space interval isL = 10, space and time discretization
steps are△x = 0.05 and△t = 0.05, amount of time steps isT = 800, and initial condition is
u0(x) = exp(−(x−2)2). (a) Time evolution ofu(x, t) for different time moments. (b) Time evolu-
tion in the co-moving framex−ct at t = 0, 400, 800.
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2
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i−1
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− △t
2△x
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=
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Chapter 3
Burgers Equation

One of the major challenges in the field of complex systems is athorough under-
standing of the phenomenon of turbulence. Direct numericalsimulations (DNS)
have substantially contributed to our understanding of thedisordered flow phe-
nomena inevitably arising at high Reynolds numbers. However, a successful theory
of turbulence is still lacking which would allow to predict features of technologi-
cally important phenomena like turbulent mixing, turbulent convection, and turbu-
lent combustion on the basis of the fundamental fluid dynamical equations. This is
due to the fact that already the evolution equation for the simplest fluids, which are
the so-called Newtonian incompressible fluids, have to takeinto account nonlinear
as well as nonlocal properties:

∂
∂ t

u(x, t)+u(x,t) ·∇u(x,t) = −∇p(x,t)+ ν∆u(x,t) ,

∇ ·u(x,t) = 0. (3.1)

Nonlinearity stems from the convective term and the pressure term, whereas non-
locality enters due to the pressure term. Due to incompressibility, the pressure is
defined by a Poisson equation

∆ p(x,t) = −∇ ·u(x,t) ·∇u(x,t) . (3.2)

In 1939 the dutch scientist J.M. Burgers [1] simplified the Navier-Stokes equa-
tion (3.1) by just dropping the pressure term. In contrast toEq. (3.1), this equation
can be investigated in one spatial dimension (Physicists like to denote this as 1+1
dimensional problem in order to stress that there is one spatial and one temporal
coordinate):

∂
∂ t

u(x, t)+u(x,t)
∂
∂x

u(x,t) = ν
∂ 2

∂x2 u(x,t)+F(x,t) (3.3)

Note that usually the Burgers equation is considered without external forceF(x,t).
However, we shall include this external force field.

27



The Burgers equation 3.3 is nonlinear and one expects to find phenomena sim-
ilar to turbulence. However, as it has been shown by Hopf [9] and Cole [3], the
homogeneous Burgers equation lacks the most important property attributed to tur-
bulence: The solutions do not exhibit chaotic features likesensitivity with respect
to initial conditions. This can explicitly shown using theHopf-Cole transforma-
tion which transforms Burgers equation into a linear parabolic equation. From the
numerical point of view, however, this is of importance since it allows one to com-
pare numerically obtained solutions of the nonlinear equation with the exact one.
This comparison is important to investigate the quality of the applied numerical
schemes. Furthermore, the equation has still interesting applications in physics and
astrophysics. We will briefly mention some of them.

Growth of interfaces: Deposition models

The Burgers equation (3.3) is equivalent to the so-calledKardar-Parisi-Zhang
(KPZ-) equationwhich is a model for a solid surface growing by vapor deposi-
tion, or, the opposite case, erosion of material from a solidsurface. The location of
the surface is described in terms of a height functionh(x,t). This height evolves in
time according to the KPZ-equation

∂
∂ t

h(x, t)− 1
2

(∇h(x,t))2 = ν
∂ 2

∂x2 h(x,t)+F(x,t) . (3.4)

This equation is obtained from the simple advection equation for a surface atz=
h(x, t) moving with velocityU(x,t)

∂
∂ t

h(x,t)+U ·∇h(x,t)= 0. (3.5)

The velocity is assumed to be proportional to the gradient ofh(x,t), i.e. the surface
evolves in the direction of its gradient. Surface diffusionis described by the diffusion
term.

Burgers equation (3.3) is obtained from the KPZ-equation just by forming the
gradient ofh(x, t):

u(x,t) = −∇h(x,t) . (3.6)

3.1 Hopf-Cole Transformation

The Hopf-Cole transformation is a transformation, which maps the solution of the
Burgers equation (3.3) to the heat equation

∂
∂ t

ψ(x,t) = ν∆ψ(x,t) . (3.7)



We perform the ansatz
ψ(x,t) = eh(x,t)/2ν (3.8)

and determine

∆ψ =
1

2ν

[

∆h+
1

2ν
(∇h)2

]

eh/2ν (3.9)

leading to
∂
∂ t

h− 1
2
(∇h)2 = ν∆h. (3.10)

However, this is exactly the Kardar-Parisi-Zhang equation(3.4). The complete trans-
formation is then obtained by combining

u(x,t) = − 1
2ν

∇ lnψ(x,t) . (3.11)

We explicitly see that the Hopf-Cole transformation turns the nonlinear Burgers
equation into the linear heat conduction equation. Since the heat conduction equa-
tion is explicitly solvable in terms of the so-called heat kernel we obtain a general
solution of the Burgers equation. Before we construct this general solution, we want
to emphasize that the Hopf-Cole transformation applied to the multi-dimensional
Burgers equation only leads to the general solution provided the initial condition
u(x,0) is a gradient field. For general initial conditions, especially for initial fields
with ∇×u(x, t), the solution can not be constructed using the Hopf-Cole transfor-
mation and, consequently, is not known in analytical terms.In one dimension spatial
dimension it is not necessary to distinguish between these two cases.

3.2 General Solution of the 1D Burgers Equation

We are now in the position to formulate the general solution of the Burgers equa-
tion (3.3) in one spatial dimension with initial condition

u(x,0) , ψ(x,0) = e−
1

2ν
∫ x dx′u(x′,0) . (3.12)

The solution of the 1D heat equation can be expressed by the heat-kernel

ψ(x, t) =

∫

dx′G(x−x′,t)ψ(x′,0) (3.13)

with the kernel

G(x−x′,t) =
1√
4πt

e−
(x−x′)2

4νt (3.14)

In terms of the initial condition (3.12) the solution explicitly reads

ψ(x, t) =
1√
4πt

∫

dx′e−
(x−x′)2

4νt − 1
2ν

∫ x′ dx′′u(x′′,0) . (3.15)



Then-dimensional solution of the Burgers equation (3.3) for initial fields, which are
gradient fields, are obtained analogously:

ψ(x, t) =
1

(4πt)d/2

∫

dx′e−
(x−x′)2

4νt − 1
2ν

∫ x′ dx′′·u(x′′,0) . (3.16)

Agian, we see that the solution exist provided the integral is independent of the
integration contour:

∫ x′

dx′′ ·u(x′′,0) = h(x′,t) . (3.17)

We can investigate the limiting case of vanishing viscosity, ν → 0. In the expression
for ψ(x, t), eq. (3.16), the integral is dominated by the minimum of the exponential
function,

min
x′

[

− (x−x′)2

4νt
− 1

2ν

∫ x′

dx′′u(x′′,0)

]

. (3.18)

This leads to the so-called characteristics (see App. (B))

x = x′− tu(x′,0) , (3.19)

which we have already met in the discussion of the advection equation (2.1) (see
Chapter 2). A special solution for the viscid Burgers equation is

u(x, t) = 1− tanh

(
x−xc− t

2ν

)

. (3.20)

3.3 Forced Burgers Equation

The Hopf-Cole transformation can be applied to the forced Burgers equation. It is
straightforward to show that this leads to the parabolic differential equation

∂
∂ t

ψ(x, t) = ν∆ψ(x,t)−U(x,t)ψ(x,t) , (3.21)

where the potential is related to the force

F(x,t) = − 1
2ν

∇U(x,t) . (3.22)

The relationship with the Schrödinger equation for a particle moving in the potential
U(x, t) is obvious. Recently, the Burgers equation with a fluctuating force has been
investigated [14]. Interestingly, Burgers equation with alinear force, i.e. a quadratic
potential

U(x,t) = a(t)x2 (3.23)

for an arbitrary time dependent coefficienta(t) could be solved analytically [8].



3.4 Numerical Treatment

Let us consider a one-dimensional Burgers equation (3.3) without forcing.

∂u
∂ t

+u
∂u
∂x

= ν
∂ 2u
∂x2 .

Whenν = 0, Burgers equation becomesthe inviscid Burgers equation:

∂u
∂ t

+u
∂u
∂x

= 0, (3.24)

which is a prototype for equations for which the solution candevelop disconti-
nuities (shock waves). As was mentioned above, as the solution of the advection
equation (2.1), the solution of Eq. (3.24) can be constructed by the method of char-
acteristics (see App. B). Suppose we have an initial value problem, i.e., a smooth
functionu(x,0) = u0(x), x∈ R is given. In this case the coefficientsA, B andC are

A = u, B = 1, C = 0.

Equations (B.2-B.3) read

dt
ds

= 1⇔ |t(0) = 0| ⇔ t = s,

du
ds

= 0⇔ |u(0) = u0(x0)| ⇔ u(s,x0) = u0(x0),

dx
ds

= u⇔ |x(0) = x0| ⇔ x = u0(x0)t +x0.

Hence the general solution of (3.24) takes the form

u(x,t) = u0(x−u0(x0)t,t). (3.25)

Eq. (3.25) is an implicit relation that determines the solution of the inviscid Burgers’
equation. Note that the characteristics are straight lines, but not all the lineas have
the same slope. It will be possible for the characteristics to intersect. If we write the
characteristics as

t =
x

u0(x0)
− x0

u0(x0)
,

one can see, that the slope 1/u0(x0) of the characteristics depends on the pointx0

and on the initial functionu0. For inviscid Burgers’ equation (3.24), the timeTc

at which the characteristics cross and a shock forms, the ”breaking” time, can be
determined exactly as

Tc =
−1

min{ux(x,0)}
This relation can be used if Eq. (3.24) has smooth initial data (so that it is differen-
tiable). From the formula forTc, we can see that the solution will break and a shock



will form if ux(x,0) is negative at some point.

From numerical point of view it is convenient to rewrite the Burgers’ equation as

∂u
∂ t

+
1
2

∂
∂x

(u2) = 0 (3.26)

Equation (3.26) describes a one-dimensional conservationlaw (2.13) withF = 1
2u2

and can be solve, e.g., with the upwind method (2.4) or with the Lax-Wendroff
method (2.14).

Space interval L=10
Initial condition u0(x) = exp(−(x−3)2)
Space discretization step △x = 0.05
Time discretization step △t = 0.05
Amount of time steps T = 36

Fig. 3.1 Characteristics
curves for the inviscid Burg-
ers’ equation (3.24)
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Fig. 3.2 Numerical solu-
tion of the inviscid Burgers’
equation (3.24)
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3.4.0.1 The Riemann Problem

A Riemann problem, named afterBernhard Riemann, consists of a conservation law,
e.g., Eq. (3.24) together with a piecewise constant data having a single discontinuity,
i.e.,

u(x,0) = u0(x) =

{

ul , x < a;

ur , x≥ a.
(3.27)

The form of the solution depends on the relation betweenul andur .
• ul > ur : The unique weak solution (see Fig. 3.2 (a)) is

u(x,0) = u0(x) =

{

ul , x < a+ct;

ur , x≥ a+ct
(3.28)

with theshock velocity

c =
1
2
(ul +ur).

Note, that in this case the characteristics in each of the region whereu is constatnt
go into the shockas time advances (see Fig. 3.3 (b) ).

Space interval L=10
Initial condition ul = 0.8, ur = 0.2
Space discretization step △x = 0.05
Time discretization step △t = 0.05
Amount of time steps T = 100

The initial condition is:

u(x,0) = u0(x) =

{

0.8, x < 5;

0.2, x≥ 5.
(3.29)

• ul < ur : In this case there are infinitely many weak solutions. One ofthem
is again (3.28) with the same velocity (see Fig. 3.4 (a)). Note that in this case the
characteristicsgo out of the shock(Fig. 3.4 (b)) and the solution is not stable to
perturbations.
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Fig. 3.3 a) Numerical solution of the inviscid Burgers’ equation (3.24) for the Riemann problem
for ul < ur . b) Characterics of Eq. (3.24) with initial conditions (3.29). The red line indicates the
curvex = a+ct.
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Fig. 3.4 a) Numerical solution of the inviscid Burgers’ equation (??) for the Riemann problem for
ul < ur . b) Characterics of the inviscid Burgers’ equation with initial conditions (??). The red line
indicates the curvex = a+ct.



Chapter 4
The Wave Equation

Another classical example of a hyperbolic PDE is a wave equation. The wave equa-
tion is a second-order linear hyperbolic PDE that describesthe propagation of a
variety of waves, such as sound or water waves. It arises in different fields such as
acoustics, electromagnetics, or fluid dynamics. In its simplest form, the wave equa-
tion refers to a scalar functionu = u(r ,t), r ∈ R

n that satisfies:

∂ 2u
∂ t2 = c2 ∇2 u. (4.1)

Here∇2 denotes the Laplacian inRn andc is a constant speed of the wave propaga-
tion. An even more compact form of Eq. (4.1) is given by

�u = 0,

where� = ∇2− 1
c2

∂ 2

∂ t2
is the d’Alembertian.

4.1 The Wave Equation in 1D

The wave equation for the scalaru in the one dimensional case reads

∂ 2u
∂ t2 = c2 ∂ 2u

∂x2 . (4.2)

The one-dimensional wave equation (4.2) can be solved exactly by d’Alembert’s
method, using a Fourier transform method, or via separationof variables. To illus-
trate the idea of the d’Alembert method, let us introduce newcoordinates(ξ , η) by
use of the transformation

ξ = x−ct , η = x+ct . (4.3)

35



In the new coordinate system one can write

uxx = uξ ξ +2uξ η +uηη ,
1
c2 utt = uξ ξ −2uξ η +uηη ,

and Eq. (4.2) becomes
∂ 2u

∂ξ ∂η
= 0. (4.4)

That is, the functionu remains constant along the curves (4.3), i.e., Eq. (4.3) de-
scribes characteristic curves of the wave equation (4.2) (see App. B). Moreover, one
can see that the derivative∂u/∂ξ does not depends onη , i.e.,

∂
∂η

(
∂u
∂ξ

)

= 0 ⇔ ∂u
∂ξ

= f (ξ ) .

After integration with respect toξ one obtains

u(ξ ,η) = F(ξ )+G(η) ,

whereF is the primitive function off andG is the ”constant“ of integration, in
general the function ofη . Turning back to the coordinates(x, t) one obtains the
general solution of Eq. (4.2)

u(x, t) = F(x−ct)+G(x+ct) . (4.5)

4.1.1 Solution of the IVP

Now let us consider an initial value problem for Eq. (4.2):

utt = c2uxx, t ≥ 0,

u(x,0) = f (x) , (4.6)

ut(x,0) = g(x) .

To write down the general solution of the IVP for Eq. (4.2), one needs to exspress
the arbitrary functionF andG in terms of initial dataf andg. Using the relation

∂
∂ t

F(x−ct) = −cF′(x−ct) , where F ′(x−ct) :=
∂

∂ξ
F(ξ )

one becomes:

u(x,0) = F(x)+G(x) = f (x) ;

ut(x,0) = c(−F ′(x)+G′(x)) = g(x) .



After differentiation of the first equation with respect tox one can solve the system
in terms ofF ′(x) andG′(x), i.e.,

F ′(x) =
1
2

(

f ′(x)− 1
c

g(x)

)

, G′(x) =
1
2

(

f ′(x)+
1
c

g(x)

)

.

Hence

F(x) =
1
2

f (x)− 1
2c

∫ x

0
g(y)dy+C, G(x) =

1
2

f (x)+
1
2c

∫ x

0
g(y)dy−C,

where the integration constantC is chosen in such a way that the initial condition
F(x)+G(x) = f (x) is fullfield. Alltogether one obtains:

u(x, t) =
1
2

(

f (x−ct)+ f (x+ct)

)

+
1
2c

∫ x+ct

x−ct
g(y)dy . (4.7)

4.1.2 Numerical Treatment

4.1.2.1 A Simple Explicit Method

The first idea is just to use central differences for both timeand space derivatives,
i.e.,

u j+1
i −2u j

i +u j−1
i

△t2 = c2 u j
i+1−2u j

i +u j
i−1

△x2 , (4.8)

or, with α = c△t/△x

u j+1
i = −u j−1

i +2(1−α2)u j
i + α2(u j

i+1 +u j
i−1) . (4.9)

Schematical representation of the scheme (4.9) is shown on Fig. 4.1.
Note that one should also implement initial conditions (4.6). In order to imple-

ment the second initial condition one needs the virtual point u−1
i ,

ut(xi ,0) = g(xi) =
u1

i −u−1
i

2△t
+O(△t2) .

Fig. 4.1 Schematical visu-
alization of the numerical
scheme (4.9) for (4.2). t j−1
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With gi := g(xi) one can rewrite the last expression as

u−1
i = u1

i −2△tgi +O(△t2) ,

and the second time row can be calculated as

u1
i = △tgi +(1−α2) fi +

1
2

α2( fi−1 + fi+1) , (4.10)

whereu(xi,0) = u0
i = f (xi) = fi .

von Neumann Stability Analysis

In order to investigate the stability of the explicit scheme(4.9) we start with the
usual ansatz (1.21)

ε j
i = g jeikxi ,

which leads to the following expression for the amplification factorg(k)

g2 = 2(1−α2)g−1+2α2gcos(k△x) .

After several transformations the last expression becomesjust a quadratic equation
for g, namely

g2−2βg+1= 0, (4.11)

where

β = 1−2α2 sin2(k△x
2

)
.

Solutions of the equation forg(k) read

g1,2 = β ±
√

β 2−1.

Notice that if|β | > 1 then at least one of absolute value ofg1,2 is bigger that one.
Therefor one should desire for|β | < 1, i.e.,

g1,2 = β ± i
√

β 2−1

and
|g|2 = β 2 +1−β 2 = 1.

That is, the scheme (4.9) is conditional stable. The stability condition reads

−1≤ 1−2α2sin2
(

k△x
2

)

≤ 1,

what is equivalent to the standart CFL condition (2.7)



Fig. 4.2 Schematical visual-
ization of the implicit numeri-
cal scheme (4.12) for (4.2). t j−1
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≤ 1.

4.1.2.2 An Implicit Method

One can try to overcome the problems with conditional stability by introducingan
implicit scheme. The simplest way to do it is just to replace all terms on the right
hand side of (4.8) by an average from the values to the time steps j + 1 and j −1,
i.e,

u j+1
i −2u j

i +u j−1
i

△t2 =
c2

2△x2

(

u j−1
i+1 −2u j−1

i +u j−1
i−1 +u j+1

i+1 −2u j+1
i +u j+1

i−1

)

. (4.12)

Schematical diagramm of the numerical scheme (4.12) is shown on Fig. (4.2).
Let us check the stability of the implicit scheme (4.12). To this aim we use the

standart ansatz
ε j

i = g jeikxi

leading to the equation forg(k)

βg2−2g+ β = 0

with

β = 1+2α2sin2
(

k△x
2

)

.

One can see thatβ ≥ 1 for all k. Hence the solutionsg1,2 take the form

g1,2 =
1± i

√

1−β 2

β

and

|g|2 =
1− (1−β 2)

β 2 = 1.

That is, the implicit scheme (4.12) isabsolute stable.
Now, the question is, whether the implicit scheme (4.12) is better than the explicit
scheme (4.9) form numerical point of view. To answer this question, let us analyse
dispersion relation for the wave equation (4.2) as well as for both schemes (4.9) and



Fig. 4.3 Dispersion relation
for the one-dimensional wave
equation (4.2), calculated us-
ing the explicit (blue curves)
and implicit (red curves)
methods (4.9) and (4.12).
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(4.12). The exact dispersion relation is

ω = ±ck,

i.e, all Fourier modes propagate without dispersion with the same phase velocity
ω/k=±c. Using the ansatzu j

i ∼ eikxi−iωt j for the explicit method (4.9) one obtains:

cos(ω△t) = 1−α2(1−cos(k△x)) , (4.13)

while for the implicit method (4.12)

cos(ω△t) =
1

1+ α2(1−cos(k△x))
. (4.14)

One can see that forα → 0 both methods provide the same result, otherwise the
explicit scheme (4.9) always exceeds the implicit one (see Fig. (4.3)). Forα = 1 the
scheme (4.9) becomes exact, while (4.12) deviates more and more from the exact
value ofω for increasingα. Hence, for Eq. (4.2) there are no motivation to use
implicit scheme instead of the explicit one.

4.1.3 Examples

Example 1.

Use the explicit method (4.9) to solve the one-dimansional wave equation (4.2):

utt = 4uxx for x∈ [0, L] and t ∈ [0,T] (4.15)

with boundary conditions

u(0, t) = 0 u(L, t) = 0.



Fig. 4.4 Space-time evolution
of Eq. (4.15) with the initial
distributionu(x,0) = sin(π x),
ut(x,0) = 0. 0
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Assume that the initial position and velocity are

u(x,0) = f (x) = sin(πx) , and ut(x,0) = g(x) = 0.

Other parameters are:

Space interval L=10
Space discretization step △x = 0.1
Time discretization step △t = 0.05
Amount of time steps T = 20

First one can find the d’Alambert solution. In the case of zeroinitial velocity
Eq. (4.7) becomes

u(x, t) =
f (x−2t)+ f (x+2t)

2
=

sinπ(x−2t)+sinπ(x+2t)
2

= sin(πx) cos(2πt) ,

i.e., the solution is just a sum of a travelling waves with initial form, given by f (x)
2 .

Numerical solution of (4.15) is shown on Fig. (4.4).

Example 2.

Solve Eq. (4.15) with the same boundary conditions. Assume now, that initial dis-
tributions of position and velocity are

u(x,0) = f (x) = 0 and ut(x,0) = g(x) =







0, x∈ [0, x1];

g0, x∈ [x1, x2];

0, x∈ [x2, L] .

Other parameters are:



Fig. 4.5 Space-time evolu-
tion of Eq. (4.15) with the
initial distributionu(x,0) = 0,
ut(x,0) = g(x).

Initial nonzero velocity g0=0.5
Initial space intervals x1 = L/4, x2 = 3L/4
Space interval L=10
Space discretization step △x = 0.1
Time discretization step △t = 0.05
Amount of time steps T = 400

Numerical solution of the problem is shown on Fig. (4.5).

Example 3. Vibrating String

Use the explicit method (4.9) to solve the wave equation for avibrating string:

utt = c2uxx for x∈ [0, L] and t ∈ [0,T] , (4.16)

wherec = 1 with the boundary conditions

u(0,t) = 0 u(L,t) = 0.

Assume that the initial position and velocity are

u(x,0) = f (x) = sin(nπx/L) , and ut(x,0) = g(x) = 0, n = 1,2,3, . . . .

Other parameters are:

Space interval L=1
Space discretization step △x = 0.01
Time discretization step △t = 0.0025
Amount of time steps T = 2000

Usually a vibrating string produces a sound whose frequencyis constant. There-
fore, since frequency characterizes the pitch, the sound produced is a constant note.
Vibrating strings are the basis of any string instrument like guitar or cello. If the
speed of propagationc is known, one can calculate the frequency of the sound pro-



duced by the string. The speed of propagation of a wavec is equal to the wavelength
multiplied by the frequencyf :

c = λ f

If the length of the string isL, the fundamental harmonic is the one produced by the
vibration whose nodes are the two ends of the string, soL is half of the wavelength
of the fundamental harmonic, so

f =
c

2L

Solutions of the equation in question are given in form of standing waves. The stand-
ing wave is a wave that remains in a constant position. This phenomenon can occur
because the medium is moving in the opposite direction to thewave, or it can arise
in a stationary medium as a result of interference between two waves traveling in
opposite directions (see Fig. (4.6))

n = 1 n = 2 n = 3
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Fig. 4.6 Standing waves in a string. The fundamental mode and the firstfive overtones are shown.
The red dots represent the wave nodes.



4.2 The Wave Equation in 2D

4.2.1 Examples

4.2.1.1 Example 1.

Use the standart five-point explicit method (4.9) to solve a two-dimansional wave
equation

utt = c2(uxx+uyy), u = u(x,y,t)

on the rectangular domain[0,L]× [0,L] with Dirichlet boundary conditions. Other
parameters are:

Space interval L=1
Space discretization step △x = △y = 0.01
Time discretization step △t = 0.0025
Amount of time steps T = 2000
Initial condition u(x,y,0) = 4x2y(1−x)(1−y)

Numerical solution of the problem for two different time momentst = 0 andt = 500
can be seen on Fig. (4.7)

t = 0 t = 500

Fig. 4.7 Numerical solution of the two-dimensional wave equation, shown fort = 0 andt = 500.



Chapter 5
Sine-Gordon Equation

The sine-Gordon equation is a nonlinear hyperbolic partialdifferential equation in-
volving the d’Alembert operator and the sine of the unknown function. The equa-
tion, as well as several solution techniques, were known in the nineteenth century
in the course of study of various problems of differential geometry. The equation
grew greatly in importance in the 1970s, when it was realizedthat it led tosolitons
(so-called ”kink“ and ”antikink“). The sine-Gordon equation appears in a number of
physical applications [11, 7, 21], including applicationsin relativistic field theory,
Josephson junctions [17] or mechanical trasmission lines [18, 17].
The equation reads

utt −uxx+sinu = 0, (5.1)

whereu = u(x, t). In the case of mechanical trasmission line,u(x, t) describes an
angle of rotation of the pendulums. Note that in the low-amplitude case (sinu≈ u)
Eq. (5.1) reduces to the Klein-Gordon equation

utt −uxx+u = 0,

admiting solutions in the form

u(x, t) = u0 cos(kx−ω t) , ω =
√

1+k2 .

Here we are interested in large amplitude solutions of Eq. (5.1).

5.1 Kink and antikink solitons

Let us look for travelling wave solutions of the sine-Gordonequation (5.1) of the
form

u(ξ ) := u(x−ct) ,
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Fig. 5.1 Representation of
the kink (blue) and antikink
(red) solutions (5.4) -3 -2 -1 0 1 2 3

Ξ

1

2

3

4

5

6
u

wherec is an arbitrary velocity of propagation andu → 0, uξ → 0, whenξ →
±∞ [17, 21]. In the co-moving frame Eq. (5.1) reads

(1−c2)uξ ξ = sinu.

Multiplying both sides of the last equation byuξ and integrating yields

1
2

u2
ξ (1−c2) = −cosu+c1 , (5.2)

wherec1 is an arbitrary constant of integration. Notice that we lookfor solutions for
which u → 0 anduξ → 0 whenξ → ±∞, soc1 = 1. Now we can rewrite the last
equation as

d u
sin u

2

= ± 2√
1−c2

dξ . (5.3)

Integrating Eq. (5.3) yields

± 2√
1−c2

(ξ − ξ0) = 2 ln

(

tan
u
4

)

,

or

u(ξ ) = 4 arctan

(

exp

(

± ξ − ξ0√
1−c2

))

.

That is, the solution of Eq. (5.1) becomes

u(x, t) = 4 arctan

(

exp

(

± x−x0−ct√
1−c2

))

. (5.4)

Equation (5.4) represents a localized solitary wave, travelling at any velocity|c|< 1.
The± signs correspond to localized solutions which are calledkink andantikink,
respectively. For the mechanical transmission line, whenc increases from−∞ to+∞
the pendlums rotate from 0 to 2π for the kink and from 0 to−2π for the antikink.
(see Fig. 5.1)

One can show [11, 17], that Eq. (5.1) admits more solutions ofthe form

u(x, t) = 4 arctan

(
F(x)
G(t)

)

.



Fig. 5.2 The kink-kink col-
lision, calculated at three
different times: Att = −7
(red curve) both kinks propa-
gate with opposite velocities
c=±0.5; At t = 0 they collide
at the origin (green curve); At
t = 10 (blue curve) they move
away from the origin with
velocitiesc = ∓0.5.
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whereF andG are arbitrary functions. Namely, one distinguishes the kink-kink and
the kink-antikink collisions as well as the breather solution. Thekink-kink collision
solution reads

u(x, t) = 4 arctan

(c sinh
(

x√
1−c2

)

cosh
(

ct√
1−c2

)

)

(5.5)

and describes the collision between two kinks with respective velocitiesc and−c
and approaching the origin fromt →−∞ and moving away from it with velocities
±c for t → ∞ (see Fig. 5.2). In a similar way, one can construct solution,corre-
sponding to thekink-antikink collision. The solution has the form:

u(x, t) = 4 arctan

( sinh
(

ct√
1−c2

)

c ·cosh
(

x√
1−c2

)

)

(5.6)

The breathersoliton solution, which is also called abreather modeor breather
soliton[17], is given by

uB(x, t) = 4 arctan

( √
1−ω2 sin(ω t)

ω cosh(
√

1−ω2x)

)

(5.7)

which is periodic for frequenciesω < 1 and decays exponentially when moving
away fromx = 0. Now we are in the good position to look for numerical solutions

Fig. 5.3 The breather so-
lution, oscillating with the
frequencyω = 0.2 , calcu-
lated for three different times
t = 0 (red curve),t = 5 (green
curve) andt = 10 (blue curve).
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u

of Eq. (5.1).



5.2 Numerical treatment

A numerical scheme

Consider an IVP for the sine-Gordon equation (5.1):

utt −uxx+sin(u) = 0

on the intervalx∈ [a, b] with initial conditions

u(x,0) = f (x), ut(x,0) = g(x) , (5.8)

and with, e.g., no-flux boundary conditions

∂u
∂x

∣
∣
∣
∣
x=a,b

= 0.

Let us try to apply a simple explicit scheme (4.9) to Eq. (5.1). The discretization
scheme reads

u j+1
i = −u j−1

i +2(1−α2)u j
i + α2(u j

i+1 +u j
i−1)−△t2 sin(u j

i ) (5.9)

with α = △t/△x, i = 0, . . . ,M andt = 0, . . . ,T. To the implementation of the sec-
ond initial condition one needs again the virtual pointu−1

i ,

ut(xi ,0) = g(xi) =
u1

i −u−1
i

2△t
+O(△t2) .

Hence, one can rewrite the last expression as

u−1
i = u1

i −2△tg(xi)+O(△t2) ,

and the second time rowu1
i can be calculated as

u1
i =△t g(xi)+(1−α2) f (xi)+

1
2

α2( f (xi−1)+ f (xi+1))−
△t2

2
sin( f (xi)) . (5.10)

In addition, no-flux boundary conditions lead to the following expressions for two
virtual space pointsu j

−1 andu j
M+1:

∂u
∂x

∣
∣
∣
∣
x=a

= 0⇔
u j

1−u j
−1

2△x
= 0⇔ u j

−1 = u j
1 ,

∂u
∂x

∣
∣
∣
∣
x=b

= 0⇔
u j

M+1−u j
M−1

2△x
= 0⇔ u j

M+1 = u j
M .



One can try to rewrite the differential scheme to more general matrix form. In matrix
notation the second time-row is given by

u1 = △tγ1 +Au0− △t2

2
β1, (5.11)

where

γ1 =
(
g(a),g(x1),g(x2), . . . ,g(xM−1),g(b)

)T
and

β1 =
(
sin(u0

0),sin(u0
1), . . . ,sin(u0

M−1),sin(u0
M)

)T

areM + 1-dimensional vectors andA is a tridiagonal squareM + 1×M + 1 matrix
of the form

A =










1−α2 α2 0 . . .0
α2/2 1−α2 α2/2 . . .0

0 α2/2 1−α2 . . .0
. . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . α2 1−α2










The boxed elements indicate the influence of boundary conditions. Other time rows
can also be written in the matrix form as

u j+1 = −u j−1 +Bu j −△t2β , j = 1, . . . ,T −1 (5.12)

Here
β =

(
sin(u j

0),sin(u j
1), . . . ,sin(u j

M−1),sin(u j
M)

)T

is aM +1-dimensional vector andB is a square matrix, defined by an equation

B = 2A.

Now we can apply the explicit scheme (5.9) described above toEq. (5.1). Let us
solve it on the interval[−L, L] with no-flux boundary conditions using the following
parameters set:

Space interval L=20
Space discretization step △x = 0.1
Time discretization step △t = 0.05
Amount of time steps T = 1800
Velocity of the kink c = 0.2

We start with the numerical representation of kink and antikink solutions. The initial
condition for the kink is



f (x) = 4 arctan

(

exp

(
x√

1−c2

))

,

g(x) = −2
c√

1−c2
sech

(
x√

1−c2

)

.

Figure 5.4 (a) shows the space-time plot of the numerical kink solution. For the
antikink the initial condition reads

f (x) = 4arctan

(

exp

(

− x√
1−c2

))

,

g(x) = −2
c√

1−c2
sech

(
x√

1−c2

)

.

Numerical solutions is shown on Fig. 5.4 (b).

(a) (b)

Fig. 5.4 Numerical solution of Eq. (5.1), calculated with the scheme(5.9) for the case of (a) the
kink and (b) antikink solitons, moving with the velocityc= 0.2. Space-time information is shown.

Now we are in position to find numerical solutions, corresponding to kink-kink
and kink-antikink collisions. For the kink-kink collisionwe choose

f (x) = 4 arctan

(

exp

(
x+L/2√

1−c2

))

+4 arctan

(

exp

(
x−L/2√

1−c2

))

,

g(x) = −2
c√

1−c2
sech

(
x+L/2√

1−c2

)

+2
c√

1−c2
sech

(
x−L/2√

1−c2

)

,

whereas for the kink-antikink collision the initial conditions are

f (x) = 4 arctan

(

exp

(
x+L/2√

1−c2

))

+4 arctan

(

exp

(

− x−L/2√
1−c2

))

,

g(x) = −2
c√

1−c2
sech

(
x+L/2√

1−c2

)

−2
c√

1−c2
sech

(
x−L/2√

1−c2

)

.



Numerical solutions, corresponding to both cases is presented on Fig. 5.5 (a)-(b),
respectively. Finally, for the case of breather we choose

(a) (b)

Fig. 5.5 Space-time representation of the numerical solution of Eq.(5.1) for (a) kink-kink collision
and (b) kink-antikink collision.

f (x) = 0,

g(x) = 4
√

1−c2sech

(

x
√

1−c2

)

.

Corresponding numerical solution is presented on Fig. 5.6.

Fig. 5.6 Space-time plot
of the numerical breather
solution, oscillating with the
frequencyω = 0.2.





Appendix A
Tridiagonal matrix algorithm

The tridiagonal matrix algorithm (TDMA), also known alsThomas algorithm, is a
simplified form of Gaussian elimination that can be used to solve tridiagonal system
of equations

aixi−1 +bixi +cixi+1 = yi , i = 1, . . .n, (A.1)

or, in matrix form (a1 = 0, cn = 0)








b1 c1 0 . . . . . . 0
a2 b2 c2 . . . . . . 0
0 a3 b3 c3 . . . 0
. . . . . . . . . . . . . . . cn−1

0 . . . . . . 0 an bn

















x1

x2

·
·

xn









=









y1

y2

·
·

yn









The TDMA is based on the Gaussian elimination procedure and consist of two parts:
a forward elimination phase and a backward substitution phase [15]. Let us consider
the system (A.1) fori = 1. . .n and consider following modification of first two equa-
tions:

Eqi=2 ·b1−Eqi=1 ·a2

which relults in
(b1b2−c1a2)x2 +c2b1x3 = b1y2−a2y1.

The effect is thatx1 has been eliminated from the second equation. In the same
manner one can eliminatex2, using the modifiedsecond equation and the third one
(for i = 3):

(b1b2−c1a2)Eqi=3−a3(mod. Eqi=2),

which would give

(b3(b1b2−c1a2)−c2b1a3)x3+c3(b1b2−c1a2)x4 = y3(b1b2−c1a2)−(y2b1−y1a2)a3

If the procedure is repeated until the n’th equation, the last equation will involve
the unknown functionxn only. This function can be then used to solve the mod-
ified equation fori = n− 1 and so on, until all unknownxi are found (backward
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substitution phase). That is, we are looking for a backward ansatz of the form:

xi−1 = γixi + βi. (A.2)

If we put the last ansatz in Eq. (A.1) and solve the resulting equation with respect to
xi , the following relation can be obtained:

xi =
−ci

aiγi +bi
xi+1 +

yi −aiβi

aiγi +bi
(A.3)

This relation possesses the same form as Eq. (A.2) if we identify

γi+1 =
−ci

aiγi +bi
, βi+1 =

yi −aiβi

aiγi +bi
. (A.4)

Equation (A.4) involves the recursion formula for the coefficientsγi andβi for i =
2, . . . ,n− 1. The missing valuesγ1 and β1 can be derived from the first (i = 1)
equation (A.1):

x1 =
y1

b1
− c1

b1
x2 ⇒ γ2 = −c1

b1
, β2 =

1
b1

⇒ γ1 = β1 = 0.

The last what we need is the value of the functionxn for the first backward substitu-
tion. We can obtain if we put the ansatz

xn−1 = γxn + βn

into the last (i = n) equation (A.1):

an(γxn + βn)+bnxn = yn,

yielding

xn =
yn−anβn

anγn +bn
.

One can get this value directly from Eq. (A.2), if one formal puts

xn+1 = 0.

Altogether, the TDMA can be written as:



1.Set γ1 = β1 = 0;
2.Evaluate for i = 1, . . . ,n−1

γi+1 =
−ci

aiγi +bi
, βi+1 =

yi −aiβi

aiγi +bi
;

3.Set xn+1 = 0;
4.Find for i = n+1, . . . ,2

xi−1 = γixi + βi.

The algorithm admitsO(n) operations instead ofO(n3) required by Gaussian
elimination.

Limitation

The TDMA is only applicable to matrices that are diagonally dominant, i.e.,

|bi| > |ai |+ |ci|, i = 1, . . . ,n.





Appendix B
The Method of Characteristics

The method of characteristics is a method which can be used tosolvean initial value
problemfor general first order PDEs [4]. Let us consider a quasilinear equation of
the form

A
∂u
∂x

+B
∂u
∂ t

+Cu= 0, u(x,0) = u0, (B.1)

whereu = u(x, t), andA, B andC can be functions of independent variables and
u. The idea of the method is to change coordinates from(x,t) to a new coordinate
system(x0,s), in which Eq. (B.1) becomesan ordinary differential equationalong
certain curves in the(x, t) plane. Such curves,(x(s),t(s)) along which the solution
of (B.1) reduces to an ODE, are called thecharacteristic curves. The variables can
be varied, whereasx0 changes along the linet = 0 on the plane(x,t) and remains
constant along the characteristics. Now if we choose

dx
ds

= A, and
dt
ds

= B, (B.2)

then we have
du
ds

= ux
dx
ds

+ut
dt
ds

= Aux +But ,

and Eq. (B.1) becomes the ordinary differential equation

du
ds

+Cu= 0 (B.3)

Equations (B.2) and (B.3) give the characteristics of (B.1).
That is, a general strategy to find out the characteristics ofthe system like (B.1) is
as follows:

• Solve Eq. (B.2) with initial conditionsx(0) = x0, t(0) = 0. Solutions of (B.2)
give the transformation(x, t) → (x0,s);

• Solve Eq. (B.3) with initilal conditionu(0) = u0(x0) (wherex0 are the initial
points on the characteristic curves along thet = 0 axis). So, we have a solution
u(x0,s);
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• Using the results of the first step finds andx0 in terms ofx andt and substitute
these values inu(x0,s) to get the solutionu(x,t) of the original equation (B.1).
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