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Chapter 1

Intorduction

1.1 Definition, Notation and Classification

A differential equation involving more than one independent variable and its
(resp. their) partial derivatives with respect to those variables is called a
partial differential equation (PDE).

Consider a simple PDE of the form:

∂

∂x
u(x, y) = 0.

This equation implies that the function u(x, y) is independent of x. Hence
the general solution of this equation is u(x, y) = f(y), where f is an arbitrary
function of y. The analogous ordinary differential equation is

du

dx
= 0,

its general solution is u(x) = c, where c is a constant. This example illustrates
that general solutions of ODEs involve arbitrary constants, but solutions of
PDEs, in contrast, involve arbitrary functions.

In general one can classify PDEs with respect to different criterion, e.g.:

• Order;

• Dimension;

• Linearity;

• Initial/Boundary value problem, etc.
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By order of PDE we will understand the order of the highest derivative that
occurs. A PDE is said to be linear if it is linear in unknown functions and
their derivatives, with coefficients depending on the independent variables.
The independent variables typically include one or more space dimensions
and sometimes time dimension as well.
Example: The wave equation

∂2u(x, t)

∂t2
= a2 ∂2u(x, t)

∂x2

is a one-dimensional, second-order linear PDE. In contrast, the Fisher Equa-
tion of the form

∂u(r, t)

∂t
= △u(r, t) + u(r, t) − u(r, t)2,

where r = (x, y) is a two-dimensional, second-order nonlinear PDE.

1.2 Linear Second-Order PDEs

For linear equations in two dimensions there is a simple classification in terms
of the general equation

auxx + buxy + cuyy + dux + euy + fu + g = 0,

where the coefficients a, b, c, d, e, f and g are real and in general can also
be functions of x and y. The PDE’s of this type are classified by value of
discriminant Dλ = b2 − 4ac of the eigenvalue problem for the matrix

A =

(

a b/2
b/2 c

)

,

build from the coefficients of the highest derivatives. A simple classification
is shown on the following table:

Dλ Typ Eigenvalues
Dλ < 0 elliptic the same sign
Dλ > 0 hyperbolic different signs
Dλ = 0 parabolic zero is an eigenvalue

For instance, the Laplace equation for the electrostatic potential ϕ in the
space without a charge

∂2ϕ

∂x2
+

∂2ϕ

∂y2
= 0
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is elliptic, as a = c = 1, b = 0, Dλ = −4 < 0. In general, elliptic PDEs
describe processes that have already reached steady state, and hence are
time-independent.

One-dimensional wave equation for some amplitude A(x, t)

∂2A

∂t2
− v2∂2A

∂x2
= 0

with the positive dispersion velocity v is hyperbolic (a = 1, b = 0, c = −v2,
Dλ = 4v2 > 0). Hyperbolic PDEs describe time-dependent, conservative
processes, such as convection, that are not evolving toward steady state.

The next example is a diffusion equation for the patricle’s density ρ(x, t)

∂ρ

∂t
= D

∂2ρ

∂x2
,

where D > 0 is a diffusion coefficient is parabolic (a = −D, b = c = 0,Dλ =
0). Parabolic PDEs describe time-dependent, dissipative processes, such as
diffusion, that are evolving toward steady state.

We shall consider each of these cases separately as different methods are
required for each. The next point to emphasize is that as all the coefficients
of the PDE can depend on x and y this classification concept is local.

1.3 Initial and Boundary-Value Problems

As it was mentioned above the solution of PDEs involve arbitrary functions.
So, in order to solve the system in question completly, additional conditions
are needed. These conditions can be given in the form of initial or boundary
conditions. Initial conditions define the values of the dependent variables at
the initial stage (e.g. at t = 0), whereas the boundary conditions give the
information about the value of the dependent valiable or its derivative on the
boundary of the area of interest. Typically, one distinguishes

- Drichlet conditions specify the values of the dependent variables of the
boundary points.

- Neumann conditions specify the values of the normal gradients of the
boundary.

- Robin conditions defines a linear combination of the Drichlet and Neu-
mann conditions.

From the computational point of view it is useful to classify the PDE in
question in terms of initial value or boundary value problem.
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- Initial value problem: PDE in question describes time evolution, i.e.,
the initial space-distribution id given; the goal is to find how the de-
pendent variable propagates in time. Example: The diffusion equation.

- Boundary value problem: A static solution of the problem should be
found in some region-and the dependent variable is specified on its
boundary. Example: The Laplace equation.

1.4 Finite difference method

Consider first a one-dimensional PDE for the unknown function u(x, t). One
way to numerically solve the PDE is to approximate all the derivatives by fi-
nite differences. We partition the domain in space using a mesh x0, x1, . . . , xN

and in time using a mesh t0, t1, . . . , tT . We assume first a uniform partition
both in space and in time, so the difference between two consecutive space
points will be △x and between two consecutive time points will be △t, i.e.,

xi = x0 + i△x, i = 0, 1, . . . , M ;

tj = t0 + j△t, j = 0, 1, . . . , T ;

1.4.1 The Taylor series method

Let us first consider a Taylor expansion of an analytical function u.

u(x+△x) = u(x)+
∞

∑

n=1

△xn

n!

∂nu

∂xn
= u(x)+△x

∂u

∂x
+
△x2

2!

∂2u

∂x2
+
△x3

3!

∂3u

∂x3
+ . . .

(1.1)
Then for the first derivative one obtains:

∂u

∂x
=

u(x + △x) − u(x)

△x
− △x

2!

∂2u

∂x2
− △x2

3!

∂3u

∂x3
− . . . (1.2)

If we break the right hand side of the last equation after the first term, for
△x ≪ 1 the last equation becomes

∂u

∂x
=

u(x + △x) − u(x)

△x
+ O(△x) =

△iu

△x
+ O(△x) , (1.3)

where

△iu = u(x + △x) − u(x) = ui+1 − ui
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is called a forward difference. The backward expansion of the function u can
be written as △x ≪ 1 the last equation reads

u(x + (−△x)) = u(x) −△x
∂u

∂x
+

△x2

2!

∂2u

∂x2
− △x3

3!

∂3u

∂x3
+ . . . , (1.4)

so for the first derivative one obtains

∂u

∂x
=

u(x) − u(x −△x)

△x
+ O(△x) =

∇iu

△x
+ O(△x) , (1.5)

where
∇iu = u(x) − u(x −△x) = ui − ui−1

is called a backward difference. if we substract Eq. (1.5) from Eq. (1.3) one
obtains

u(x + △x) − u(x −△x) = 2△x
∂u

∂x
+ 2

△x3

3!

∂3u

∂x3
+ . . . , (1.6)

what is equivalent to

∂u

∂x
=

u(x + △x) − u(x −△x)

2△x
+ O(△x2) (1.7)

The second derivative can be found in the same way using the linear combi-
nation of different Taylor expansions. For instance, consider

u(x + 2△x) = u(x) + 2△x
∂u

∂x
+

(2△x)2

2!

∂2u

∂x2
+

(2△x)3

3!

∂3u

∂x3
+ . . . (1.8)

Substracting from the last equation Eq. (1.1), multiplied by two, one gets
the following equation

u(x + 2△x) − 2u(x + △x) = −u(x) +
△x2

2!

∂2u

∂x2
+

△x3

3!

∂3u

∂x3
+ . . . (1.9)

So, one can approximate the second derivative as

∂2u

∂x2
=

u(x + 2△x) − 2u(x + △x) + u(x)

△x2
+ O(△x). (1.10)

Similarly one can obtain the expression for the second derivative in terms of
backward expansion, i.e.,

∂2u

∂x2
=

u(x − 2△x) − 2u(x−△x) + u(x)

△x2
+ O(△x). (1.11)
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Finally, if we add Eqn. (1.3) and 1.5 expression for the second derivative
reads

∂2u

∂x2
=

u(x + △x) − 2u(x) + u(x −△x)

△x2
+ O(△x2). (1.12)

In an analogous way one can obtain finite difference approximations to higher
order derivatives and differential operators. The short overview of the for-
ward, backward and central differences for first three derivatives can be found
in Tables 1.1, 1.2, 1.3.

1.4.2 Mixed derivatives

A finite difference approximations for the mixed partial derivatives one get
in the same way. For example, let us find the central approximation for the
derivative

∂2u
∂x∂y

= ∂
∂x

(

∂u
∂y

)

= ∂
∂x

(

u(x,y+△y)−u(x,y−△y)
2△y

+ O(△y2)

)

=

= u(x+△x,y+△y)−u(x−△x,y+△y)−u(x+△x,y−△y)+u(x−△x,y−△y)
4△x△y

+ O(△x2△y2)

1.4.3 A nonequidistant mesh

Let us suppose, that the spatial steps fulfill the following rule:

△xi = α△xi−1.

If α = 1 the mesh is said to be equidistant. Let us now calculate the first
derivative of the function u(x) of the second-order accurance.

u(x + α△x) = u(x) + α△x
∂u

∂x
+

(α△x)2

2!

∂2u

∂x2
+

(α△x)3

3!

∂3u

∂x3
+ . . . (1.13)

Adding the last equation with Eq. (1.4) multiplied by α one obtains the
expression for the second derivative

∂2u

∂x2
=

u(x + α△x) − (1 + α)u(x) + αu(x−△x)
1
2
α(α + 1)△x2

+ O(△x) (1.14)

After substitution of the last equation to Eq. (1.4) one obtains

∂u

∂x
=

u(x + α△x) − (1 − α2)u(x) − α2u(x −△x)

α(α + 1)△x
+ O(△x2) (1.15)
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ui ui+1 ui+2 ui+3 ui+4

△x∂u
∂x

-1 1

△x2 ∂2u
∂x2 1 -2 1

△x3 ∂3u
∂x3 -1 3 -3 1

△x4 ∂4u
∂x4 1 -4 6 -4 1

Table 1.1: Forward difference quotient, O(△x)

ui−4 ui−3 ui−2 ui−1 ui

△x∂u
∂x

-1 1

△x2 ∂2u
∂x2 1 -2 1

△x3 ∂3u
∂x3 -1 3 -3 1

△x4 ∂4u
∂x4 1 -4 6 -4 1

Table 1.2: Backward difference quotient, O(△x)

ui−2 ui−1 ui ui+1 ui+2

2△x∂u
∂x

-1 0 1

△x2 ∂2u
∂x2 1 -2 1

2△x3 ∂3u
∂x3 -1 2 0 -2 1

△x4 ∂4u
∂x4 1 -4 6 -4 1

Table 1.3: Central difference quotient, O(△x2)
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1.5 Consistency, Convergence and Stability

1.5.1 Numerical Errors

A numerical error is either of two kinds of error in a calculation. The first (a
rounding error) is caused by the finite precision of computations involving
floating-point values. Increasing the number of digits allowed in a representa-
tion reduces the magnitude of possible roundoff errors, but any representation
limited to finitely many digits will still cause some degree of roundoff error
for uncountably many real numbers.

The second type of error (sometimes called the truncation error) is the
difference between the exact mathematical solution and the approximate
solution. Suppose, that we have defined an equidistant mesh {xi} and let us
consider first a local error which arises from only one step of some numerical
scheme.

A difference
εi+1 = u(xi+1) − ui+1 (1.16)

is said to be a local discretization error in the point xi+1. Here u(xi+1) is a
exact solution of the problem in the point xi+1 whereas ui+1 describes a value
in this point, calculated using the numerical approximation. In other words,
the local discretization error can be interpreted as a residuum, if one put the
numerical solution into the exact one. Now, if we put the Taylor expansion
in the vicinity of the point (xi, u(xi)) into the equation of interest, one get
the information how fast the local error tends to zero with the spacing △x.
This observation leads to the definition of the so-called consistency order :

One says, that a numerical scheme possess a consistency order p, if

|εi+1| ≤ C△xp+1, i = 0, 1, 2, . . . , (1.17)

where C is a constant.
As mentioned above, the local error gives information about the accuracy

of the numerial scheme, i.e., about the error in one its step. At the end of
calculation one can calculate an accumulated or a global discretization error
in tghe point xi+1:

ei+1 = u(xi+1) − ui+1. (1.18)

The value of the global error gives information about convergence of the
approximation to the exact solution of the problem if the spacing value △x
tends to zero, i.e.,

A numerical scheme is said to be convergent, if for the global error ei one
can write

max
i=1...n

|ei| → 0 for△x → 0. (1.19)
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The scheme posseses a convergence order p, if

max
i=1...n

|ei| ≤ C△xp, (1.20)

where C is a constant.

Notice: At a first glance the global error tends to zero with the decreasing
of △x, so the mesh should be refined. However, decreasing of △x leads to
the increasing of the rounding error. Another point to emphasize is that
decreasing of △x can lead to instability of the numerical scheme in question.
The notation of stability will be the topic of the next section.

1.5.2 Stability

An algorithm for solving an evolutionary partial differential equation is said
to be stable if the numerical solution at a fixed time remains bounded as the
step size goes to zero, so the pertrubations in form of, e.g., rounding error
does not increase in time. Unfortunately, there are no general methods to
verify the numerical stability for the partial differential equations in general
form, so one restrict oneself to the case of linear PDE’s. The standard method
for linear PDE’s was proposed by John von Neumann in 1947 and is based
on the representation of the rounding error in form of the Foirer series.

von Neumann stability analysis

Consider the following notation:

uj+1 = T [uj]. (1.21)

Here T is a nonlinear operator, depending on numerical scheme in question.
The successive application of T results in a consequence of values

u(0), u(1), u(2), . . . ,

that approximate the exact solution of the problem. As was mentioned above,
at each time step we add a small error ε(j), i.e.,

u(0) + ε(0), u(1) + ε(1), u(2) + ε(2), . . . ,

where ε(j) is a cumulative rounding error at time tj . Thus we obtain

u(j+1) + ε(j+1) = T (u(j) + ε(j)) (1.22)
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After linearization of the last equation (we suppose that Taylor expansion
for T is possible) the linear equation for the pertrubation takes the form:

ε(j+1) =
∂T (u(j))

∂u(j)
ε(j) := Gε(j) (1.23)

This equation is called error propagation law, whereas the linearization ma-
trix G is said to be an amplification matrix. The stability of the numerical
scheme depends now on the eigenvalues gµ of G. In other words, the scheme
is stable if and only if

|gµ| ≤ 1 ∀µ

The question now is how this information can be used in practice. The first
point to emphasize is that in general one deals with the u(xi, tj) := u

(
ij), so

one can write
ε
(j+1)
i =

∑

i′

Gii′ε
(j)
i′ , (1.24)

where

Gii′ =
∂T (u(j))i

∂u
(j)
i′

.

For the values ε
(j)
i (rounding error at the time step tj in the point xi) one

can display as a Fourier series:

ε
(j)
i =

∑

k

eIkxj ε̃(j)(k), (1.25)

where I depicts the imagimary unit whereas ε̃(j)(k) are the Fourier coeffi-
cients. An important point is, that the functions eIkxj are eigenfunctions of
the matrix G, so the last expansion can be interpreted as the expansion in
eigenfunctions of G. Thus, for the practical point of view one take the error
ε
(j)
i just exact as

ε
(j)
i = eIkxj .

The substitution of this expression into the Eq. (1.24) results in the following
relation

ε
(j+1)
i = g(k)eIkxj = g(k)ε

(j)
i . (1.26)

Thus eIkxj is an eigenvector corresponding to the eigenvalue g(k). The value
g(k) is often called an amplification factor. Finally, the stability criterium is
given as

|g(k)| ≤ 1 ∀k (1.27)

This criterium is called von Neumann stablity criterium.



Chapter 2

Hyperbolic PDE’s

2.1 Wave equation

The wave equation is a second-order linear PDE that describes the propaga-
tion of a variety of waves, such as sound waves, light waves or water waves. It
arises in different fields such as acoustics, electromagnetics, and fluid dynam-
ics. The wave equation is the example of a hyperbolic PDE. In its simplest
form, the wave equation refers to a scalar function u = u(r, t), r ∈ R

n that
satisfies:

∂2u

∂t2
= c2∇2u. (2.1)

Here ∇2 denotes the Laplacian and c is a constant speed of the wave propa-
gation.

2.1.1 Wave equation in 1D

The wave equation for the scalar u in the one dimensional case reads

∂2u

∂t2
= c2 ∂2u

∂x2
. (2.2)

The general solution of Eq. (2.2) was first derived by Jean le Rond d’Alembert.
Let us introduce new coordinates (ξ, η) by use of the transformation

ξ = x − ct, η = x + ct. (2.3)

In the new coordinate system Eq. (2.2) becomes

∂2u

∂ξ∂η
= 0. (2.4)

15
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This equation means that the function u remains constant along the curves (2.3),
i.e., (2.3) are characteristic curves of the wave equation (2.2). Moreover, one
can see that the derivative ∂u/∂ξ does not depends on η, i.e.,

∂

∂η

(

∂u

∂ξ

)

= 0 ⇔ ∂u

∂ξ
= f(ξ). (2.5)

After integration with respect to ξ one obtains

u(ξ, η) = F (ξ) + G(η),

where F is the primitive function of f and G is the ”constant“ of integration,
in general the function of η. Turning back to the coordinates (x, t) one obtains
the general solution of Eq. (2.2)

u(x, t) = F (x − ct) + G(x + ct). (2.6)

Solution of the initial value problem

Consider now an initial value problem for Eq. (2.2):

utt = c2uxx, t ≥ 0

u(x, 0) = f(x), (2.7)

ut(x, 0) = g(x).

To write down the general solution of the initial value problem for (2.2) one
needs to exspress the arbitrary function F and G in terms of initial data f
and g. Using the relation

∂

∂t
F (x − ct) = −cF ′(x − ct), where F ′(x − ct) :=

∂

∂ξ
F (ξ)

one becomes:

u(x, 0) = F (x) + G(x) = f(x);

ut(x, 0) = c(−F ′(x) + G′(x)) = g(x).

After differentiation of the first equation with respect to x one can solve the
system in terms of F ′(x) and G′(x), i.e.,

F ′(x) =
1

2

(

f ′(x) − 1

c
g(x)

)

, G′(x) =
1

2

(

f ′(x) +
1

c
g(x)

)

.

Hence

F (x) =
1

2
f(x) − 1

2c

∫ x

0

g(y)dy + C, G(x) =
1

2
f(x) +

1

2c

∫ x

0

g(y)dy − C,
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where the integration constant C is chosen in such a way that the initial
condition F (x) + G(x) = f(x) is fullfield. Alltogether one obtains:

u(x, t) =
1

2

(

f(x − ct) + f(x + ct)
)

+
1

2c

∫ x+ct

x−ct

g(y)dy (2.8)

2.1.2 A numerical scheme

Let us first consider initial value problem (2.7) for the one-dimensional wave
equation (2.2).

An explicit method

The first idea is just to use central differences for both time and space deriva-
tives, i.e.,

uj+1
i − 2uj

i + uj−1
i

△t2
= c2 uj

i+1 − 2uj
i + uj

i−1

△x2
(2.9)

or, with α = c△t/△x

uj+1
i = −uj−1

i + 2(1 − α2)uj
i + α2(uj

i+1 + uj
i−1) (2.10)

Schematical representation of the scheme can be seen on Fig. 2.1.2.

tj−1
q
xi−1

u

u uu
6

xi

q
xi+1

tjQ
Q

QQk

�
�

��3
tj+1

u

Figure 2.1: Schematical visualization of the numerical scheme (2.10) for (2.2).

Besides, one should add the initial conditions (2.7). To the implementa-
tion of the second initial condition one needs again the virtual point u−1

i ,

ut(xi, 0) = g(xi) =
u1

i − u−1
i

2△t
+ O(△t2).

With gi := g(xi) one can rewrite the last expression as

u−1
i = u1

i − 2△tgi + O(△t2),

and the second time row can be calculated as

u1
i = △tgi + (1 − α2)fi +

1

2
α2(fi−1 + fi+1), (2.11)

where u(xi, 0) = u0
i = f(xi) = fi.
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Stability analysis

The ansatz
εj+1

i = gjeikxi

leads to the following expression for the amplification factor g(k):

g2 = 2(1 − α2)g − 1 + 2α2g cos(k△x),

which after some transformations becomes just a quadratic equation for g:

g2 − 2βg + 1 = 0, (2.12)

where

β = 1 − 2α2 sin2
(k△x

2

)

.

Solutions read
g1,2 = β ±

√

β2 − 1.

If β > 1 then at least one of absolute value of g1,2 is bigger that one. Therefor
one should desire for β < 1, i.e.,

g1,2 = β ± i
√

β2 − 1

and
|g|2 = β2 + 1 − β2 = 1.

In this case the scheme is conditional stable. The stability condition reads

−1 ≤ 1 − 2α2 sin2

(

k△x

2

)

≤ 1,

what is equivalent to the standart Courant-Friedrichs-Lewy-Condition

α =
c△t

△x
≤ 1.

The number α is called the Courant number.

An implicit method

One can try to overcome the problems with conditional stability by intro-
ducing an implicit scheme. The simplest way to do it is just to replace all
terms on the right hand side of (2.9) by an average from the values to the
time steps j + 1 and j − 1, i.e,

uj+1
i − 2uj

i + uj−1
i

△t2
=

c2

2△x2

(

uj−1
i+1 − 2uj−1

i + uj−1
i−1 + uj+1

i+1 − 2uj+1
i + uj+1

i−1

)

.

(2.13)
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tj−1
u
xi−1

u

q qq

u uu

xi

u
xi+1

tj

tj+1
uj

Figure 2.2: Schematical visualization of the implicit numerical scheme (2.13)
for (2.2).

The schematical diagramm of the scheme (2.13) is shown on Fig. (2.1.2 )
Let us check the stability of (2.13). To this aim we use the standart

ansatz
εj+1

i = gjeikxi

leading to the equation for g(k)

βg2 − 2g + β = 0

with

β = 1 + α2 sin2

(

k△x

2

)

.

One can see that β ≥ 1 for all k. Hence the solutions g1,2 take the form

g1,2 =
1 ± i

√

1 − β2

β

and

|g|2 =
1 − (1 − β2)

β2
= 1.

Hence, the scheme (2.13) is absolute stable.
The question now is, whether the implicit scheme (2.13) is better than the

explicit scheme (2.10) form numerical point of view. To answer this question,
let us analyse dispersion relation for Eq. (2.2) as well as for both schemes
(2.10) and (2.13). Exact dispersion relation is

ω = ±ck,

i.e, all Fourier modes propagate without dispersion with the same phase
velocity ω/k = ±c.

Using the ansatz uj
i ∼ eikxi−iωtj for the explicit method (2.10) one obtains:

cos(ω△t) = 1 − α2(1 − cos(k△x)) (2.14)



20 CHAPTER 2. HYPERBOLIC PDE’S

while for the implicit method (2.13)

cos(ω△t) =
1

1 + α2(1 − cos(k△x))
(2.15)

One can see that for α → 0 both methods provide the same result, otherwise
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Figure 2.3: Dispersion relation for the explicit (blue curves) and implicit (red
curves) methods.

the explicit scheme always exceeds the implicit one (see Fig. (2.1.2)). For
α = 1 the scheme (2.10) becomes exact, while (2.13) deviates more and more
from the exact value of ω for increasing α. Hence, there are no motivation
to use implicit scheme instead of the explicit one.

2.1.3 Examples

Example 1.

Use the finite-difference method (2.10) to solve the wave equation for a vi-
brating string:

utt = 4uxx for x ∈ [0, L] and t ∈ [0, T ] (2.16)

with the boundary conditions

u(0, t) = 0 u(L, t) = 0.

Assume that the initial position and velocity are

u(x, 0) = f(x) = sin(πx), and ut(x, 0) = g(x) = 0.

Other parameters are:
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Space interval L=10
Space discretization step △x = 0.1
Time discretization step △t = 0.05
Amount of time steps T = 20

First one can find the d’Alambert solution. In the case of zero initial
velocity Eq. (2.8) becomes

u(x, t) =
f(x − 2t) + f(x + 2t)

2
=

sin π(x − 2t) + sin π(x + 2t)

2
= sin πx cos 2πt,

i.e., the solution is just a sum of a travelling waves with initial form, given
by f(x)

2
. Numerical solution of (2.17) is shown on Fig. (2.1.3).
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Figure 2.4: Space-time evolution of the initial distribution u(x, 0) = f(x),
ut(x, 0) = 0.

Example 2.

Solve Eq. (2.17) with the same boundary conditions. Assume now, that
initial distributions of position and velocity are

u(x, 0) = f(x) = 0 and ut(x, 0) = g(x) =











0, x ∈ [0, x1];

g0, x ∈ [x1, x2];

0, x ∈ [x2, L].

Other parameters are:
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Initial nonzero velocity g0=0.5
Initial space intervals x1 = L/4, x2 = 3L/4
Space interval L=10
Space discretization step △x = 0.1
Time discretization step △t = 0.05
Amount of time steps T = 400

Numerical solution of the problem is shown on Fig. (2.1.3).

Figure 2.5: Space-time evolution of the initial distribution u(x, 0) = 0,
ut(x, 0) = g(x).

Example 3. Vibrating String

Use the finite-difference method (2.10) to solve the wave equation for a vi-
brating string:

utt = c2uxx for x ∈ [0, L] and t ∈ [0, T ], (2.17)

where c = 1 with the boundary conditions

u(0, t) = 0 u(L, t) = 0.

Assume that the initial position and velocity are

u(x, 0) = f(x) = sin(nπx/L), and ut(x, 0) = g(x) = 0, n = 1, 2, 3, . . . .

Other parameters are:
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Space interval L=1
Space discretization step △x = 0.01
Time discretization step △t = 0.0025
Amount of time steps T = 2000

Usually a vibrating string produces a sound whose frequency is constant.
Therefore, since frequency characterizes the pitch, the sound produced is a
constant note. Vibrating strings are the basis of any string instrument like
guitar or cello. If the speed of propagation c is known, one can calculate the
frequency of the sound produced by the string. The speed of propagation of
a wave c is equal to the wavelength multiplied by the frequency f :

c = λf

If the length of the string is L, the fundamental harmonic is the one produced
by the vibration whose nodes are the two ends of the string, so L is half of
the wavelength of the fundamental harmonic, so

f =
c

2L

Solutions of the equation in question are given in form of standing waves.
The standing wave is a wave that remains in a constant position. This phe-
nomenon can occur because the medium is moving in the opposite direction
to the wave, or it can arise in a stationary medium as a result of interference
between two waves traveling in opposite directions (see Fig. (2.1.3))

2.1.4 Wave Equation in 2D

Example 1.

Use the standart five-point explicit method to solve a two-dimansional wave
equation

ut,t = c2(uxx + uyy), u = u(x, y, t)

on the rectangular domain [0, L]× [0, L] with Dirichlet boundary conditions.
Other parameters are:

Space interval L=1
Space discretization step △x = △y = 0.01
Time discretization step △t = 0.0025
Amount of time steps T = 2000
Initial condition u(x, y, 0) = 4x2y(1 − x)(1 − y)

Solution for two different times can be seen on Fig. (??).
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Figure 2.6: Standing waves in a string. The fundamental mode and the first
five overtones are shown. The red dots represent the wave nodes.

t = 0 t = 500

Figure 2.7: Numerical solution of the two-dimensional wave equation, shown
on two different times.
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2.2 Sine–Gordon equation

The sine-Gordon equation is a nonlinear hyperbolic partial differential equa-
tion involving the d’Alembert operator and the sine of the unknown function.
It was originally considered in the nineteenth century in the course of study
of surfaces of constant negative curvature. The equation grew greatly in im-
portance when it was realized that it led to solitons ( so-called ”kink“ and
”antikink“). The equation reads

utt − uxx + sin u = 0, (2.18)

where u = u(x, t). An interesting feature of the sine-Gordon equation is the
existence of soliton and multisoliton solutions. If we look for localized waves
of permanent profile of the form u = u(ξ) = u(x − ct), such as u → 0 and
du/dξ → 0, when ξ → 0 ±∞, the one-soliton solution can be calculated

u(x, t) = 4 arctan

(

exp
(

± x − ct√
1 − c2

)

)

. (2.19)

Equation (2.19) represents a localized solitary wave, travelling at any veloc-
ity |c| < 1. The ± signs correspond to localized solutions which are called
kink and antikink correspondenly (see Fig. 2.2).

-3 -2 -1 0 1 2 3
Ξ

1

2

3

4

5

6
u

Figure 2.8: Representation of the kink (blue) and antikink (red) solu-
tions (2.19)

The kink-kink collision solution has the form

u(x, t) = 4 arctan

(

c sinh
(

x√
1−c2

)

cosh
(

ct√
1−c2

)

)

(2.20)
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and describes the collision between two kinks with respective velocities c and
−c and approaching the origin from t → −∞ and moving away from it with
velocities ±c for t → ∞. Moreover, one can construct solution, corresponding
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u

Figure 2.9: The kink-kink collision, calculated at three different times: At
t = −7 (red curve) both kinks propagate with opposite velocities c = ±0.5;
At t = 0 they collide at the origin (green curve); At t = 10 (blue curve) they
move away from the origin with velocities c = ∓0.5.

to the kink-antikink coliision. The solution reads:

u(x, t) = 4 arctan

(

sinh
(

ct√
1−c2

)

c · cosh
(

x√
1−c2

)

)

(2.21)

The breather soliton solution, which is also called a breather mode or
breather soliton, is given by

uB(x, t) = 4 arctan

(
√

1 − ω2 sin(ωt)

ω cosh(
√

1 − ω2x)

)

(2.22)

which is periodic for frequencies ω < 1 and decays exponentially when moving
away from x = 0.

2.2.1 Numerical solution

A numerical scheme

Consider Eq. (2.18)
utt − uxx + sin(u) = 0

on the interval x ∈ [a, b] with initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x) (2.23)
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Figure 2.10: The breather solution, oscillating with the frequency ω = 0.2 ,
calculated for three different times t = 0 (red curve), t = 5 (green curve) and
t = 10 (blue curve).

and, e.g., no-flux boundary conditions

∂u

∂x

∣

∣

∣

∣

x=a,b

= 0.

Let us try to apply a simple explicit scheme (2.10) to Eq. (2.18). The dis-
cretization scheme reads

uj+1
i = −uj−1

i + 2(1 − α2)uj
i + α2(uj

i+1 + uj
i−1) −△t2 sin(uj

i ) (2.24)

with α = △t/△x, i = 0, . . . , M and t = 0, . . . , T .

To the implementation of the second initial condition one needs again the
virtual point u−1

i ,

ut(xi, 0) = g(xi) =
u1

i − u−1
i

2△t
+ O(△t2).

So, one can rewrite the last expression as

u−1
i = u1

i − 2△tg(xi) + O(△t2),

and the second time row can be calculated as

u1
i = △tg(xi) + (1 − α2)f(xi) +

1

2
α2(f(xi−1) + f(xi+1)) −

△t2

2
sin(f(xi)).

(2.25)
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No-flux boundary conditions lead to the expressions for two virtual space
points uj

−1 and uj
M+1:

∂u

∂x

∣

∣

∣

∣

x=a

= 0 ⇔ uj
1 − uj

−1

2△x
= 0 ⇔ uj

−1 = uj
1;

∂u

∂x

∣

∣

∣

∣

x=b

= 0 ⇔ uj
M − uj

M+1

2△x
= 0 ⇔ uj

M+1 = uj
M ;

One can try to rewrite the differential scheme to more general matrix form.
In matrix notation the second time-row is given by

u1 = △tγ1 + Au0 − △t2

2
β1, (2.26)

where

γ1 =
(

g(a), g(x1), g(x2), . . . , g(xM−1), g(b)
)T

and

β1 =
(

sin(u0
0), sin(u0

1), . . . , sin(u0
M−1), sin(u0

M)
)T

are M + 1-dimensional vectors and A is a tridiagonal square M + 1×M + 1
matrix of the form

A =















1 − α2 α2 0 . . . 0
α2/2 1 − α2 α2/2 . . . 0

0 α2/2 1 − α2 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . α2 1 − α2















The boxed elements indicate the influence of boundary conditions. Other
time rows can also be written in the matrix form as

uj+1 = −uj−1 + Buj −△t2β, j = 1, . . . , T − 1 (2.27)

Here

β =
(

sin(uj
0), sin(uj

1), . . . , sin(uj
M−1), sin(uj

M)
)T

is a M + 1-dimensional vector and B is a square matrix, defined by an
equation

B = 2A.
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Examples

Solve Eq. (2.18) on the interval [−L, L] using the following parameters:

Space interval L=20
Space discretization step △x = 0.1
Time discretization step △t = 0.05
Amount of time steps T = 1800
Velocity of the kink c = 0.2

Initial conditions are

a) Kink solution:

f(x) = 4 arctan

(

exp
( x√

1 − c2

)

)

,

g(x) = −2
c√

1 − c2
sech(

x√
1 − c2

).

Figure 2.11: Space-time plot of the kink, moving with the velocity c = 0.2

b) Antikink solution:

f(x) = 4 arctan

(

exp
(

− x√
1 − c2

)

)

,

g(x) = −2
c√

1 − c2
sech(

x√
1 − c2

).
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Figure 2.12: Space-time plot of the antikink, moving with the velocity c = 0.2

c) Kink-kink colision:

f(x) = 4 arctan

(

exp
(x + L/2√

1 − c2

)

)

+ 4 arctan

(

exp
(x − L/2√

1 − c2

)

)

,

g(x) = −2
c√

1 − c2
sech(

x + L/2√
1 − c2

) + 2
c√

1 − c2
sech(

x − L/2√
1 − c2

).

Figure 2.13: Space-time representation of kink-kink collision
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d) Kink-antikink colision:

f(x) = 4 arctan

(

exp
(x + L/2√

1 − c2

)

)

+ 4 arctan

(

exp
(

−x − L/2√
1 − c2

)

)

,

g(x) = −2
c√

1 − c2
sech(

x + L/2√
1 − c2

) − 2
c√

1 − c2
sech(

x − L/2√
1 − c2

).

Figure 2.14: Space-time representation of kink-antikink collision

e) Breather solution:

f(x) = 0,

g(x) = 4
√

1 − c2sech(x
√

1 − c2)
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Figure 2.15: The breather solution, oscillating with the frequency ω = 0.2



Chapter 3

Parabolic PDE’s

3.1 Diffusion Equation

The diffusion equation is a partial differential equation which describes den-
sity fluctuations in a material undergoing diffusion. The equation can be
written as:

∂u(r, t)

∂t
= ∇ ·

(

D(u(r, t), r)∇u(r, t)
)

, (3.1)

where u(r, t) is the density of the diffusing material at location r = (x, y, z)
and time t. D(u(r, t), r) denotes the collective diffusion coefficient for density
u at location r. If the diffusion coefficient doesn’t depend on the density, i.e.,
D is constant, then Eq. (3.1) reduces to the following linear equation:

∂u(r, t)

∂t
= D∇2u(r, t). (3.2)

Equation (3.2) is also called the heat equation, which describes the distribu-
tion of heat in a given region over time.

Equation (3.2) can be derived in a straightforward way from the continuity
equation, which states that a change in density in any part of the system is
due to inflow and outflow of material into and out of that part of the system.
Effectively, no material is created or destroyed:

∂u

∂t
+ ∇ · Γ = 0,

where Γ is the flux of the diffusing material. Equation (3.2) can be ob-
tained easily from the last equation when combined with the phenomenolog-
ical Fick’s first law, which assumes that the flux of the diffusing material in
any part of the system is proportional to the local density gradient:

Γ = −D∇ u(r, t).

33
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3.1.1 Diffusion equation in 1D

Consider the solution of the diffusion equation in one dimension:

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
(3.3)

on the interval x ∈ [0, L] with initial condition

u(x, 0) = f(x), ∀x ∈ [0, L] (3.4)

and Dirichlet boundary conditions

u(0, t) = u(L, t) = 0 ∀ t > 0. (3.5)

Analytical solution

Let us attempt to find a nontrivial solution of (3.3) satisfying the boundary
conditions (3.5) using separation of variables, i.e., one makes an ansatz

u(x, t) = X(x)T (t).

Substituting u back into Eq. (3.3) one obtains:

1

D

T ′(t)

T (t)
=

X ′′(x)

X(x)
.

Since the right hand side depends only on x and the left hand side only
on t, both sides are equal to some constant value −λ (− sign is taken for
convenience). Hence one can rewrite the last equation as a system of two
ODE’s:

X ′′(x) + λX(x) = 0, (3.6)

T ′(t) + DλT (t) = 0. (3.7)

Taking into account boundary conditions (3.5) one obtains (T (t) 6= 0 as we
are loocking for nontrivial solutions)

u(0, t) = X(0)T (t) = 0 ⇒ X(0) = 0,

u(L, t) = X(L)T (t) = 0 ⇒ X(L) = 0.

Hence the problem of finding of the solution reduces to the solving of linear
ODE and consideration of three different cases with respect to the sign of λ:
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1. λ < 0:
X(x) = C1e

√
−λx + C2e

−
√
−λx.

Taking into account the boundary conditions one get C1 = C2 = 0, so
only trivial solution exists for λ < 0.

2. λ = 0:
X(x) = C1x + C2

With account of boundary conditions one gets again only trivial solu-
tion of the problem (C1 = C2 = 0).

3. λ > 0:
X(x) = C1 cos(

√
λx) + C2 sin(

√
λx).

Substituting of the boundary conditions leads to the following equations
for the constants C1 and C2:

X(0) = C1 = 0,

X(L) = C2 sin(
√

λL) = 0 ⇒ sin(
√

λL) = 0 ⇒ λn =

(

πn

L

)2

, n = 1, 2, . . . .

Hence
X(t) = Cn sin

(πn

L
x
)

Then the equation for the function T (t) takes the form:

T ′(t) + D
(πn

L

)

T (t) = 0 ⇒ T (t) = Bnexp
(

−D
(πn

L

)2
t
)

,

where Bn is constant. Altogether, the general solution of the problem can
be written as

u(x, t) =

∞
∑

n=1

An sin
(πn

L
x
)

e−D
(

πn
L

)2

t, An = const.

In order to find An one can use initial condition (3.4). Indeed, if we write
the function f(x) as a Fourier series, we obtain:

f(x) =

∞
∑

n=1

Fn sin
(πn

L
x
)

=

∞
∑

n=1

An sin
(πn

L
x
)

,

An = Fn =
2

L

∫ L

0

f(ξ) sin
(πn

L
ξ
)

dξ.

Hence the genetal solution of Eq. (3.3) reads:

u(x, t) =

∞
∑

n=1

(

2

L

∫ L

0

f(ξ) sin
(πn

L
ξ
)

dξ

)

sin
(πn

L
x
)

e−D
(

πn
L

)2

t. (3.8)
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3.1.2 Numerical methods

A simple explicit method (FTCS)

Consider Eq. (3.3) with initial condition (3.4). The first simple idea is a
simple explicit FTCS method (Forward in Time, Central in Space) (see
Fig. (3.1.2)):

uj+1
i − uj

i

△t
= D

uj
i+1 − 2uj

i + uj
i−1

△x2

or, with α = D △t
△x

uj+1
i = (1 − 2α)uj

i + α(uj
i+1 + uj

i−1) (3.9)

u uu

6

tjQ
Q

QQk

�
�

��3
tj+1

u

Figure 3.1: Schematical representation of the FTCS finite difference scheme
for solving the 1-d diffusion equation

Applying the von Neumann analysis to this system by considering a single
Fourier mode in x space, we obtain the equation for the amplification factor
g(k):

g2 = (1 − 2α)g + 2gα cos(k△x),

from which

g(k) = 1 − 4α sin2 k△x

2
.

The condition that the method is stable for all k gives

|g(k)| ≤ 1 ∀ k ⇔ α ≤ 1

2
⇔ △t ≤ 1

2

△x2

D
. (3.10)

Although the method (3.9) is in fact conditionally stable the stability condi-
tion (3.10) hides an uncomfortable property: a doubling of the spatial resolu-
tion △x requires a simultaneous reduction in the time-step △t by a factor of
four in order to maintain numerical stability. Certainly, the above constraint
limits us to absurdly small time-steps in high resolution calculations.

Another point to emphasize is the numerical dispersion. Indeed, let us
compare the exact dispersion relation for Eq. (3.3) and relation, obtained by
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means of (3.9). If we consider the perturbations in form exp(ikx − iωt) the
dispersion relation for Eq. (3.3) reads

iω = Dk2.

On the other hand, the FTCS scheme (3.3) leads to the following relation

eiω△t = 1 − 4α sin2
(k△x

2

)

,

or, in other words

iω△t = − ln

(

1 − 4α sin2
(k△x

2

)

)

The comparison between exact and numerical relations is shown on Fig. (3.1.2).
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Figure 3.2: Dispersion relation by means of the scheme (3.9) for different
values of α, compared with the exact relation for Eq. (3.3).

One can see, that both relations are in good agreement only for k△x ≪ 1.
For α > 0.25 the method is stable, but the values of ω can be complex, i.e.,
the Fourier modes drops off, performing damped oscillations (see Fig. (3.1.2)
for α = 0.3 and α = 0.4). If we try now to make the time step smaler, in the
limit △t → 0 (or α → 0) we obtain

iω△t ≈ 4α sin2
(k△x

2

)

= k2D△t
sin2

(

k△x
2

)

(

k△x
2

)2 ,

i.e., we get the correct dispersion relation only if the space step △x is small
enougth as well.
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Richardson Method

The first ideais to try to improve the approximation order of the scheme
using the central diferences for the time derivative as well, namely

uj+1
i − uj−1

i

2△t
= D

uj
i+1 − 2uj

i + uj
i−1

△x2
,

or, with α = D△t/△x

uj+1
i = uj−1

i + 2α
(

uj
i+1 − 2uj

i + uj
i−1

)

(3.11)

Unfortunately, one can show that the scheme (3.11) is unconditional un-
stable. Indeed, amplification factor g(k) in this case fulfills the following
equation:

g2 + 2βg − 1 = 0, β = 4α sin2 k△x

2
,

giving
g1,2 = −β ±

√

β2 + 1.

Since |g2(k)| > 1 ∀k, the scheme (3.11) is unconditional unstable.

DuFort-Frankel Method

Let us consider one of many alternative algorithms which have been designed
to overcome the stability problems of the simple FTCS and Richardson meth-
ods. We modify Eq. (3.9) to read (see Fig. (3.1.2))

uj+1
i − uj−1

i

2△t
= D

uj
i+1 − 2

uj+1

i +uj−1

i

2
+ uj

i−1

△x2
,

which can be solved explicitly for uj+1
i :

uj+1
i =

1 − α

1 + α
uj−1

i +
α

1 + α

(

uj
i+1 + uj

i−1

)

, (3.12)

where α = 2D△t/△x.
When the usual von Neumann analysis is applied to (3.12), the amplifi-

cation factor g(k) can be found from

(1 + α)g2 − 2gα cos(k△x) + (α − 1) = 0.

It can be easily shown, that stability condition is fulfilled for all values of
α, so the method (3.12) is unconditionally stable. However, this does not
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Figure 3.3: Schematical representation of the DuFort-Frankel method (3.12).

imply that △x and △t can be made indefinitely large; we must still worry
about the accuracy of the method. Indeed, consider the Taylor expansion for
Eq. (3.3) by means of (3.12):

uj+1
i − uj−1

i

2△t
= D

uj
i+1 − uj+1

i − uj−1
i + uj

i−1

△x2
⇔

ut −
△x2

3!
uttt + . . . =

D

△x2

(

△x2uxx +
2△x4

4!
uxxxx −△t2utt −

2△t4

4!
utttt + . . .

)

⇔

ut + O(△t2) = Duxx + O(△x2) − D

(△t2

△x2

)

utt + O
(△t4

△x2

)

.

In other words, the method (3.12) has order of accuracy

O
(

△t2, △x2,
△t2

△x2

)

.

For cosistency, △t/△x → 0 as △t → 0 and △x → 0, so (3.12) is inconsistent.
This constitutes an effective restriction on △t. For large △t, however, the
scheme (3.12) is consistent with another equation of the form

Dutt + ut = Duxx.

A simple implicit method (BTCS)

One can try to overcome problems, described above by introducing an im-
plicit method. The simplest example is a BTCS (Backward in Time, Central
in Space) method (see (3.1.2)). The differential scheme reads:

uj+1
i − uj

i

△t
= D

uj+1
i+1 − 2uj+1

i + uj+1
i−1

△x2
+ O(△t, △x2),

or, with α = D△t/△x

−uj
i = αuj+1

i+1 − (1 + 2α)uj+1
i + αuj+1

i−1 . (3.13)
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Figure 3.4: Schematical representation of the BTCS method (3.13).

In this case the amplification factor g(k) is given by

g(k) =

(

1 + 4α sin2 k△x2

2

)−1

.

That is, the scheme (3.13) is unconditionally stable. However, the method
has order of accuracy O(△t, △x2), i.e., first order in time, and second in
space. Is it possible to improve it? The answer to is given below.

Crank-Nicolson Method

An implicit scheme, introduced by John Crank and Phyllis Nicolson in the
mid 20th century is based on the central approximation of Eq. (3.3) at the
point (xi, tj + 1

2
△t) (see Fig. (3.1.2)):

un+1
i − un

i

2△t
2

= D
u

t+ 1

2

i+1 − 2u
t+ 1

2

i + u
t+ 1

2

i−1

△x2
.

The approximation used for the space derivative is just an average of ap-

tj−1
q
xi−1

u uu
xi

q
xi+1

tj+ 1

2

tj+1
u u u

Figure 3.5: Schematical representation of the Crank-Nicolson method (3.14).

proximations in points (xi, tj) and (xi, tj+1):

un+1
i − un

i

△t
= D

(un+1
i+1 − 2un+1

i + un+1
i−1 ) + (un

i+1 − 2un
i + un

i−1)

2△x2
.

Introducing α = D△t/△x one can rewrite the last equation as

−αun+1
i+1 + 2(1 + α)un+1

i − αun+1
i−1 = αun

i+1 + 2(1 − α)un
i + αun

i−1. (3.14)



3.1. DIFFUSION EQUATION 41

The terms on the right-hand side of Eq. (3.14) are all known. Hence the equa-
tions in (3.14) form a tridiagonal linear system Au = b. The amplification
factor for Eq. (3.14) reads

g(k) =
1 − α(1 − cos k△x)

1 + α(1 − cos k△x)
.

Since α and 1− cos k△x are positive, the denominator of the last expression
is always greater than the numerator. That is, the absolute value of g is less
than one, i.e., the method (3.14) is unconditionaly stable.

3.1.3 Examples

Example 1: Use the FTCS explicit method to solve the one-dimensional heat
equation

ut = uxx,

on the interval x ∈ [0, L], if the initial heat distribution is u(x, 0) = f(x)
and the temperature on both ends of the interval is given as u(0, t) = Tl,
u(L, t) = Tr.

Space interval L = 1
Amount of space points M = 10
Amount of time steps T = 30
Boundary conditions Tl = Tr = 0
Initial heat distribution f(x) = 4x(1 − x)

Example 2: Use the Crank-Nicolson method to solve the one-dimensional
heat equation

ut = 1.44 uxx,

on the interval x ∈ [0, L], if the initial heat distribution is u(x, 0) = f(x)
and the temperature on both ends of the interval is given as u(0, t) = Tl,
u(L, t) = Tr.

Space interval L=1
Space discretization step △x = 0.1
Time discretization step △t = 0.05
Amount of time steps T = 15
Boundary conditions Tl = 2, Tr = 0.5
Initial heat distribution f(x) = 2 − 1.5x + sin(πx)

Solution of the problem is shown on Fig. (3.1.3).
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Figure 3.6: Contour plot of the heat distribution after the time T = 30,
calculated with FTCS method.

Example 3: Use the implicit BTCS method to solve the one-dimensional dif-
fusion equation

ut = uxx,

on the interval x ∈ [−L, L], if the initial distribution is a Gauss pulse of the
form u(x, 0) = exp(−x2) and the density on both ends of the interval is given
as ux(−L, t) = ux(L, t) = 0.

Space interval L = 5
Space discretization step △x = 0.1
Time discretization step △t = 0.05
Amount of time steps T = 200

Solution of the problem is shown on Fig. (3.1.3).

3.2 Reaction-diffusion equations in 1D

Reaction-diffusion (RD) equations arise naturally in systems consisting of
many interacting components, (e.g., chemical reactions) and are widely used
to describe pattern-formation phenomena in variety of biological, chemical
and physical systems. The principal ingredients of all these models are equa-
tion of the form

∂tu = D∇2u + R(u), (3.15)

where u = u(r, t) is a vector of concentration variables, R(u) describes as
before a local reaction kinetics and the Laplace operator ∇2 acts on the
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Figure 3.7: Contour plot of the heat distribution, calculated with the Crank-
Nicolson method.

vector u componentwise. D denotes a diagonal diffusion coefficient matrix.
Note that we suppose the system (3.15) to be isotropic and uniform, so D is
represented by a scalar matrix, independent on coordinates.

In the following subsections we discuss different nontrivial solutions of
this system for different number of components, starting with the case of one
component RD system in one spatial dimension, namely

ut = Duxx + R(u),

where D = const. Suppose, that initial distribution u(x, 0) is given on the
whole space interval x ∈ (−∞, +∞) and assume that

u(−∞, t) = u−, u(+∞, t) = u+,

where u± are stable steady state solutions of the equation in question,i.e,
solutions of R(u) = 0.

3.2.1 FKPP-Equation

Investigation in this field starts form the classical papers of Fisher (1937)
and Kolmogorov, Petrovsky and Piskunoff (1937) motivated by population
dynamics issues, where authors arrived at a modified diffusion equation:

∂tu(x, t) = D∂2
xu(x, t) + R(u), (3.16)

with a nonlinear source term R(u) = u − u2. A typical solution of the
Eq. (3.16) is a propagating front, separating two non-equilibrium homoge-
neous states, one of which (u = 1)is stable and one of which (u = 0) is
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Figure 3.8: Contour plot of the diffusion of the initial Gauss pulse, calculated
with the BTCS implicit method.

unstable. Such fronts behavior is often said to be front propagation into un-
stable state and fronts as such are referred to as waves (or fronts) of transition
from an unstable state.

It is known that for Eq. (3.16) the propagating front always relaxes to a
unique shape and velocity

c∗ = 2
√

D, (3.17)

if the initial profile is well-localized.

Numerical method

Let us consider Eq. (3.16) and suppose that initial distribution u(x, 0) =
f(x) as well as no-flux boundary conditions are given. We can try to apply
an implicit BTCS-method for the linear part of the equation, taking the
nonlinearilty explicitly, i.e.,

uj+1
i − uj

i

△t
= D

uj+1
i+1 − 2uj+1

i + uj+1
i−1

△x2
+ R(uj

i ),

where R(uj
i ) = uj

i − (uj
i )

2. We can rewrite the last equation to the matrix
form

Aun+1 = un + △t · R(un), (3.18)
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where matrix A is a tridiagonal M + 1 × M + 1 matrix of the form

A =













1 + 2α −2α 0 . . . 0
−α 1 + 2α −α . . . 0
0 −α 1 + 2α . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . −2α 1 + 2α













,

α = D△t/△x2. The boxed elements indicate the influence of boundary
conditions.

Example

Let us solve Eq. (3.16) on the interval x ∈ [−L, L] with the method 3.18.
Parameters are:

Space interval L = 50
Space discretization step △x = 0.2
Time discretization step △t = 0.05
Amount of time steps T = 800
Diffusion coefficient D = 1

Initial distribution f(x) = 0.05e−5x2

Numerical solution for six different times is shown on Fig. (3.2.1). One can
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Figure 3.9: Numerical solution of (3.16) calculated with the method (3.18)
for six different times t = 0, 100, 200, 400, 600, 800.

see, that a small local initial fluctuation leads to an instability, that develops
in a nonlinear way: a front propagates away from the initial perturbation.
Finally the uniform stable state with u = 1 is established on the whole space
interval.
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3.2.2 Switching waves

Another important class of one-component RD systems is so-called bistable
systems. They possess two stable states, say u = u− and u = u+, sepa-
rated by an unstable state u = u0. The fundamental form of a pattern in
bistable infinite one-component media is a trigger wave, which represents a
propagating front of transition from one stationary state into the other. In
the literature other nomenclature, e.g., switching waves is also used. The
propagation velocity of a flat front is uniquely determined by the properties
of the bistable medium. Indeed, moving to a frame moving with a constant
velocity ξ := x − ct, and considering partial solution of the form u = u(ξ)
one obtains equation

Duξξ + cuξ + R(u) = 0

with boundary conditions

u(ξ → −∞) = u−, u(ξ → +∞) = u+.

Introducing the potential R(u) = ∂V (u)
∂u

one can show that in this situation
the velocity of the front can be determined as

c =
V (u+) − V (u−)

+∞
∫

−∞
(uξ)2dξ

.

The numerator of the last equation uniquely defines the velocity direction.
In particular, if V (u+) = V (u−) the front velocity equals zero, so station-
ary front is also a solution in bistable one-component media. However, the
localized states in form of a domain, which can be produced by a connec-
tion of two fronts propagating in opposite directions, are normally unstable.
Indeed, for the arbitrary choice of parameters one state (V (u+) or V (u−))
will be dominated. This causes either collapse or expansion of the two-front
solution.

Example 1: Zeldovich Equation

An example of bistable system is the Zeldovich–Frank–Kamenetsky–equation,
describing, e.g., the flame propagation

ut = Duxx + u(1 − u)(u − β), β ∈ (0, 1). (3.19)

Let us solve Eq. (3.20) on the interval x ∈ [−L, L] with no-flux boundary
conditions by means of numerical scheme (3.18). Other parameters are:
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Space interval L = 10
Space discretization step △x = 0.04
Time discretization step △t = 0.05
Amount of time steps T = 150
Diffusion coefficient D = 1

Consider four different cases:

a) Moving fronts: β = 0.8;

b) Moving fronts: β = 0.1 Initial distribution:

u(x, 0) =

{

u−, for x ∈ [−L, 0]

u+, for x ∈ (0, L]

c) Front collision: β = 0.8;

d) Front scattering: β = 0.1 Initial distribution:

u(x, 0) =











u−, for x ∈ [−L, −L/3]

u+, for x ∈ (−L/3, L/3)

u−, for x ∈ [L/3, L]

Results of the numerical calculation is shown on Fig. (3.2.2).

Example 2: Stationary fronts

Consider a one-dimensional RD equation, describing a bistable media

ut = Duxx + u(1 − u2), (3.20)

x ∈ [−L, L]. Equation (3.20) has three steady state solutions: two stable
u± = ±1, separated with an unstable state u0 = 0. One can calculate the
potential values at u = u±,

V (u−) = V (u+) ⇒ c = 0.

That is, a stationary front, connecting stable steady state is expected to be
a solution. Moreover, one can constuct a localized pulse by a connection of
two stable fronts. The form of the stationary front can be found analytically,
namely

u(x) = tanh

(

x − x0√
2D

)

.

From numerical point of view one can use the scheme (3.18) for R(u) = u−u3.
Parameters are
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a) b)

c) d)

Figure 3.10: Numerical solution of Eq. (3.20), calculated in four different
cases. a) a moving front, β = 0.8; b) a moving front, β = 0.1; c) collision of
two fronts, β = 0.8; d) scattering of two fronts. β = 0.1.
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Figure 3.11: Numerical solution of Eq. (3.20). a) Stable stationary front. b)
A stable stationary pulse.

Space interval L = 10
Space discretization step △x = 0.04
Time discretization step △t = 0.05
Amount of time steps T = 100
Diffusion coefficient D = 1

Initial distribution:

a) Stationary Front:

u(x, 0) =

{

u−, for x ≤ 0

u+, for x > 0

b) Stationary Pulse:

u(x, 0) =











u−, for x ∈ [−L, −L/4]

u+, for x ∈ (−L/4, L/4)

u−, for x ∈ [L/4, L]

Solutions for both cases are shown on Fig. (3.3.3)

3.3 Diffusion equation in 2D

Let us consider the solution of the diffusion equation in two dimensions

∂u

∂t
= D

(

∂2u

∂x2
+

∂2u

∂y2

)

, (3.21)
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where u = u(x, y, t), x ∈ [ax, bx], y ∈ [ay, by]. Suppose, that the inittial
condition is given and function u satisfies boundary conditions in x- and in
y-directions.

As before, we discretize in time on the uniform grid tn = t0 + n△t,
n = 0, 1, 2, . . .. Futhermore, in the x-direction, we discretize on the uniform
grid xi = x0 + i△x, i = 0, M + 1, △x = (bx − ax)/(M + 1), whereas in the
y-direction we also consider the uniform grid yj = y0 + j△y, i = 0, N + 1,
△y = (by − ay)/(N + 1).

3.3.1 FTCS method in 2D

In the case of two dimensions the explicit FTCS scheme reads

un+1
ij − un

ij

△t
= D

(

un
i+1j − 2un

ij + un
i−1j

△x2
+

un
ij+1 − 2un

ij + un
ij−1

△y2

)

,

or with α = D△t/△x2 and β = D△t/△y2

un+1
ij = α(un

i+1j + un
i−1j) + β(un

ij+1 + un
ij−1) + (1 − 2α − 2β)un

ij. (3.22)

The ansatz
εn

ij = gnei(kxxi+kyxj)

leads to the following relation for the amplification factor g(k)

g(k) = 1 − 4α sin2

(

kx△x

2

)

− 4β sin2

(

ky△y

2

)

In this case the stability condition reads

α + β ≤ 1

2
(3.23)

This stability condition imposes a limit on the time step:

△t ≤ △x2△y2

2D(△x2 + △y2)
.

In particular for the case △x = △y we have

△t ≤ △x2

4D
,

wich is more restrictive than in the one-dimensional case.
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3.3.2 BTCS method in 2D

To overcome the stability restriction, we can use an implicit BTCS scheme
in the two-dimensional case. The scheme reads:

un+1
ij − un

ij

△t
= D

(

un+1
i+1j − 2un+1

ij + un+1
i−1j

△x2
+

un+1
ij+1 − 2un+1

ij + un+1
ij−1

△y2

)

,

or

−α(un+1
i+1j + un+1

i−1j) + (1 + 2α + 2β)un+1
ij − β(un+1

ij+1 + un+1
ij−1) = un

ij (3.24)

Let us consider the approximation (3.24) on the 5 × 5 grid, i.e., i = j =
0, . . . , 4. Moreover, suppose that Dirichlet boundary conditions are given,
that is, all values u0j , u4j, ui0, ui4 are known. Suppose also that n = 1 and
define γ = 1 + 2α + 2β. Then the approximation above leads to the neun
algebraic equations:

−αu2
21 + γu2

11 − βu2
12 = u1

11 + αu2
01 + βu2

10,

−αu2
22 + γu2

12 − β(u2
13 + u2

11) = u1
12 + αu2

02,

−αu2
23 + γu2

13 − βu2
12 = u1

13 + αu2
03 + βu2

14,

−α(u2
31 + u2

11) + γu2
21 − βu2

22 = u1
21 + βu2

20,

−α(u2
32 + u2

12) + γu2
22 − β(u2

23 + u2
21) = u1

22,

−αu2
21 + γu2

31 − βu2
32 = u1

31 + αu2
41 + βu2

30,

−αu2
22 + γu2

32 − β(u2
33 + u2

31) = u1
32 + αu1

42,

−αu2
23 + γu2

33 − βu2
32 = u1

33 + αu2
44 + βu2

34.

Formally, one can rewrite the system above to the matrix form Au = b,
i.e.,




























γ −β 0 −α 0 0 0 0 0
−β γ −β 0 −α 0 0 0 0
0 −β γ 0 0 −α 0 0 0
−α 0 0 γ −β 0 −α 0 0
0 −α 0 −β γ −β 0 −α 0
0 0 −α 0 −β γ 0 0 −α
0 0 0 −α 0 0 γ −β 0
0 0 0 0 −α 0 −β γ −β
0 0 0 0 0 −α 0 −β γ

























































u2
11

u2
12

u2
13

u2
21

u2
22

u2
23

u2
31

u2
32

u2
33





























=





























u1
11 + αu2

01 + βu2
10

u1
12 + αu2

02

u1
13 + αu2

03 + βu2
14

u1
21 + βu2

20

u1
22

u1
23 + βu2

24

u1
31 + αu2

41 + βu2
30

u1
32 + αu2

42

u1
33 + αu1

44 + βu2
34





























The matrix A is a five-band matrix. Nevertheless, despite of the fact that the
scheme is absolute stable, two of five bands are desposed so far apart from
the main diagonal, that simple O(n) algorithms like TDMA are difficult or
even impossible to apply.
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Figure 3.12: Numerical solution of Eq. (3.20). a) Stable stationary front. b)
A stable stationary pulse.

3.3.3 ADI method

The idea of the ADI-method (alternating direction implicit) is to alternate
direction and thus solve two one-dimensional problem at each time step. The
first step keeps y-direction fixed:

u
n+1/2
ij − un

ij

△t/2
= D

(

u
n+1/2
i+1j − 2u

n+1/2
ij + u

n+1/2
i−1j

△x2
+

un
ij+1 − 2un

ij + un
ij−1

△y2

)

.

In the second step we keep x-direction fixed:

un+1
ij − u

n+1/2
ij

△t/2
= D

(

u
n+1/2
i+1j − 2u

n+1/2
ij + u

n+1/2
i−1j

△x2
+

un+1
ij+1 − 2un+1

ij + un+1
ij−1

△y2

)

.

Both equations can be written in a triadiagonal form. Define

α =
D△t

2△x2
, β =

D△t

2△y2
.

Than we get:

−αu
n+1/2
i+1j + (1 + 2α)u

n+1/2
ij − αu

n+1/2
i−1j = βun

ij+1 + (1 − 2β)un
ij + βun

ij−1

−βun+1
ij+1 + (1 + 2β)un+1

ij − βun+1
ij−1 = αu

n+1/2
i+1j + (1 − 2α)u

n+1/2
ij + αu

n+1/2
i+1j

Instead of five-band matrix in BTCS method, here each time step can be
obtained in two sweeps. Each sweep can be done by solving a tridiagonal
system of equations. The ADI-method is second order in time and space and
is absolute stable (however, the ADI in 3D is conditional stable only).
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Figure 3.13: Numerical solution of the two-dimensional diffusion equation 3.2
four four different times. a) t=0; b) t=10; c) t=20; d) t=40.

3.3.4 Examples

Use the ADI method to solve the one-dimensional diffusion equation

∂tu(r, t) = △u(r, t),

where u = u(r, t), r ⊆ R
2 on the interval r ∈ [0, L] × [0, L], if the initial

distribution is a Gauss pulse of the form u(x, 0) = exp(−20(x−L/2)2−20(y−
L/2)2) and the density on both ends of the interval is given as ur(0, t) =
ur(L, t) = 0.

Space interval L = 1
Amount of points M = 100, (△x = △y)
Time discretization step △t = 0.001
Amount of time steps T = 40

Solution of the problem is shown on Fig. (3.3.4).
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3.3.5 Two-component RD systems: Turing bifurcation

A Turing instability (or bifurcation) involves the destabilization of a homo-
geneus solution to form a static periodic spatial pattern (Turing pattern),
whose wavelength depends on the local reaction kinetic parameters, diffu-
sion coefficients of the system and is its intrinsic property. The hypothesis
that just a difference in diffusion constants of components could be enough
to destabilize the homogeneous solution was put forward by A. M. Turing
in 1952 [?]. By studying the problem of biological morphogenesis he showed
that a reaction-diffusion system with a different diffusion constants can au-
tonomously produce stationary spatial patterns.

We start our analysis of Turing instability from by considering a reaction-
diffusion system in general form, restricting ourself first to the case of two
components, i.e.,

∂tu = D∇2u + R(u) (3.25)

where u = u(r, t) = (u, v)T is a vector of concentration variables, R(u) =
(f(u, v), g(u, v))T describes as before a local reaction kinetics and the Laplace
operator ∇2 acts on the vector u componentwise. D denotes a diagonal
diffusion coefficient matrix,

D =

(

Du 0
0 Dv

)

.

Note that we suppose the system 3.25 to be isotropic and homogeneous, so
D is a scalar matrix, independent on coordinates.

Let u0 = (u0, v0)
T be a homogeneous solution (or steady-state solution)

of the system (3.25), i.e. f(u0, v0) = g(u0, v0) = 0. Suppose that this solution
is stable in absence of diffusion, namely the real parts of all eigenvalues of
the Jacobi matrix

A = (∂R/∂u)u=u0
=

(

fu fv

gu gv

)

describing the local dynamics of the system (3.25) are less that zero. For the
case of a 2×2 matrix this is equivalent to the simple well-known condition
for the trace and the determinant of the matrix A (Vite’s formula), namely

Sp(A) = λ1 + λ2 = fu + gv < 0

det(A) = λ1λ2 = = fugv − fvgu > 0.
(3.26)

Keeping Eq. (3.26) in mind let us see if the presence of diffusion term can
change the stability of u0. To this end, consider a small perturbation ũ, i.e.
u = u0 + ũ and the corresponding linear equation for it:

∂tũ = D∇2ũ + Aũ. (3.27)
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After decomposition ũ into modes ũ ∼ akeikr we get the equation

ȧk = Bak, (3.28)

where B = A − k2D.
As we have previously mentioned the stability conditions for the sys-

tem (3.28) with a 2×2 matrix B can be written as:

Sp(B) < 0 ∀k

det(B) > 0 ∀k,
(3.29)

where

Sp(B) = −(Du + Dv)k
2 + Sp(A), (3.30)

det(B) = DuDvk
4 − (Dugv + Dvfu)k

2 + det(A). (3.31)

Notice, that for k = 0 the conditions (3.29) are equivalent to the sta-
bility criterion (3.26) for the local dynamics. In particular this implies that
Sp(B) < 0 for all k (see gray curve in Fig. 3.3.5 for illustration), so the in-
stability of the homogeneous solution can occur only due to violation of the
second condition (3.29), that is, det(B) should be equal to zero for some k. It
means that the instability occur at the point where the equation det(B) = 0
has a multiple root. To find it we can simply calculate a minimum of the
function T (k) = det(B).

T ′(k) = 4DuDvk
3 − 2(Dugv + Dvfu)k = 0 ⇒ k2 =

1

2

(

fu

Du
+

gv

Dv

)

From the last equation can be seen that the described above situation is
possible if

Dugv + Dvfu > 0 (3.32)

In this case the critical wavenumber is

kc =

√

1

2

(

fu

Du

+
gv

Dv

)

(3.33)

and instability occurs on condition that

T (kc) ≤ 0 ⇔ k4
c =

(

1

2

(

fu

Du

+
gv

Dv

))2

>
detA

DuDv

(3.34)

The instability scenario, described above is illustrated in Fig. 3.3.5, where
three different cases of dependence of the function T (k) = det(B) on the wave
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Figure 3.14: Three different cases of dependence of the function T (k) =
det(B) on the wave vector k are presented. (a) the function T (k) has no roots,
so the stability of u0 is not affected as well as in the case (b). T (k) > 0 for all
k, but minimum of this function exists. (c) T (k) = 0 for k = kc, indicating
the onset of instability.

vector k are presented. In Fig. 3.3.5(a) the function T (k) has no roots, so
the stability of u0 is not affected as well as in the case (b). Here T (k) > 0 for
all k, but minimum of this function exists. Finally, in Fig. 3.3.5(c) T (k) = 0
for k = kc, indicating the onset of instability.

Hence, the full system of the conditions for instability of the homogeneous
solution u0 is

fu + gv < 0,

fugv − fvgu > 0,

Dugv + Dvfu > 0,
(

fu

Du
+

gv

Dv

)2

>
4detA

DuDv
.

(3.35)

While the conditions for the onset of a Turing bifurcation are rather
simple, the determination of the nature of the pattern that is selected is a
more difficult problem since beyond the bifurcation point a finite band of
wavenumbers is unstable. Pattern selection is usually approached by study-
ing amplitude equations that are valid near the onset of the instability. To
determine which modes are selected, modes and their complex conjugates are
usually treated in pairs so that the concentration field, expanded about the
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homogeneous solution, reads

u(r, t) = u0 +
n

∑

j=1

(

Aj(t)e
ikjr + c.c

)

,

where kj are different wavevectors such that |kj| = kc. In one dimensional
space the situation is rather simple, as result of the instability is represented
by a periodic in space structure. In two space dimension this form leads to
stripes for n = 1, rhombi (or squares) for n = 2 and hexagons for n = 3. The
pattern and wavelength that is selected depends on coefficients in the nonlin-
ear amplitude equation for the complex amplitude Aj , but some conclusions
about selected pattern can be made using, e.g., symmetry arguments. In
particular, in the case of hexagonal pattern, in which three wave vectors are
mutually situated at an angle of 2π/3, i.e., k1 + k2 + k3 = 0, the absence of
inversion symmetry (u 7→ −u) leads to additional quadratic nonlinearity in
the amplitude equation. The latter, in its turn, ends in a fact, that hexago-
nal pattern has the maximum growth rate near the threshold and is therefor
preferred (for details see [?]).

The general procedure in details for the derivation of such amplitude
equations based on mode projection techniques can be found in [?]. Another
approach, using multi scale expansion was evolved in [?].

Brusselator model

The Brusselator model is a classical reactiondiffusion system, proposed by
I. Prigogine and co-workers in Brussels in 1971. The model describes some
chemical reaction with two components

ut = Du△u + a − (b + 1)u + u2v, (3.36)

vt = Dv△v + bu − u2v. (3.37)

Here u = u(x, y, t), v = v(x, y, t), a, b are posotive constants. The steady
state solution is

u0 = a, v0 =
b

a
.

For the system (3.36) the matrices D,A and B are given by

D =

(

Du 0
0 Dv

)

, A =

(

b − 1 a2

−b −a2

)

,

and

B =

(

b − 1 − Duk
2 a2

−b −Dvk
2 − a2

)

.
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Suppose that the system (3.36) is local stable, i.e.,

Sp(A) = b − 1 − a2 < 0,

Det(A) = −(b − 1)a2 + a2b = a2 > 0.

Note that the violation of the first condition above leads to tthe Hopf bifur-
cation, i.e., the onset of Hopf instability is

Sp(A) ≥ 0 ⇔ b ≥ bH = 1 + a2.

The critical wavenumber is

kc =

√

1

2

(

b − 1

Du
− a2

Dv

)

The existence of kc is equivalent to the following condition

b > 1 +
Du

Dv
a2 + 1 ⇒ Du

Dv
< 1.

The instability occurs, if

Det(B(kc)) ≤ 0 ⇔ b > bT =

(

1 + a

√

Du

Dv

)2

.

Hence, the conditions (3.35) for the system (3.36) takes the form

b < bH = 1 + a2,

b > bT =

(

1 + a

√

Du

Dv

)2

,

Du

Dv
< 1.

(3.38)

On Fig. (3.3.5) both functions bH , bT are shown. The thresholds of these
two instabilities coincide at codimensional-two Turing-Hopf point bH = bT

(σ = Du/Dv)

ac =
2
√

σ

1 − σ
.
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Figure 3.15: Bifurcation diagram in (a, b) parameter space, indicating the
onset of Hopf (blue line) and Turing (red line) instabilities. Here Du = 5,
Dv = 12
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Chapter 4

Elliptic PDE’s

The basic example of an elliptic partial differential equation is Laplace’s
equation

∇2u(r) = 0, (4.1)

where u(r) is a scalar function and r ∈ Ω ⊆ R
2, R

3. Laplace’s equation is a
special case of the Helmholtz differential equation

∇2u(r) + k2u(r) = 0 (4.2)

with k = 0 or Poisson’s equation

∇2u(r) = f(r), (4.3)

where u(r) is usually some sort of potential and f(r) a real source term.
In general all these equations are subject to boundary conditions at the

outer boundary of Ω. No initial conditions, such as we would expect, e.g.,
for the wave or heat equations, are typically given.

4.1 Poisson Equation in 1D

4.1.1 Dirichlet boundary conditions

As a simple test case, we start to consider the solution of Poisson’s equation
in one dimension

∂2u(x)

∂x2
= f(x) (4.4)

for x ∈ [a, b]. Suppose that Eq. (4.4) is the subject to the Dirichlet boundary
conditions u(a) = ua and u(b) = ub. If we define a grid on the intervall [a, b]
one can rewrite Eq. (4.4) using a second-order, central difference scheme

ui−1 − 2ui + ui+1 = △x2fi, i = 1, . . . , M,

61
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where fi = f(xi). Futhermore, u0 = ua, uM+1 = ub. This system of algebraic
equations can be rewritten in a matrix form













−2 1 0 . . . . . . 0
1 −2 1 . . . . . . 0
0 1 −2 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . 1
0 . . . . . . 0 1 −2

























u1

u2

·
·

uM













=













△x2f1 − ua

△x2f2

·
·

△x2f1 − ub













. (4.5)

with a tridiagonal matrix A. The formal solution

u = A−1b

can be found ba use of, e.g., TDMA.

4.1.2 Mixed boundary conditions

Let us now consider the more general set of mixed boundary conditions:

αlu + βl
∂u

∂x
= γl for x = a

αru + βr
∂u

∂x
= γr for x = b.

Here αl, αr, βl, βr, γl, γr are known constants. Using the previous notation,
the discretized version of boundary conditions in question is (i = 0, i =
M + 1)

αlu0 + βl
u1 − u0

△x
= γl,

αruM+1 + βr
uM+1 − uM

△x
= γr,

giving

u0 =
γl△x − βlu1

△xαl − βl
,

uM+1 =
γr△x + βhuM

△xαr + βr

.

Using these expressions the problem can also be reduced to a tridiagonal
matrix equation













−2 + b1 1 0 . . . . . . 0
1 −2 1 . . . . . . 0
0 1 −2 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0 . . . . . . 0 1 −2 + bM

























u1

u2

·
·

uM













=













△x2f1 − a1

△x2f2

·
·

△x2f1 − an













,

(4.6)
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Figure 4.1: Numerical solution of the one-dimensional Poisson equa-
tion 4.4.The red line shows the analytic solution, whereas the black one
stands for the numerical solution for M = 100.

where

b1 =
−βl

△xαl − βl

, bM =
βr

△xαr + βr

,

a1 =
γl△x

△xαl − βl
, aM =

γr△x

△xαr + βr
.

4.1.3 Example

Let us now solve 1D Poisson’s equation (4.4), with mixed boundary condi-
tions, using the technique discussed above. We are looking for the solution
of

∂2u(x)

∂x2
= 1 − 2x2

on the interval x ∈ [0, 1] with the following boundary conditions

u − ∂u

∂x
= 1 for x = 0

u +
∂u

∂x
= 1 for x = 1.

The analytical solution is

u(x) =
−2x

9
+

7

9
+

x2

2
− x4

6
,

Figure shows a comparison between the analytic and finite difference solu-
tions for M = 100.
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4.2 Two-dimensional problems

4.2.1 Laplace’s equation in 2D

Let us consider the Laplace’s equation (4.1)

∂2u

∂x2
+

∂2u

∂y2
= 0

on the rectangle R = [0, a]× [0, b]. Assume, that we define also a M ×Ngrid
on R with the grid step h. Let us also consider the central approximation
for the second derivatives

ui+1j + ui−1j + uij+1 + uij−1 − 4uij = 0 ,

which is known as the five-point difference formula for Eq. (4.1).

Dirichlet boundary conditions

Suppose that the values u(x, y) are known at the following boundary grid
points:

u(x1, yj) = u1j, j = 2, . . . , M − 1, (on the left),

u(xi, y1) = ui1, i = 2, . . . , N − 1, (on the bottom),

u(xN , yj) = uNj, j = 2, . . . , M − 1, (on the right),

u(xi, yM) = uiM , i = 2, . . . , N − 1, (on the top).

Applying the five-point formula at each of interior points of R we get a linear
system of N − 2 × M − 2 equations. For example, if we consider a special
case M = N = 5 the system can be written as




























−4 1 0 1 0 0 0 0 0
1 −4 1 0 1 0 0 0 0
0 1 −4 0 0 1 0 0 0
1 0 0 −4 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −4 0 0 1
0 0 0 1 0 0 −4 1 0
0 0 0 0 1 0 1 −4 1
0 0 0 0 0 1 0 1 −4

























































u22

u23

u24

u32

u33

u34

u42

u43

u44





























=





























−u12 − u21

−u13

−u14 − u25

−u31

0
−u35

−u52 − u41

−u53

−u54 − u45





























On can see, that the matrix of the system is a five-band matrix. To solve the
system in question a Gauss-illimination-like-algorithm can be applied. As an
alternative iterative or spectral methods can be used.
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4.2.2 Iterative methods

The term “iterative method” refers to a wide range of techniques that use
successive approximations to obtain more accurate solutions to a linear sys-
tem

Au = b

at each step. Iterative methods that can be expressed in the simple form

uk = Buk−1 + c

(where neither nor depend upon the iteration count ) are called stationary
iterative methods. In this section, we consider three main stationary iterative
methods: the Jacobi method, the Gauss-Seidel method and the Successive
Overrelaxation (SOR) method.

The Jacobi method

The Gauss-Seidel method

The SOR method
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.1 Tridiagonal matrix algorithm (TDMA)

The tridiagonal matrix algorithm (TDMA), also known als Thomas algo-
rithm, is a simplified form of Gaussian elimination that can be used to solve
tridiagonal system of equations

aixi−1 + bixi + cixi+1 = yi, i = 1, . . . n, (7)

or, in matrix form ( a1 = 0, cn = 0)













b1 c1 0 . . . . . . 0
a2 b2 c2 . . . . . . 0
0 a3 b3 c3 . . . 0
. . . . . . . . . . . . . . . . . . . . . . cn−1

0 . . . . . . 0 an bn

























x1

x2

·
·

xn













=













y1

y2

·
·

yn













The TDMA is based on the Gaussian elimination procedure and consist of
two parts: a forward elimination phase and a backward substitution phase.
Let us consider the system (7) for i = 1 . . . n and consider modifying the
second equation (for i = 2) with the first equation (i = 1) as follows:

Eqi=2 · b1 − Eqi=1 · a2

which relults in

(b1b2 − c1a2)x2 + c2b1x3 = b1y2 − a2y1.

The effect is that x1 has been eliminated from the second equation. In the
same manner one can eliminate x2, using the modified second equation and
the third one (for i = 3):

(b1b2 − c1a2)Eqi=3 − a3(mod. Eqi=2),

which would give

(b3(b1b2−c1a2)−c2b1a3)x3+c3(b1b2−c1a2)x4 = y3(b1b2−c1a2)−(y2b1−y1a2)a3

If the procedure is repeated until the n’th equation, the last equation will
involve the unknown function xn only. This function can be then used to
solve the modified equation for i = n− 1 and so on, until all unknown xi are
found (backward substitution phase). That is, we are looking for a backward
ansatz of the form:

xi−1 = γixi + βi. (8)
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If we put the last ansatz in the Eq. (7) and solve the resulting equation with
respect to xi, the following relation can be obtained:

xi =
−ci

aiγi + bi
xi+1 +

yi − aiβi

aiγi + bi
(9)

This relation possesses the same form as Eq. (8) if we identify

γi+1 =
−ci

aiγi + bi
, βi+1 =

yi − aiβi

aiγi + bi
. (10)

Equation (10) involves the recursion formula for the coefficients γi and βi for
i = 2, . . . , n − 1. The missing values γ1 and β1 can be derived from the first
(i = 1) equation (7):

x1 =
y1

b1
− c1

b1
x2 ⇒ γ2 = −c1

b1
, β2 =

1

b1
⇒ γ1 = β1 = 0.

The last what we need is the value of the function xn for the first backward
substitution. We can obtain if we put the ansatz

xn−1 = γxn + βn

into the last (i = n) equation (7):

an(γxn + βn) + bnxn = yn,

yielding

xn =
yn − anβn

anγn + bn
.

One can get this value directly from Eq. (8), if one formal puts

xn+1 = 0.

Altogether, the TDMA can be written as:

1. Set γ1 = β1 = 0;

2. Evaluate for i = 1, . . . , n − 1

γi+1 =
−ci

aiγi + bi

, βi+1 =
yi − aiβi

aiγi + bi

;

3. Set xn+1 = 0;

4. Find for i = n + 1, . . . , 2

xi−1 = γixi + βi.
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The algorithm admits O(n) operations instead of O(n3) required by Gaus-
sian elimination.

Limitation

The TDMA is only applicable to matrices that are diagonally dominant, i.e.,

|bi| > |ai| + |ci|, i = 1, . . . , n.

Variants

If the PDE in question involves periodic boundary conditions, the resulting
tridiagonal system is slightly different from the system (7), namely













b1 c1 0 . . . . . . a1

a2 b2 c2 . . . . . . 0
0 a3 b3 c3 . . . 0
. . . . . . . . . . . . . . . . . . . . . . cn−1

cn . . . . . . 0 an bn

























x1

x2

·
·

xn













=













y1

y2

·
·
yn













⇔ Ax = y. (11)

In this case one can make use of the Sherman-Morrison formula to avoid
additional operations and still use TDMA.

Let us consider two n × n matrices A and B that are related by

A = B − uvT ,

where u and v are n-vectors, A is a matrix defined by (11) and B is some
tridiagonal matrix. Then, if B−1 6= 0 and the scalar vT B−1u 6= 1, A−1 exists
and can be found using Sherman-Morrison formula:

A−1 = B−1 +
B−1uvT B−1

1 − vT B−1u
(12)

Applying the relation above we note that

x = A−1b = B−1b +
B−1uvT B−1b

1 − vT B−1u
= B−1b +

vT B−1b

1 − vTB−1u
B−1u.

Thus, the system (11) can be solved as follows:
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1. Solve (TDMA)

Bx1 = b, Bx2 = u;

2. Set

β :=
vT B−1b

1 − vT B−1u
=

vTx1

1 − vTx2

;

3. Evaluate

x = x1 + βx2.

In the case of system (11) the matrix B and vectors u and v can be
choosen as:

B =













b1 − 1 c1 0 . . . . . . 0
a2 b2 c2 . . . . . . 0
0 a3 b3 c3 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . cn−1

0 . . . . . . 0 an bn − a1cn













, u =













b1

0
·
0

cnb1













, v =













−1/b1

0
·
0

−a1/b1













.


