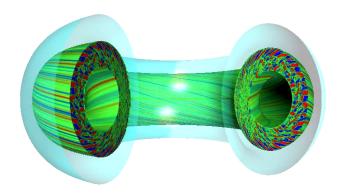
Strukturen in der Plasmaturbulenz

Holger Zimmermann

Institut für Theoretische Physik

27.08.2007

Vergleich zu 3D Numerik



Inhalt

- Gleichungen
- Tracerteilchen in zonal flows
- Turing-Instabilitäten

Die Grundgleichungen

$$\underbrace{\left(\frac{\partial}{\partial t} + D\right)(\delta - \nabla_{\perp}^{2})\Phi}_{} = -\frac{\partial\Phi}{\partial y} + \epsilon\left(\frac{\partial p}{\partial y} + \frac{\partial\Phi}{\partial y}\right) + \nu(\nabla_{\perp}^{6})\Phi - \{\Phi, \nabla_{\perp}^{2}\Phi\} - \alpha\Phi^{3}$$

$$\left(\frac{\partial}{\partial t} + D\right) p = -(1+\eta)\frac{\partial \Phi}{\partial y} - \chi \nabla_{\perp}^{4} p + \epsilon \left(\frac{\partial p}{\partial y} + \frac{\partial \Phi}{\partial y}\right) - \{\Phi, p\} - \alpha p^{3}$$

Für endliche Werte von k_y , $\delta(k_y) = 1$.

$$\delta(0) = 0$$
: ITG,

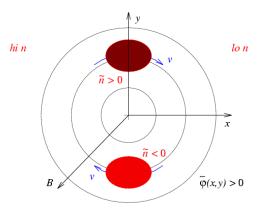
$$\delta(0) = 1$$
: ETG.

ExB-Drift

$$\left(\frac{\partial}{\partial t} + D\right) \left(\delta - \nabla_{\perp}^{2}\right) \Phi = \underbrace{-\frac{\partial \Phi}{\partial y}}_{} + \epsilon \left(\frac{\partial p}{\partial y} + \frac{\partial \Phi}{\partial y}\right) + \nu \left(\nabla_{\perp}^{6}\right) \Phi - \left\{\Phi, \nabla_{\perp}^{2}\Phi\right\} - \alpha \Phi^{3}$$

$$\left(\frac{\partial}{\partial t} + D\right) p = -(1+\eta)\frac{\partial \Phi}{\partial y} - \chi \nabla_{\perp}^{4} p + \epsilon \left(\frac{\partial p}{\partial y} + \frac{\partial \Phi}{\partial y}\right) - \{\Phi, p\} - \alpha p^{3}$$

E x B Motion in a Background Gradient



--> excitation of \tilde{n} ahead of $\tilde{0}$ in v-direction

Kopplung der Felder

$$\left(\frac{\partial}{\partial t} + D\right) \left(\delta - \nabla_{\perp}^{2}\right) \Phi = -\frac{\partial \Phi}{\partial y} + \underbrace{\epsilon \left(\frac{\partial p}{\partial y} + \frac{\partial \Phi}{\partial y}\right)}_{} + \nu \left(\nabla_{\perp}^{6}\right) \Phi - \left\{\Phi, \nabla_{\perp}^{2}\Phi\right\} - \alpha \Phi$$

$$\left(\frac{\partial}{\partial t} + D\right) p = -(1+\eta)\frac{\partial \Phi}{\partial y} - \chi \nabla_{\perp}^{4} p + \underbrace{\epsilon \left(\frac{\partial p}{\partial y} + \frac{\partial \Phi}{\partial y}\right)} - \{\Phi, p\} - \alpha p^{3}$$

Diffusion

$$\left(\frac{\partial}{\partial t} + D\right) (\delta - \nabla_{\perp}^{2}) \Phi = -\frac{\partial \Phi}{\partial y} + \epsilon \left(\frac{\partial p}{\partial y} + \frac{\partial \Phi}{\partial y}\right) + \underbrace{\nu(\nabla_{\perp}^{6}) \Phi}_{-} - \{\Phi, \nabla_{\perp}^{2} \Phi\} - \alpha \Phi^{3}$$

$$\left(\frac{\partial}{\partial t} + D\right) p = -(1 + \eta) \frac{\partial \Phi}{\partial y} - \underbrace{\chi \nabla_{\perp}^{4} p}_{-} + \epsilon \left(\frac{\partial p}{\partial y} + \frac{\partial \Phi}{\partial y}\right) - \{\Phi, p\} - \alpha p^{3}$$

Kopplung

$$\left(\frac{\partial}{\partial t} + D\right) (\delta - \nabla_{\perp}^{2}) \Phi = -\frac{\partial \Phi}{\partial y} + \epsilon \left(\frac{\partial p}{\partial y} + \frac{\partial \Phi}{\partial y}\right) + \nu (\nabla_{\perp}^{6}) \Phi - \{\Phi, \nabla_{\perp}^{2} \Phi\} - \alpha \Phi^{3}$$

$$\left(\frac{\partial}{\partial t} + D\right) p = -(1 + \eta) \frac{\partial \Phi}{\partial y} - \chi \nabla_{\perp}^{4} p + \epsilon \left(\frac{\partial p}{\partial y} + \frac{\partial \Phi}{\partial y}\right) - \{\Phi, p\} - \alpha p^{3}$$

Nichtlinearitäten

$$\left(\frac{\partial}{\partial t} + D\right) (\delta - \nabla_{\perp}^{2}) \Phi = -\frac{\partial \Phi}{\partial y} + \epsilon \left(\frac{\partial p}{\partial y} + \frac{\partial \Phi}{\partial y}\right) + \nu \left(\nabla_{\perp}^{6}\right) \Phi \underbrace{-\left\{\Phi, \nabla_{\perp}^{2}\Phi\right\}}_{-\alpha} - \alpha \Phi^{3}$$

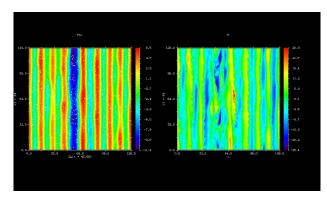
$$\left(\frac{\partial}{\partial t} + D\right) p = -(1 + \eta) \frac{\partial \Phi}{\partial y} - \chi \nabla_{\perp}^{4} p + \epsilon \left(\frac{\partial p}{\partial y} + \frac{\partial \Phi}{\partial y}\right) \underbrace{-\left\{\Phi, p\right\}}_{-\alpha} - \alpha p^{3}$$

zusätzliche Dämpfung

$$\left(\frac{\partial}{\partial t} + D\right) (\delta - \nabla_{\perp}^{2}) \Phi = -\frac{\partial \Phi}{\partial y} + \epsilon \left(\frac{\partial p}{\partial y} + \frac{\partial \Phi}{\partial y}\right) + \nu \left(\nabla_{\perp}^{6}\right) \Phi - \left\{\Phi, \nabla_{\perp}^{2}\Phi\right\} \underbrace{-\alpha \Phi^{3}}_{\Phi}$$

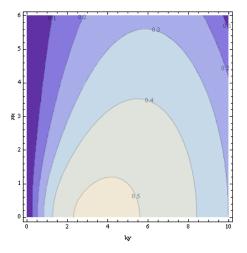
$$\left(\frac{\partial}{\partial t} + D\right) p = -(1 + \eta) \frac{\partial \Phi}{\partial y} - \chi \nabla_{\perp}^{4} p + \epsilon \left(\frac{\partial p}{\partial y} + \frac{\partial \Phi}{\partial y}\right) - \left\{\Phi, p\right\} \underbrace{-\alpha p^{3}}_{\Phi}$$

ITG-Turbulenz ohne Korrekturterm, D=0

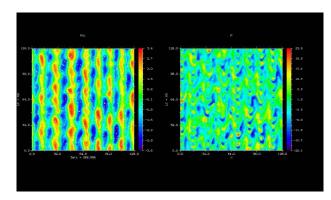


Berechnung der linearen Wachstumsraten:

$$\phi = \phi_0 \cdot e^{-i(\omega t + k_x x + k_y y)}, \ p = p_0 \cdot e^{-i(\omega t + k_x x + k_y y)}$$



Gedämpfte zonal flows, D=0,04



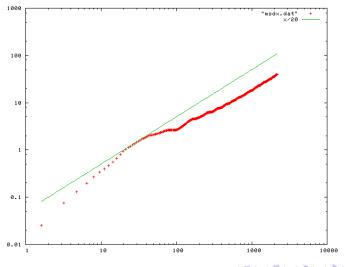
Energiebilanz

$$\frac{\partial E}{\partial t} = \underbrace{-(1+\eta) \int dA \frac{\partial \phi}{\partial y} p}_{=+(1+\eta)Q} - \nu \int dA (\nabla^3 \phi)^2 - \chi \int dA (\nabla^2 \phi)^2 dA (\nabla^2 \phi)^2 dA (\nabla^2 \phi)^2 - \chi \int dA (\nabla^2 \phi)^2 dA (\nabla^2 \phi$$

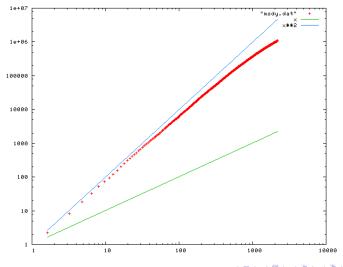
Grundgleichungen Transport in ITG-Turbulenz Turingartige Instabilitäten Zusammenfassung

Transport in ITG-Turbulenz

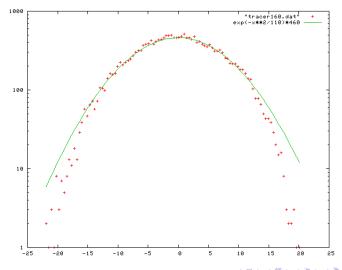
Mean square displacement in x-Richtung für schwache zonal flows.

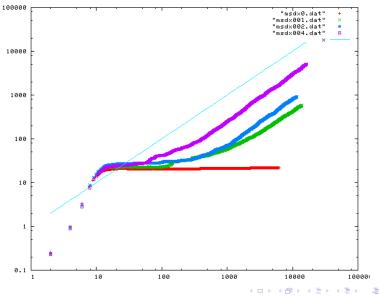


Mean square displacement in y-Richtung für schwache zonal flows.



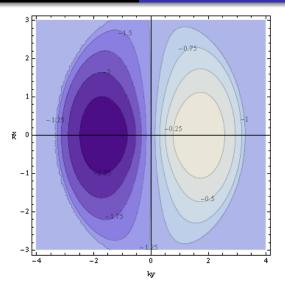
PDF in x-Richtung





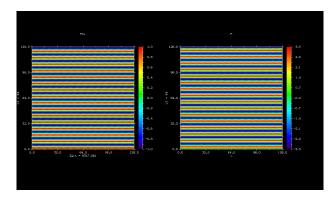
Grundgleichungen Transport in ITG-Turbulenz Turingartige Instabilitäten Zusammenfassung

Turingartige Instabilitäten

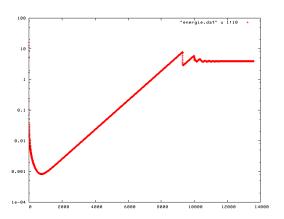


Schwelle: D=1,2322

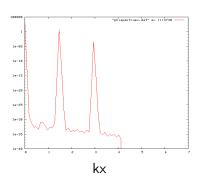
D=1,231

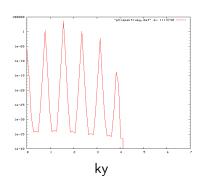


Zeitlicher Verlauf der Gesamtenergie im System bei D=1,2315

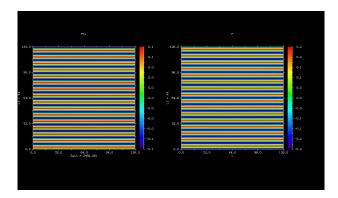


Spektren der Turing-Instabilitäten für D=1,231

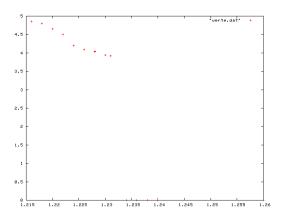




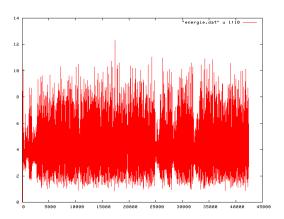
D=1,121



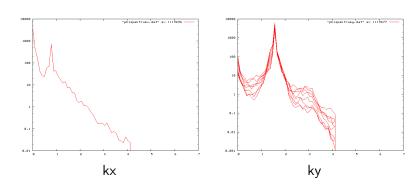
Sättigungsniveas für verschiedene Wachstumsraten



Starke Fluktuationen för größere Wachstumsraten



Spektren der Turing-Instabilitäten für D=1,19



Zusammenfassung

- Gleichungen zeigen wesentliche Phänomene
- Transporteigenschaften werden qualitativ reproduziert
- Weitere Untersuchungen der Turing-artigen Strukturen notwendig

Grundgleichungen Transport in ITG-Turbulenz Turingartige Instabilitäten Zusammenfassung

Vielen Dank für die Aufmerksamkeit!