


Chapter 6
Korteweg-de Vries Equation

The Korteweg-de Vries (KdV) equation is the partial differential equation, derived
by Korteweg and de Vries [13] to describe weakly nonlinear shallow water waves.
The nondimensionalized version of the equation reads

∂u
∂ t

= 6u
∂u
∂x

− ∂ 3u
∂x3 , (6.1)

whereu = u(x, t). The factor of 6 is convenient for reasons of complete integrability,
but can easily be scaled out if desired. Equation (6.1) was found to havesolitary
wave solutions, vindicating the observations of a solitary channel wave made by
Russell [23].

6.1 Traveling wave solution

In the same way as in Sec. 5.1 we look for a right traveling wavesolution of the
form [27]

u(ξ ) := u(x− ct) ,

such asu → 0, uξ → 0 anduξ ξ → 0 asξ →±∞. Substitution into Eq. (6.1) leads to
the ODE

uξ ξ ξ −6uuξ − cuξ = 0.

An integration with respect toξ yields

uξ ξ = 3u2+ cu + c1,

wherec1 is a constant of integration. Sinceu → 0, uξ → 0 anduξ ξ → 0 asξ →±∞,
c1 = 0. A second integration yields

1
2

u2
ξ = u3 +

1
2

cu2 + c2 ,
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wherec2 = const= 0. That is, the last equation can be written as

d ξ =
d u

u
√

2u + c
,

which can be integrated, yielding

u(ξ ) = − c
2

sech2
(

1
2

√
c(ξ − ξ0)

)

,

whereξ0 is an arbitrary constant. In(x, t) coordinates the traveling wave solution
reads

u(x, t) = − c
2

sech2
(

1
2

√
c(x− x0− ct)

)

. (6.2)

Equation (6.2) describes the localized traveling wave solution with a negative am-
plitude (see Fig. 6.1 (a)), which is calleda soliton. The term soliton was first intro-
duced by Zabusky and Kruskal [30], who studied Eq. (6.1) withperiodic boundary
conditions numerically. They found [30, 27, 14] that initial condition of the form
u(x, 0) = cos(2π x/L), x ∈ [0, L] broke up into a train of solitary waves with succes-
sively large amplitude. Moreover the solitons seems to be almost unaffected in shape
by passing through each other (though this could cause a change in their position).
An example of two-soliton solution is shown on Fig. 6.1 (b).
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Fig. 6.1 Solitary solutions of KdV equation (6.1). (a)A single-soliton solution (6.2) forc = 2,
calculated fort = 1. (b) A two-soliton solution, calculated att = 0.3.

6.2 Numerical treatment

Consider the KdV Eq. (6.1) on the intervalx ∈ [−L, L] with initial condition

u(x,0) = f (x) := −N (N +1)sech2(x) ,



Fig. 6.2 Numerical solution
of the KdV Eq. (6.1) on the in-
tervalt ∈ [−22, 22], using the
explicit schema (6.3). Space
and time discretization steps
are△x = 0.11,△t = 5e−4,
respectively. After several
intergation steps numerical
instability can be observed.

−20 −10 0 10 20
−8

−6

−4

−2

0

x

u(
x)

whereN is an amount of solitons and periodic boundary conditions [12]. The first
idea is to apply central difference to spatial derivatives on the right hand side and
forward difference to the time derivative on the left, as in contrast to the wave equa-
tion (4.1) or the sine-Gordon equation (5.1) only the information about initial po-
sition of u is known and the artificial pointu−1

i can not be calculated. That is, the
simple explicit schema reads:

u j+1
i −u j

i

△t
= 3u j

i

u j
i+1−u j

i−1

△x
−

u j
i+2−2u j

i+1+2u j
i−1−u j

i−2

2△x3 ,

or, with h = △t/△x

u j+1
i = u j

i +3hu j
i

(

u j
i+1−u j

i−1

)

− h
2△x2

(

u j
i+2−2u j

i+1+2u j
i−1−u j

i−2

)

. (6.3)

Since Eq. (6.1) is nonlinear, the direct verification of the stability of the scheme (6.3)
with the help of von Neumann analysis (see Sec. 1.3). However, one can examine
the stability of theliner equation

ut = −uxxx . (6.4)

Using the usual ansatz (1.21) the following criterium for Eq. (6.4) can be ob-
tained [12]

△t ≤ 1
m
△x3 , (6.5)

where

m = max|sin(2k△x)−2 sin(k△x)| = 3
√

3
2

≃ 2.6.

That is, the linear equation (6.4) is conditionally stable,what is not surprising for
explicit schemata. However, if we apply the schema (6.3), one can see that after
several intergation steps a numerical instability occurs (see Fig. 6.2). That is, the
schema (6.3) is unstable and has to be modified.

The first idea is to modify the relation for the time derivative on the right hand
side. As was mentioned above, the direct usage of the centraldifference formula



is impossible due to initial condition. On the other hand, the artificial pointu−1
i

is essential only on the first time step. Hence, on the first time step (j = 0) the
schema (6.3) can be used, whereas forj = 1, . . . ,T the central difference formula
is applied:

∂u
∂ t

→ u j+1
i −u j−1

i

2△t
.

In addition, we replaceu j
i on the right hand side by the average, namely

u j
i →

1
3

(

u j
i−1+ u j

i + u j
i+1

)

.

That is, the final modified schema reads

u j+1
i = u j−1

i +2h
(

u j
i−1+u j

i +u j
i+1

)(

u j
i+1−u j

i−1

)

− h
△x2

(

u j
i+2−2u j

i+1+2u j
i−1−u j

i−2

)

.

(6.6)
Let us apply the modified schema (6.6) to Eq. (6.1) for the caseof two-soliton

solution. That is, we solve Eq. (6.1 on the intervalx ∈ [−L, L] according to

Space interval L = 10
Space discretization step △x = 0.18
Time discretization step △t = 2e−3
Amount of time steps T = 1e +5

We start with initial condition

u(x,0) = f (x) := −6sech2(x) ,

and apply periodic boundary condition. Notice that in the presented case the linear
stability condition (6.5) is fulfilled. The result of calculation is presented on Fig. 6.3.
The localized initial condition decomposes into two solitons with different depths
and velocities, moving in the same direction. In addition, the solitons collide at some
time moment, and the deeper soliton overtank the smaller one.



Fig. 6.3 Space-time repre-
sentation of the numerical
two-soliton solution of the
KdV Eq. (6.1) on the inter-
val t ∈ [−10, 10], using the
modified schema (6.6). Space
and time discretization steps
are△x = 0.18,△t = 2e−5,
respectively. x
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