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Introduction

> Rayleigh–Bénard convection is the buoyancy-
driven flow of a fluid enclosed between two
horizontal plates.

> We investigate statistical properties of the
fluctuating temperature field in the turbulent
regime, i. e. at high Rayleigh number.

> For this, we derive evolution equations deter-
mining the probability density function (PDF)
of temperature from first principles.

> Direct numerical simulation (DNS) of the basic
equations governing the flow is used to obtain
the statistical quantities.

> The statistical framework allows to identify
how heat is transported in different regions of
the convection cell and shows the appearance
of a limit cycle.

> Analysis is performed for RB convection in
periodic horizontal boundaries (2nd column)
and in a cylindrical vessel (3rd column).

Governing Equations

> The nondimensionalized equations governing the Rayleigh–
Bénard system in Oberbeck–Boussinesq approximation read

∂

∂ t
u + u · ∇u =−∇p + Pr∆u + PrRaTez , ∇ ·u = 0

∂

∂ t
T + u · ∇T = ∆T

(1)

with the velocity field u(x, t), the temperature fieldT (x, t) and the
pressure field p(x, t).

> The nondimensional control parameters are the Rayleigh number
Ra, the Prandtl number Pr and the aspect ratio Γ

Ra =
αgδTh3

νc
, Pr = ν/c , Γ = d/h

with thermal expansion coefficient α, gravitational acceleration g ,
outer temperature difference δT , vertical distance of top and bot-
tom plate h, diameter of cylindrical celld, kinematic viscosity ν and
heat conductivity c.

Deriving Evolution Equations for PDFs

> Within the framework of PDF equations, we derive evolution equa-
tions for PDFs fromfirst principles, i. e. from the basicRB equations
(1).

> Following the steps suggested in [1,2,3], we define the tempera-
ture PDF as an ensemble average over all possible realizations of
the temperature field T (x, t):
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> Calculating spatial and temporal derivatives of the PDF and plug-
ging in the basic RB equations (1) leads to an evolution equation
for the temperature PDF f = f (T ,x, t):
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Here, unclosed terms have been expressed as conditional aver-
ages, denoted as 〈 · |T ,x, t〉, which are later estimated from DNS.

> To solve the above first order PDE (3), the Method of Characteris-
tics is used to obtain most probable evolution of a fluid parcel in
phase space, described by trajectories through phase space (the
so-called characteristics); the characteristics follow the vectorfield

of the conditional averages, i. e. are solutions
�

T (t)
x(t)

�

to

� .
T.
x

�

=
�

〈∆T |T ,x,t〉
〈u|T ,x,t〉

�

(4)

> This framework is applied to different RB systems with differ-
ent geometries and different symmetries that allow for simplifica-
tions:
> Stationary convection with periodic horizontal boundaries: No
dependence of statistics on horizontal coordinates or time (2nd
column)

> Stationary convection in cylindrical vessel: No dependence of
statistics on azimuthal coordinate or time (3nd column)

In the following, these two systems will be handled individually.
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Periodic Horizontal Boundaries (2D Phase Space)

> Volume rendering of a snapshot of the temperature field, donewith
Vapor [4]

> Homogenous in horizontal direction
> No-slip bottom and top plates u = 0

> Parameters: Ra = 2 · 107 , Pr = 1, Γ = 4
> Numerics: Pseudospectral and volume penalization methods [2]
> For a video of the flow, scan this QR code:

Symmetries and Evolution Equation (2D)

> Statistical quantities can not depend on horizontal coordinates or
time but only on T and z ⇒ phase space becomes 2D

> Evolution equation (3) simplifies to
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> Characteristics, i. e. solutions
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, follow the vector field de-

fined by the conditional averages:
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Characteristic Curves and Limit Cycle (2D)

> Conditional averages are estimates from snapshots of numerical
simulation

> Integrating (6) for arbitrary initial conditions: All characteristics
converge towards limit cycle!

> Horizontal axis: temperature coordinate T ,
vertical axis: vertical coordinate z

> Background color: PDF of temperature
> Black arrows: vector field
> Black curve: limit cycle
> For a video of a fluid parcel traveling along the
limit cycle, scan this QR code:

Features of Limit Cycle (2D)

> Main movement through phase space in horizontal direction near
the boundary layers, i. e. cold fluid heating near the bottom plate
and hot fluid cooling near the top plate

> Main movement through phase space in vertical direction in the
bulk, i. e. hot fluid moving up and cold fluid moving down

> Additionally, slight horizontal movement in the bulk, i. e. hot fluid
beginning to cool while moving down and vice versa

⇒ Typical Rayleigh–Bénard cycle of hot fluid moving up, cooling
down at the top plate, falling down and heating up again at the
bottom plate
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Cylindrical Vessel (3D Phase Space)

> Volume rendering of a snapshot of the temperature field, done with
VisIt [5]

> Insulating sidewalls, all surfaces no-slip u = 0

> System described in cylindrical coordinates, x = (r ,ϕ,z)
> Parameters: Ra = 2 · 108 , Pr = 1, Γ = 1
> Numerics: Finite differences on a staggered cylindrical grid w/ grid-
point clustering [6]

Symmetries and Evolution Equation (3D)

> Statistical quantities can not depend on azimuthal coordinateϕ or
time but only on T , r and z ⇒ phase space becomes 3D

> Evolution equation (3) simplifies to
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> Characteristics follow vector field defined by conditional averages:
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Characteristic Curves and Limit Cycle (3D)

> Integrating (8) for arbitrary initial conditions: All characteristics
converge towards limit cycle!

> Horizontal axis: ra-
dial coordinate r ,
vertical axis: vertical
coordinate z,
color: temperature T

> Background color:
mean temperature
〈T (r ,z)〉

> Black arrows: vector
field

> Gray curve: limit cy-
cle

> For a video of a fluid
parcel traveling along
the limit cycle, scan
this QR code:

Features of Limit Cycle (3D)

> Heating and cooling near the bottom and top plate
> Vertical and slight inward movement in the bulk
> Outward movement near the plates
> Cornerflows

⇒ Typical Rayleigh–Bénard cycle of hot fluid moving up, cooling
down at the top plate, falling down and heating up again at the
bottom plate; additional inward and outward movement

Conclusions and Future Work

> We derived an evolution equation for the PDF of temperature from
first principles

> Unclosed terms are expressed via conditional averages, which are
estimated from DNS

> The Method of Characteristics is used to link statistics and dynam-
ics of the system

> The framework allows to identify a limit cycle, which shows the av-
erage transport processes in Rayleigh–Bénard convection in both
cases (2D/3D phase space)

> Outlook: Further investigation of limit cycle


