
Chapter 4
The Wave Equation

Another classical example of a hyperbolic PDE is a wave equation. The wave equa-
tion is a second-order linear hyperbolic PDE that describesthe propagation of a
variety of waves, such as sound or water waves. It arises in different fields such as
acoustics, electromagnetics, or fluid dynamics. In its simplest form, the wave equa-
tion refers to a scalar functionu = u(r,t), r ∈ R

n that satisfies:

∂ 2u
∂ t2 = c2 ∇2 u . (4.1)

Here∇2 denotes the Laplacian inRn andc is a constant speed of the wave propaga-
tion. An even more compact form of Eq. (4.1) is given by

�
2 u = 0,

where�
2 = ∇2− 1

c2
∂ 2

∂ t2
is the d’Alembertian.

4.1 The Wave Equation in 1D

The wave equation for the scalaru in the one dimensional case reads

∂ 2u
∂ t2 = c2 ∂ 2u

∂x2 . (4.2)

The one-dimensional wave equation (4.2) can be solved exactly by d’Alembert’s
method, using a Fourier transform method, or via separationof variables. To illus-
trate the idea of the d’Alembert method, let us introduce newcoordinates(ξ , η) by
use of the transformation

ξ = x− ct , η = x + ct . (4.3)
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In the new coordinate system one can write

uxx = uξ ξ +2uξ η + uηη ,
1
c2 utt = uξ ξ −2uξ η + uηη ,

and Eq. (4.2) becomes
∂ 2u

∂ξ ∂η
= 0. (4.4)

That is, the functionu remains constant along the curves (4.3), i.e., Eq. (4.3) de-
scribes characteristic curves of the wave equation (4.2) (see App. B). Moreover, one
can see that the derivative∂u/∂ξ does not depends onη , i.e.,

∂
∂η

(

∂u
∂ξ

)

= 0 ⇔
∂u
∂ξ

= f (ξ ) .

After integration with respect toξ one obtains

u(ξ ,η) = F(ξ )+ G(η) ,

whereF is the primitive function off andG is the ”constant“ of integration, in
general the function ofη . Turning back to the coordinates(x, t) one obtains the
general solution of Eq. (4.2)

u(x,t) = F(x− ct)+ G(x + ct) . (4.5)

4.1.1 Solution of the IVP

Now let us consider an initial value problem for Eq. (4.2):

utt = c2uxx , t ≥ 0,

u(x,0) = f (x) , (4.6)

ut(x,0) = g(x) .

To write down the general solution of the IVP for Eq. (4.2), one needs to exspress
the arbitrary functionF andG in terms of initial dataf andg. Using the relation

∂
∂ t

F(x− ct) = −cF ′(x− ct) , where F ′(x− ct) :=
∂

∂ξ
F(ξ )

one becomes:

u(x,0) = F(x)+ G(x) = f (x) ;

ut(x,0) = c(−F ′(x)+ G′(x)) = g(x) .



After differentiation of the first equation with respect tox one can solve the system
in terms ofF ′(x) andG′(x), i.e.,

F ′(x) =
1
2

(

f ′(x)−
1
c

g(x)

)

, G′(x) =
1
2

(

f ′(x)+
1
c

g(x)

)

.

Hence

F(x) =
1
2

f (x)−
1
2c

∫ x

0
g(y)dy +C, G(x) =

1
2

f (x)+
1
2c

∫ x

0
g(y)dy−C ,

where the integration constantC is chosen in such a way that the initial condition
F(x)+ G(x) = f (x) is fullfield. Alltogether one obtains:

u(x,t) =
1
2

(

f (x− ct)+ f (x + ct)

)

+
1
2c

∫ x+ct

x−ct
g(y)dy . (4.7)

4.1.2 Numerical Treatment

4.1.2.1 A Simple Explicit Method

The first idea is just to use central differences for both timeand space derivatives,
i.e.,

u j+1
i −2u j

i + u j−1
i

△t2 = c2 u j
i+1−2u j

i + u j
i−1

△x2 , (4.8)

or, with α = c△t/△x

u j+1
i = −u j−1

i +2(1−α2)u j
i + α2(u j

i+1 + u j
i−1) . (4.9)

Schematical representation of the scheme (4.9) is shown on Fig. 4.1.
Note that one should also implement initial conditions (4.6). In order to imple-

ment the second initial condition one needs the virtual point u−1
i ,

ut(xi,0) = g(xi) =
u1

i −u−1
i

2△t
+O(△t2) .

Fig. 4.1 Schematical visu-
alization of the numerical
scheme (4.9) for (4.2). t j−1

q
xi−1

u

u uu
6

xi

q
xi+1

t j
Q

Q
QQk

�
�

��3
t j+1

u



With gi := g(xi) one can rewrite the last expression as

u−1
i = u1

i −2△tgi +O(△t2) ,

and the second time row can be calculated as

u1
i = △tgi +(1−α2) fi +

1
2

α2( fi−1 + fi+1) , (4.10)

whereu(xi,0) = u0
i = f (xi) = fi.

von Neumann Stability Analysis

In order to investigate the stability of the explicit scheme(4.9) we start with the
usual ansatz (1.21)

ε j+1
i = g jeikxi ,

which leads to the following expression for the amplification factorg(k)

g2 = 2(1−α2)g−1+2α2gcos(k△x) .

After several transformations the last expression becomesjust a quadratic equation
for g, namely

g2−2β g +1= 0, (4.11)

where

β = 1−2α2 sin2(k△x
2

)

.

Solutions of the equation forg(k) read

g1,2 = β ±
√

β 2−1.

Notice that ifβ > 1 then at least one of absolute value ofg1,2 is bigger that one.
Therefor one should desire forβ < 1, i.e.,

g1,2 = β ± i
√

β 2−1

and
|g|2 = β 2 +1−β 2 = 1.

That is, the scheme (4.9) is conditional stable. The stability condition reads

−1≤ 1−2α2sin2
(

k△x
2

)

≤ 1,

what is equivalent to the standart CFL condition (2.7)



Fig. 4.2 Schematical visual-
ization of the implicit numeri-
cal scheme (4.12) for (4.2). t j−1

u
xi−1

u

q qq

u uu

xi

u
xi+1

t j

t j+1
uj

α =
c△t
△x

≤ 1.

4.1.2.2 An Implicit Method

One can try to overcome the problems with conditional stability by introducingan
implicit scheme. The simplest way to do it is just to replace all terms on the right
hand side of (4.8) by an average from the values to the time steps j + 1 and j−1,
i.e,

u j+1
i −2u j

i + u j−1
i

△t2 =
c2

2△x2

(

u j−1
i+1 −2u j−1

i +u j−1
i−1 +u j+1

i+1 −2u j+1
i +u j+1

i−1

)

. (4.12)

Schematical diagramm of the numerical scheme (4.12) is shown on Fig. (4.2).
Let us check the stability of the implicit scheme (4.12). To this aim we use the

standart ansatz
ε j+1

i = g jeikxi

leading to the equation forg(k)

β g2−2g + β = 0

with

β = 1+ α2sin2
(

k△x
2

)

.

One can see thatβ ≥ 1 for all k. Hence the solutionsg1,2 take the form

g1,2 =
1± i

√

1−β 2

β

and

|g|2 =
1− (1−β 2)

β 2 = 1.

That is, the implicit scheme (4.12) isabsolute stable.
Now, the question is, whether the implicit scheme (4.12) is better than the explicit
scheme (4.9) form numerical point of view. To answer this question, let us analyse
dispersion relation for the wave equation (4.2) as well as for both schemes (4.9) and



Fig. 4.3 Dispersion relation
for the one-dimensional wave
equation (4.2), calculated us-
ing the explicit (blue curves)
and implicit (red curves)
methods (4.9) and (4.12).
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(4.12). The exact dispersion relation is

ω = ±ck ,

i.e, all Fourier modes propagate without dispersion with the same phase velocity
ω/k =±c. Using the ansatzu j

i ∼ eikxi−iωt j for the explicit method (4.9) one obtains:

cos(ω△t) = 1−α2(1−cos(k△x)) , (4.13)

while for the implicit method (4.12)

cos(ω△t) =
1

1+ α2(1−cos(k△x))
. (4.14)

One can see that forα → 0 both methods provide the same result, otherwise the
explicit scheme (4.9) always exceeds the implicit one (see Fig. (4.3)). Forα = 1 the
scheme (4.9) becomes exact, while (4.12) deviates more and more from the exact
value ofω for increasingα. Hence, for Eq. (4.2) there are no motivation to use
implicit scheme instead of the explicit one.

4.1.3 Examples

Example 1.

Use the explicit method (4.9) to solve the one-dimansional wave equation (4.2):

utt = 4uxx for x ∈ [0, L] and t ∈ [0,T ] (4.15)

with boundary conditions

u(0, t) = 0 u(L, t) = 0.



Fig. 4.4 Space-time evolution
of Eq. (4.15) with the initial
distributionu(x,0) = sin(π x),
ut(x,0) = 0. 0
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Assume that the initial position and velocity are

u(x,0) = f (x) = sin(πx) , and ut(x,0) = g(x) = 0.

Other parameters are:

Space interval L=10
Space discretization step △x = 0.1
Time discretization step △t = 0.05
Amount of time steps T = 20

First one can find the d’Alambert solution. In the case of zeroinitial velocity
Eq. (4.7) becomes

u(x,t) =
f (x−2t)+ f (x +2t)

2
=

sinπ(x−2t)+sinπ(x +2t)
2

= sin(πx) cos(2πt) ,

i.e., the solution is just a sum of a travelling waves with initial form, given by f (x)
2 .

Numerical solution of (4.15) is shown on Fig. (4.4).

Example 2.

Solve Eq. (4.15) with the same boundary conditions. Assume now, that initial dis-
tributions of position and velocity are

u(x,0) = f (x) = 0 and ut(x,0) = g(x) =











0, x ∈ [0, x1];

g0, x ∈ [x1, x2];

0, x ∈ [x2, L] .

Other parameters are:



Fig. 4.5 Space-time evolu-
tion of Eq. (4.15) with the
initial distributionu(x,0) = 0,
ut(x,0) = g(x).

Initial nonzero velocity g0=0.5
Initial space intervals x1 = L/4, x2 = 3L/4
Space interval L=10
Space discretization step △x = 0.1
Time discretization step △t = 0.05
Amount of time steps T = 400

Numerical solution of the problem is shown on Fig. (4.5).

Example 3. Vibrating String

Use the explicit method (4.9) to solve the wave equation for avibrating string:

utt = c2uxx for x ∈ [0, L] and t ∈ [0,T ] , (4.16)

wherec = 1 with the boundary conditions

u(0,t) = 0 u(L,t) = 0.

Assume that the initial position and velocity are

u(x,0) = f (x) = sin(nπx/L) , and ut(x,0) = g(x) = 0, n = 1,2,3, . . . .

Other parameters are:

Space interval L=1
Space discretization step △x = 0.01
Time discretization step △t = 0.0025
Amount of time steps T = 2000

Usually a vibrating string produces a sound whose frequencyis constant. There-
fore, since frequency characterizes the pitch, the sound produced is a constant note.
Vibrating strings are the basis of any string instrument like guitar or cello. If the
speed of propagationc is known, one can calculate the frequency of the sound pro-



duced by the string. The speed of propagation of a wavec is equal to the wavelength
multiplied by the frequencyf :

c = λ f

If the length of the string isL, the fundamental harmonic is the one produced by the
vibration whose nodes are the two ends of the string, soL is half of the wavelength
of the fundamental harmonic, so

f =
c

2L

Solutions of the equation in question are given in form of standing waves. The stand-
ing wave is a wave that remains in a constant position. This phenomenon can occur
because the medium is moving in the opposite direction to thewave, or it can arise
in a stationary medium as a result of interference between two waves traveling in
opposite directions (see Fig. (4.6))

n = 1 n = 2 n = 3
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Fig. 4.6 Standing waves in a string. The fundamental mode and the firstfive overtones are shown.
The red dots represent the wave nodes.



4.2 The Wave Equation in 2D

4.2.1 Examples

4.2.1.1 Example 1.

Use the standart five-point explicit method (4.9) to solve a two-dimansional wave
equation

utt = c2(uxx + uyy), u = u(x,y,t)

on the rectangular domain[0,L]× [0,L] with Dirichlet boundary conditions. Other
parameters are:

Space interval L=1
Space discretization step △x = △y = 0.01
Time discretization step △t = 0.0025
Amount of time steps T = 2000
Initial condition u(x,y,0) = 4x2 y(1− x)(1− y)

Numerical solution of the problem for two different time momentst = 0 andt = 500
can be seen on Fig. (4.7)

t = 0 t = 500

Fig. 4.7 Numerical solution of the two-dimensional wave equation, shown fort = 0 andt = 500.


