Chapter 4
The Wave Equation

Another classical example of a hyperbolic PDE is a wave égouathe wave equa-
tion is a second-order linear hyperbolic PDE that descrthespropagation of a
variety of waves, such as sound or water waves. It arisedfereint fields such as
acoustics, electromagnetics, or fluid dynamics. In its #stform, the wave equa-
tion refers to a scalar functian= u(r,t), r € R" that satisfies:

J%u

W :CZDZU. (41)

Here[J? denotes the Laplacian R" andc is a constant speed of the wave propaga-
tion. An even more compact form of Eq. (4.1) is given by

O%u=0,

where[12 = [12 — C—%% is the d’Alembertian.

4.1 The Wave Equation in 1D

The wave equation for the scalain the one dimensional case reads

otz 7 9’

The one-dimensional wave equation (4.2) can be solved lgxagtd’Alembert’s
method, using a Fourier transform method, or via separatioariables. To illus-
trate the idea of the d’Alembert method, let us introduce newardinatesé, n) by
use of the transformation

4.2)

§=x—ct, n =x+ct. 4.3)
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In the new coordinate system one can write

1
Uxx:UE§+2UE,7+Unn, gutt:USEleJEn‘i’Unn,
and Eq. (4.2) becomes
ou
oéan

That is, the functioru remains constant along the curves (4.3), i.e., Eq. (4.3) de-
scribes characteristic curves of the wave equation (42 App. B). Moreover, one
can see that the derivativki/d& does not depends ap i.e.,

Jd (du du
After integration with respect t§ one obtains

u(&,n)=F(&)+Gn),

whereF is the primitive function off and G is the "constant* of integration, in
general the function ofy. Turning back to the coordinatég, t) one obtains the
general solution of Eq. (4.2)

(4.4)

|u(x,t) = F(x—ct) + G(x+ct). | (4.5)

4.1.1 Solution of thel VP

Now let us consider an initial value problem for Eq. (4.2):

W = Cuy, t>0,
u(x,0) = f(x), (4.6)
U (x,0) = g(x).

To write down the general solution of the IVP for Eq. (4.2)eareeds to exspress
the arbitrary functiorr andG in terms of initial dataf andg. Using the relation

0 0

—F(x—ct)=—cF'(x—ct), where F'(x—ct):= FH

= F(&)

one becomes:



After differentiation of the first equation with respectt@ne can solve the system
in terms ofF’(x) andG'(x), i.e.,

Fo=3(00-ga).  Gw=5(1x+aw).

F(x)zéf(x)_zic/:

where the integration consta@tis chosen in such a way that the initial condition
F(x) + G(x) = f(x) is fullfield. Alltogether one obtains:

gy)dy+C. G =51+ 5 [ gdy—C.

u(x,t)%(f(xct)+f(x+ct))+z—lc/ a(y) dy|. @.7)

X—ct

4.1.2 Numerical Treatment

4.1.2.1 A Simple Explicit Method

The first idea is just to use central differences for both tand space derivatives,
ie.,

i . o
A 2 u g —2u +ul 4.8)
A\t2? X2 ’ '
or, with a = cAt/Ax
uWt =t 21— el Fa?l Ul ) (4.9)

Schematical representation of the scheme (4.9) is showrigod B.
Note that one should also implement initial conditions Y4l order to imple-
ment the second initial condition one needs the virtual pgit,

00,0 =gx) = U0 4 (o
W(X,Y) =9g(X) = At .

H \ "
Fig. 4.1 Schematical visu- B - - - 7h
alization of the numerical
scheme (4.9) for (4.2). tj 4



With g := g(x;) one can rewrite the last expression as
ut=ul - 2Atg + 0(A?),

and the second time row can be calculated as

1
ut = Atgi+ (1—ad)fi + Eorz(fH + fiv1), (4.10)

whereu(x;,0) = W0 = f(x) = fi.

von Neumann Stability Analysis

In order to investigate the stability of the explicit schent®e9) we start with the
usual ansatz (1.21) . o
eiHl — gJelkXi ,

which leads to the following expression for the amplificatfactorg(k)
¢? =2(1-a?g—1+2a’gcogkAx).

After several transformations the last expression becqus¢s quadratic equation
for g, namely
9> -2Bg+1=0, (4.11)

where KA
B =1-2a?sir? (TX) .

Solutions of the equation fak) read

g2=B++vB?—1.

Notice that if 3 > 1 then at least one of absolute valuegab is bigger that one.
Therefor one should desire fr< 1, i.e.,

g12=B+ivp2-1

and
97 =p*+1-p*=1.

That is, the scheme (4.9) is conditional stable. The stgliiindition reads
—1<1-2a?sir? (%‘) <1,

what is equivalent to the standart CFL condition (2.7)



Fig. 4.2 Schematical visual-
ization of the implicit numeri-
cal scheme (4.12) for (4.2). — o ® ®

4.1.2.2 An Implicit Method

One can try to overcome the problems with conditional sitglily introducingan
implicit scheme. The simplest way to do it is just to replace all terms on tigétri
hand side of (4.8) by an average from the values to the tinps$te 1 andj — 1,
i.e,

Wttt 2
Uiir — i+1

-1, -1, j+1 j+1, j+l
R = g (W e 2 ) @
Schematical diagramm of the numerical scheme (4.12) is stoowFig. (4.2).
Let us check the stability of the implicit scheme (4.12). fistaim we use the
standart ansatz

i
gt =glekx
leading to the equation fay(k)
BY’ —29+p=0
with A
B =1+a?sir? (TX> .
One can see thg > 1 for all k. Hence the solutiong » take the form
1+iy/1-B2
Q2= #ﬁ
and ,
1-(1-p?
9| = ([372 =1.

That is, the implicit scheme (4.12) @bsolute stable.

Now, the question is, whether the implicit scheme (4.12)etdy than the explicit

scheme (4.9) form numerical point of view. To answer thissgjoa, let us analyse
dispersion relation for the wave equation (4.2) as well abéwh schemes (4.9) and
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Fig. 4.3 Dispersion relation
for the one-dimensional wave 1 .
equation (4.2), calculated us- 05
ing the explicit (blue curves)
and implicit (red curves) % 02 04 06 08 1
methods (4.9) and (4.12). ka xim
(4.12). The exact dispersion relation is
w = +ck,

i.e, all Fourier modes propagate without dispersion with same phase velocity
w/k = +c. Using the ansata’ ~ &1 for the explicit method (4.9) one obtains:

cogwAt) = 1— a?(1— cogkAx)), (4.13)
while for the implicit method (4.12)

1
coq wAt) = 17 o2(1— coskix) (4.14)

One can see that far — 0 both methods provide the same result, otherwise the
explicit scheme (4.9) always exceeds the implicit one (sge(#.3)). Fora = 1 the
scheme (4.9) becomes exact, while (4.12) deviates more anel from the exact
value of w for increasinga. Hence, for Eq. (4.2) there are no motivation to use
implicit scheme instead of the explicit one.

4.1.3 Examples

Example 1.

Use the explicit method (4.9) to solve the one-dimansioraaerequation (4.2):
ut =4uy for xe[0,L] and tel0,T] (4.15)

with boundary conditions

u(0,t)=0 u(L,t)=0.
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Fig. 4.4 Space-time evolution
of Eq. (4.15) with the initial
distributionu(x, 0) = sin(7x),
U (x,0) =0.
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Assume that the initial position and velocity are
u(x,0) = f(x) =sin(mx), and uw(x,0)=g(x) =0.

Other parameters are:

Space i nterval L=10
Space discretization step|Ax=0.1
Time discretization step [|[At=0.05
Amount of tinme steps T=20

First one can find the d’Alambert solution. In the case of zmital velocity
Eq. (4.7) becomes

U(x.) = f(x—Zt)jZL f(x+2t) _ sinn(x—Zt)szsimT(xnL 2t) _ sin(1x) cos(27t),

i.e., the solution is just a sum of a travelling waves withialiform, given by@.

Numerical solution of (4.15) is shown on Fig. (4.4).
Example 2.

Solve Eq. (4.15) with the same boundary conditions. Assuowg that initial dis-
tributions of position and velocity are

0, x€][0,xq];
ux,0)=f(x)=0 and w(x,0)=9g(X)=1{do, XE€ [x1,X);
0, X€&[x,L].

Other parameters are:



Fig. 4.5 Space-time evolu-
tion of Eq. (4.15) with the
initial distributionu(x,0) = 0,
U (x,0) = g(x).

Initial nonzero velocity [gp=0.5

Initial space intervals x1=L/4, x=3L/4
Space i nterval L=10

Space di scretization step|Ax=0.1

Time discretization step [|[At=0.05

Amount of tinme steps T =400

Numerical solution of the problem is shown on Fig. (4.5).

Example 3. Vibrating String
Use the explicit method (4.9) to solve the wave equation fabeating string:
W =CUy for xe[0,1] and te[0,T], (4.16)
wherec = 1 with the boundary conditions
u0,t)=0  u(L,t)=0.
Assume that the initial position and velocity are
u(x,0) = f(x) =sin(nrix/L), and w(x,0)=g(x)=0, n=123,....

Other parameters are:

Space i nterval L=1

Space discretization step||Ax=0.01
Time discretization step [[At=0.0025
Amount of time steps T =2000

Usually a vibrating string produces a sound whose frequéncypnstant. There-
fore, since frequency characterizes the pitch, the soundijoed is a constant note.
Vibrating strings are the basis of any string instrumeng lguitar or cello. If the
speed of propagatianis known, one can calculate the frequency of the sound pro-



duced by the string. The speed of propagation of a wasequal to the wavelength
multiplied by the frequency:
c=Af

If the length of the string i&, the fundamental harmonic is the one produced by the
vibration whose nodes are the two ends of the strind, sohalf of the wavelength
of the fundamental harmonic, so

f=a

Solutions of the equation in question are given in form afidtag waves. The stand-
ing wave is a wave that remains in a constant position. Thimpmenon can occur
because the medium is moving in the opposite direction tevines, or it can arise
in a stationary medium as a result of interference betweenwaves traveling in

opposite directions (see Fig. (4.6))
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Fig. 4.6 Standing waves in a string. The fundamental mode and théifiesbvertones are shown.
The red dots represent the wave nodes.
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4.2 The Wave Equation in 2D
4.2.1 Examples
4.2.1.1 Example 1.

Use the standart five-point explicit method (4.9) to solveva-tlimansional wave
equation

Ut = C*(Uc+Uyy),  U=U(X, Y1)

on the rectangular domaif, L] x [0,L] with Dirichlet boundary conditions. Other
parameters are:
Space interval L=1

Space discretization step|[Ax=Ay=0.01
Time discretization step [[At=0.0025
Amount of time steps T =2000

Initial condition ux,y,0) = 4x2y(1—x)(1—y)

Numerical solution of the problem for two different time mentst = 0 andt = 500
can be seen on Fig. (4.7)
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Fig. 4.7 Numerical solution of the two-dimensional wave equatidraven fort = 0 andt = 500.



