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Introduction

> Rayleigh-Bénard convection is the buoyancy-
driven flow of a fluid enclosed between two
horizontal plates.

> We investigate statistical properties of the
fluctuating temperature field in a closed cylin-
der in the turbulent regime, i.e. at high
Rayleigh number.

> For this, we derive evolution equations deter-
mining the probability density function (PDF)
of temperature from first principles.

> Direct numerical simulation (DNS) of the basic
equations governing the flow is used to obtain
the statistical quantities.

> The statistical framework allows to identify
how heat is transported in different regions of
the convection cell.

Governing Equations

> The nondimensionalized equations governing the Rayleigh-Bénard
system in Oberbeck-Boussinesq approximation read

∂

∂ t
u + u · ∇u =−∇p +Pr∆u +Pr RaT ez , ∇ · u = 0

∂

∂ t
T + u · ∇T =∆T

(1)

with the velocity field u(x , t ), the temperature field T (x , t ) and the
pressure field p(x , t ).

> The nondimensional control parameters are the Rayleigh number
Ra, the Prandtl number Pr and the aspect ratio Γ

Ra=
αgδT h3

νc
, Pr= ν/c , Γ= d/h

with thermal expansion coefficient α, gravitational acceleration g ,
outer temperature difference δT , vertical distance of top and bot-
tom plate h, diameter of cylindrical cell d , kinematic viscosity ν and
heat conductivity c.

> The spatial domain is described in cylindrical coordinates
x = (r,ϕ, z)∈ [0, 1/2]× [0,2π]× [0,1]. Boundary conditions are
adiabatic sidewalls and horizontal plates of constant temperature,
i. e.

T (z=0) = 1 , T (z=1) = 0 ,

and all surfaces are no slip.

Deriving Evolution Equations for PDFs

> Within the framework known as the LMNhierarchy [1,2, 3], one can
derive evolution equations for PDFs from first principles, i. e. from
the basic RB equations (1).

> Following the steps suggested in [4,5, 6], we define the tempera-
ture PDF as an ensemble average over all possible realizations of
the temperature field T (x , t ):

f (τ; x , t ) =



δ
�

τ−T (x , t )
��

(2)

> Calculating spatial and temporal derivatives of the PDF and plug-
ging in the basic RB equations (1) leads to an evolution equation
for the temperature PDF f = f (τ; x , t ):
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Here, unclosed terms have been expressed as conditional aver-
ages, denoted as 〈 · |τ, x , t 〉.

> According to the symmetries of the system, the statistical quan-
tities cannot depend on the azimuthal coordinate ϕ or the time
t . Thus, when rewritten in cylindrical coordinates, the evolution
equation of the PDF f (τ; r, z) becomes

1

r
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r 〈ur |τ, r, z〉 f
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∂ z

�

〈uz |τ, r, z〉 f
�

=−
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�

〈∆T |τ, r, z〉 f
�

(3)

with the radial velocity ur and the vertical velocity uz .
> The three appearing conditional averages are unclosed and esti-
mated from DNS.

3D Direct Numerical Simulation

> The governing equations (1) are discretized on a cylindrical grid via
a second order central finite difference scheme.

> The grid spacing is non-uniform with clustering near the vertical
sidewalls and the horizontal plates.

> Sufficient resolution of the boundary layers and the dissipative
scales is ensured.

> Time advancement is achieved by a low-storage third-order Runge-
Kutta scheme.

> The numerical scheme is the one implemented by R. Verzicco, de-
scribed in [7].

Simulation Details

> Volume rendering of a snapshot of the temperature field used for
the analysis presented here. Red corresponds to hot, blue to cold
parts of the fluid. The volume rendering is done with the open
source interactive parallel visualization tool VisIt [8].

> Physical parameters are Ra= 2 · 108, Pr= 1 and Γ = 1; the Nusselt
number is estimated to Nu= 40.4.

> The grid size is Nr ×Nϕ ×Nz = 192× 384× 384; the horizontal

boundary layers are resolved with 17 gridpoints.
> The ensemble to obtain the statistics consists of 870 snapshots,
separated by 1 turnover time of the large scale circulation.

Basic Statistical Quantities

> Estimated first moments of the r - and z-resolved temperature
statistics, i. e. averaged azimuthally and in time. Clockwise from
top left: Mean, standard deviation, curtosis and skewness of tem-
perature distribution:

The first two moments show a clear separation into bulk and hori-
zontal and vertical boundary parts; however, this separation be-
comes less evident in the higher moments, esp. in the curtosis.

> Estimated temperature PDF f (τ; r, z), averaged over r and z, re-
spectively, to get a two-dimensional projection, i. e. f (τ; z) =
〈 f (τ; r, z)〉r (left) and f (τ; r ) = 〈 f (τ; r, z)〉z (right):

PDF Equations Revisited: The Method of Characteristics

> According to the partial differential equation (PDE) (3), the temper-
ature PDF f is determined by the three conditional averages of heat
diffusion∆T , radial velocity ur and vertical velocity uz , and solu-
tions of the PDE live in the phase space spanned by τ, r and z.

> Utilizing the method of characteristics, one finds trajectories
�

τ(s ), r (s ), z(s )
�

in τ, r, z-phase space (the so-called characteris-
tics) along which the PDE (3) transforms into an ordinary differen-
tial equation (ODE).

> These characteristics are determined by the conditional averages:
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Here, the characteristics are parametrized by s , which can be iden-
tified as the time.

> Along these characteristics, the resulting ODE describes how the
PDF f (s ) = f
�

τ(s ); r (s ), z(s )
�

changes according to the divergence
of the vector field on the right hand side:
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Method Of Characteristics: Results from DNS

> With the three conditional averages estimated from the numerics,
one can visualize the vectorfield (4) that defines the characteris-
tics; the characteristics lie tangent to the vectorfield. These char-
acteristics represent the average path a fluid parcel travels through
the phase space.

> As a plot of the whole vectorfield in 3D becomes quite cumber-
some, we show projections onto τ, z- and the τ, r -plane by aver-
aging over different regions of the r - and z-direction, respectively.
The underlying color plots show the temperature PDFs in the con-
sidered regions:

> Trajectories and temperature PDF in the τ, z-plane; av-
eraging over inner (r ∈ [0,0.25], left) and outer bound-
ary (r ∈ [0.485,0.5], right) regions of the cylinder:

Tracing the vector field in this graph, one can qualitatively recon-
struct the characteristics and thus the typical Rayleigh-Bénard
cycle of fluid heating up at the bottom, rising up, cooling down at
the top plate, falling down and heating up again. One can also see
that the inner regions of the cylinder are responsible for most of
the vertical transport.

> Trajectories and temperature PDF in the τ, r -plane; av-
eraging over bulk (z ∈ [δT , 1 − δT ], left) and bound-
ary layer (z ∈ [0,δT ], right) regions of the cylinder, with

δT = 1
2Nu

being the thermal boundary layer thickness:

In the bulk, hot and cold fluid is transported to the mean tem-
perature and outwards, while in the bottom boundary layer, cold
downfalling fluid is transported inward and heated up.

> To combine the discussion of the simultaneously occurring trans-
port in r - and z-direction and to give an impression of the overrall
structure of the vectorfield, we plot the full data as a stereoscopic
image; cross your eyes to view the full vectorfield below in 3D!

Conclusions and Future Work

> The LMN hierarchy and symmetry considerations allow us to derive
equations determining PDFs from first principles.

> The evolution equation for the temperature PDF is derived, which
contains unclosed terms in the form of conditional averages.

> These conditional averages are estimated from the numerics,
which performs DNS of the RB equations in a closed cylinder.

> Utilizing the method of characteristics, the DNS results are used to
construct trajectories which show the average path a fluid parcel
travels through phase space.

> Tracing these paths through phase space, one can reproduce the
typical Rayleigh-Benard cycle in a qualitative manner.

> To facilitate the cumbersome discussion of the 3D vector field, the
next step is to integrate these fields to obtain the actual charac-
teristics. Also, the divergence of the vectorfield which describes
the deformation of the temperature PDF needs to be evaluated and
discussed.
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