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Introduction

Turbulence . . .

is ubiquitous in nature

remains one of the major challenges of classical physics

is a paradigm for a complex system

is governed by coherent structures

requires a statistical description
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is described by nonlinear equations
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Introduction

Problem: turbulence . . .

is described by nonlinear equations

exhibits spatio-temporal chaos

involves large space- and time-scales

Possible solutions:

understanding of structures

formulating a statistical theory

Tools:

any kind of mathematics, that will do

computer simulations
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DNS
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DNS: equations

Navier-Stokes equations:

∂u

∂t
(x, t) + u(x, t) · ∇u(x, t) = −∇p(x, t) + ν∆u(x, t) + f̂(x, t)

∇ · u(x, t) = 0
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DNS: equations

Navier-Stokes equations:

∂u

∂t
(x, t) + u(x, t) · ∇u(x, t) = −∇p(x, t) + ν∆u(x, t) + f̂(x, t)

∇ · u(x, t) = 0

Vorticity: ω(x, t) = ∇× u(x, t)
Vorticity equation:

∂ω

∂t
(x, t) = ∇×

(
u(x, t) × ω(x, t)

)
+ ν∆ω(x, t) + f(x, t)
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DNS: numerics I

aim: forced (stationary) homogeneous, isotropic turbulence

temporal discretization: RK3 TVD

spatial discretization: box-length 2π, dim grid points, periodic
boundary conditions

pseudospectral code

Thanx to H. Homann and R. Grauer for many hints and tips!
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DNS: numerics II

∂ω̃

∂t
(k, t) + ν k2 ω̃(k, t) = ik ×F{u(x, t) × ω(x, t)} + f̃(k, t)

adaptive time-stepping (Courant-Friedrichs-Levy criterion)

pseudospectral: forward/backward FFT is computationally
cheaper than convolution (N log N vs. N2)

aliasing: spherical mode truncation

viscosity is treated exactly (integrating factor)

forcing: freezing of low modes

code is currently OpenMP parallelized
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DNS: computational costs I
E

(k
)

∼ k−5/3

inertial range

extends with Re

integral scale

dissipative scale

k

forcing

dissipation
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DNS: computational costs II

forcing scale and dissipative scale should be well seperated

inertial range extends with increasing Re

size of smallest structures decreases with Re

smallest structures should be well-resolved by the grid

turbulent field should be accurately advanced in time
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DNS: computational costs III

to be more precisely . . .

η =

(
uL

ν

)−3/4

L = Re−3/4L

∆x ∼ η

Nx ∼

(
2π

∆x

)3

∼

(
2π

L

)

Re9/4 −→ Re ∼

(
L

2π

)4/3

N4/9
x

Nt ∼
T

∆t
∼

T

∆x/u
∼

T

l/u
Re3/4

$$$ ∼ NxNt ∼

(
T

l/u

)(
2π

l

)3

Re3
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DNS: computational costs IV
$$

$

serial

OpenMP

MPI

2563

Re

10243

and beyond

5123
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Coherent Structures
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Coherent Structures: introduction

turbulent fields are not random

display a complex spatial structure

structures severely influence statistical properties
(intermittency)
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Coherent Structures: phenomenology

vortex tubes/
filaments

intermittent
spatial
distribution
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Coherent Structures: streamlines

spiraling
streamlines

vortex
trapping
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Coherent Structures: isolated tube

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∆ω

ω = ωr(r, ϕ, z)er + ωϕ(r, ϕ, z)eϕ + ωz(r, ϕ, z)ez

with ωr, ωϕ << ωz

ω

u
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Coherent Structures: isolated tube

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∆ω

ω = ωr(r, ϕ, z)er + ωϕ(r, ϕ, z)eϕ + ωz(r, ϕ, z)ez

with ωr, ωϕ << ωz

u = ur(r, ϕ, z)er + uϕ(r, ϕ, z)eϕ + uz(r, ϕ, z)ez

with ur, uz << uϕ

ω

u
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Coherent Structures: isolated tube

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∆ω

ω = ωr(r, ϕ, z)er + ωϕ(r, ϕ, z)eϕ + ωz(r, ϕ, z)ez

with ωr, ωϕ << ωz

u = ur(r, ϕ, z)er + uϕ(r, ϕ, z)eϕ + uz(r, ϕ, z)ez

with ur, uz << uϕ

=⇒
∂ωz

∂t
+

uϕ

r

∂ωz

∂ϕ
︸ ︷︷ ︸

advection

= ωz
∂uϕ

∂z
︸ ︷︷ ︸

stretching

+ ν∆ωz
︸ ︷︷ ︸

diffusion

ω

u
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Coherent Structures: vortex dynamics

complex
vortex
interaction
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Coherent vs. Random Fields
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Coherent vs. Random Fields: randomization

ω(x, t) =
∑

k

ω̃k(t) eik·x

=⇒ u(x, t) a(x, t)
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Coherent vs. Random Fields: randomization

ω(x, t) =
∑

k

ω̃k(t) eik·x

=⇒ u(x, t) a(x, t)

ωr(x, t) =
∑

k

ω̃k(t) eik·x+ϕk

=⇒ ur(x, t) ar(x, t)
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Coherent vs. Random Fields: streamlines

no trapping events in incoherent vorticity

different transport/diffusion properties (?)
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Coherent vs. Random Fields: pdf’s
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Coherent vs. Random Fields: pdf’s
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Coherent vs. Random Fields: pdf’s
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Coherent vs. Random Fields: alignment pdf’s
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Coherent vs. Random Fields: alignment pdf’s
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Coherent vs. Random Fields: alignment pdf’s
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Statistical Description
Lundgren’s Hierarchy Revisited
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Statistics: introduction

Consider an ideal gas:

deterministic description impossible

statistical description needed
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Statistics: introduction

Consider an ideal gas:

deterministic description impossible

statistical description needed

· · · and sufficient!
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Statistics: introduction

Consider an ideal gas:

deterministic description impossible

statistical description needed

· · · and sufficient!

the same applies for turbulence

Lundgren 1967: statistical description of turbulence similar to
BBGKY hierarchy
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Statistics: notation

fine-grained one-point distribution:

f̂1 = f̂1(v1;x1, t) := δ(u(x1, t) − v1) =

3∏

i=1

δ(ui(x
1, t) − v1

i )
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Statistics: notation

fine-grained one-point distribution:

f̂1 = f̂1(v1;x1, t) := δ(u(x1, t) − v1) =

3∏

i=1

δ(ui(x
1, t) − v1

i )

two-point distribution:

f̂12 = f̂12(v1,v2;x1,x2, t) := δ(u(x1, t) − v1)δ(u(x2, t) − v2)
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Statistics: notation

fine-grained one-point distribution:

f̂1 = f̂1(v1;x1, t) := δ(u(x1, t) − v1) =

3∏

i=1

δ(ui(x
1, t) − v1

i )

two-point distribution:

f̂12 = f̂12(v1,v2;x1,x2, t) := δ(u(x1, t) − v1)δ(u(x2, t) − v2)

pdf via ensemble average

f(v;x, t) = 〈f̂(v;x, t)〉 =

∫

dv′ δ(v′ − v) f(v′;x, t)

Michael Wilczek Turbulence - Structures and Statistics



Turbulence Simulations Structures Statistics

Statistics: properties

reduction property:

f1 =

∫

dv2f12
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Statistics: properties

reduction property:

f1 =

∫

dv2f12

separation property:

lim
|x2−x1|→∞

f12 = f1f2
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Statistics: properties

reduction property:

f1 =

∫

dv2f12

separation property:

lim
|x2−x1|→∞

f12 = f1f2

coincidence property:

lim
x1→x2

f12 = f1 δ(v2 − v1)
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Statistics: properties

reduction property:

f1 =

∫

dv2f12

separation property:

lim
|x2−x1|→∞

f12 = f1f2

coincidence property:

lim
x1→x2

f12 = f1 δ(v2 − v1)

joint/conditional averages:

〈φ(x, t)f̂(v;x, t)〉

= f(v;x, t) 〈φ(x, t)|v〉
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Statistics: evolution equation for f̂(v; x, t)

substantial derivative of the fine-grained pdf:

d

dt
f̂(v;x, t) =

∂

∂t
f̂(v;x, t) + v · ∇xf̂(v;x, t)
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Statistics: evolution equation for f̂(v; x, t)

substantial derivative of the fine-grained pdf:

d

dt
f̂(v;x, t) =

∂

∂t
f̂(v;x, t) + v · ∇xf̂(v;x, t)

together with

∂

∂t
f̂(v;x, t) = −

∂u(x, t)

∂t
· ∇vf̂(v;x, t)

(and a little rearrangement) one ends up with
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Statistics: evolution equation for f̂(v; x, t)

substantial derivative of the fine-grained pdf:

d

dt
f̂(v;x, t) =

∂

∂t
f̂(v;x, t) + v · ∇xf̂(v;x, t)

together with

∂

∂t
f̂(v;x, t) = −

∂u(x, t)

∂t
· ∇vf̂(v;x, t)

(and a little rearrangement) one ends up with

∂

∂t
f̂(v;x, t) + v · ∇xf̂(v;x, t) = −∇v ·

[

f̂(v;x, t)
du

dt
(x, t)

]

.
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Statistics: evolution equation for f(v; x, t)

additional ensemble averaging leads to:

∂

∂t
f(v;x, t) + v · ∇xf(v;x, t) = −∇v ·

〈

f̂(v;x, t)
du

dt
(x, t)

〉
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Statistics: evolution equation for f(v; x, t)

additional ensemble averaging leads to:

∂

∂t
f(v;x, t) + v · ∇xf(v;x, t) = −∇v ·

〈

f̂(v;x, t)
du

dt
(x, t)

〉

in terms of a conditional average:

∂

∂t
f(v;x, t) + v · ∇xf(v;x, t) = −∇v ·

〈
du

dt
(x, t)

∣
∣
∣
∣
v

〉

︸ ︷︷ ︸

Here′s the physics!

f(v;x, t).
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Statistics: coupling to f 12 I

alternatively:

〈

f̂(v;x, t)
du

dt
(x, t)

〉

=
〈

f̂(v;x, t) (−∇xp(x, t) + ν∆xu(x, t))
〉

.

with the identity 1 =
∫

dv2 δ(u2 − v2) (and the Poisson equation
for the pressure)

−
〈

f̂ ∇p
〉

=
〈

−
∇x1

4π

∫∫

dx2dv2∇x2(v2 · ∇x2v2)

|x1 − x2|
δ(u1 − v1) δ(u2 − v2)

〉

=

Michael Wilczek Turbulence - Structures and Statistics
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Statistics: coupling to f 12 I

alternatively:

〈

f̂(v;x, t)
du

dt
(x, t)

〉

=
〈

f̂(v;x, t) (−∇xp(x, t) + ν∆xu(x, t))
〉

.

with the identity 1 =
∫

dv2 δ(u2 − v2) (and the Poisson equation
for the pressure)

−
〈

f̂ ∇p
〉

=
〈

−
∇x1

4π

∫∫

dx2dv2∇x2(v2 · ∇x2v2)

|x1 − x2|
δ(u1 − v1) δ(u2 − v2)

〉

=

−
∇x1

4π

∫

dx2dv2 (v2 · ∇x2)2

|x1 − x2|
f12
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Statistics: coupling to f 12 II

similar treatment of diffusion term:

〈
ν(∆x1u1)δ(u1 − v1)

〉
= lim

x2→x1

〈
ν∆x2u2δ(u1 − v1)

〉
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Statistics: coupling to f 12 II

similar treatment of diffusion term:

〈
ν(∆x1u1)δ(u1 − v1)

〉
= lim

x2→x1

〈
ν∆x2u2δ(u1 − v1)

〉

= lim
x2→x1

〈

ν∆x2

∫

dv2 v2δ(u1 − v1) δ(u2 − v2)

〉
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Statistics: coupling to f 12 II

similar treatment of diffusion term:

〈
ν(∆x1u1)δ(u1 − v1)

〉
= lim

x2→x1

〈
ν∆x2u2δ(u1 − v1)

〉

= lim
x2→x1

〈

ν∆x2

∫

dv2 v2δ(u1 − v1) δ(u2 − v2)

〉

= lim
x2→x1

ν∆x2

∫

dv2 v2f12
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Statistics: coupling to f 12 II

first equation of Lundgren’s hierarchy:

∂

∂t
f + v1 · ∇x1f =

−∇v1

[

−
∇x1

4π

∫

dx2dv2 (v2 · ∇x2)2

|x1 − x2|
f12 + lim

x2→x1
ν∆x2

∫

dv2 v2f12

]

derivation of higher orders analogously
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Statistics: increment pdf

velocity increments:

δu(x1,x2, t) = u(x2, t) − u(x1, t)

fine-grained pdf:

ĥ(δv;x1,x2, t) := δ(u(x2, t) − u(x1, t) − δv)

substantial derivative:

d

dt
ĥ(δv;x1,x2, t) =

∂

∂t
ĥ + v1 · ∇x1ĥ + v2 · ∇x2 ĥ
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Statistics: increment pdf

basically repeating the same steps leads to

∂

∂t
ĥ + v1 · ∇x1 ĥ + v2 · ∇x2 ĥ = −∇δv ·

[

ĥ
dδu

dt

]
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Statistics: increment pdf

basically repeating the same steps leads to

∂

∂t
ĥ + v1 · ∇x1 ĥ + v2 · ∇x2 ĥ = −∇δv ·

[

ĥ
dδu

dt

]

averaging:

∂

∂t
h + v1 · ∇x1h + v2 · ∇x2h = −∇δv ·

〈

ĥ
dδu

dt

〉
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Statistics: increment pdf

basically repeating the same steps leads to

∂

∂t
ĥ + v1 · ∇x1 ĥ + v2 · ∇x2 ĥ = −∇δv ·

[

ĥ
dδu

dt

]

averaging:

∂

∂t
h + v1 · ∇x1h + v2 · ∇x2h = −∇δv ·

〈

ĥ
dδu

dt

〉

∂

∂t
h + v1 · ∇x1h + v2 · ∇x2h = −∇δv ·

〈
dδu

dt

∣
∣
∣
∣
δv

〉

h.
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Statistics: stationarity and homogeneity

stationarity:
∂

∂t
h = 0
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Statistics: stationarity and homogeneity

stationarity:
∂

∂t
h = 0

homogeneity: pdf only depends on r := x2 − x1

h(δv;x1,x2, t) = h(δv; r, t),

which implies
∇x2h = −∇x1h = ∇rh,
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Statistics: stationarity and homogeneity

stationarity:
∂

∂t
h = 0

homogeneity: pdf only depends on r := x2 − x1

h(δv;x1,x2, t) = h(δv; r, t),

which implies
∇x2h = −∇x1h = ∇rh,

leading to

δv · ∇rh = −∇δv ·

〈
dδu

dt

∣
∣
∣
∣
δv

〉

h.
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Statistics: What’s next?

〈

dδu
dt

∣
∣
∣
∣
δv

〉

seems to be important quantity

contains transition from large-scale Gaussianity to small-scale
intermittency
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Statistics: What’s next?

〈

dδu
dt

∣
∣
∣
∣
δv

〉

seems to be important quantity

contains transition from large-scale Gaussianity to small-scale
intermittency

determine

〈

dδu
dt

∣
∣
∣
∣
δv

〉

numerically

. . . and try to understand
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Statistics: What’s next?

〈

dδu
dt

∣
∣
∣
∣
δv

〉

seems to be important quantity

contains transition from large-scale Gaussianity to small-scale
intermittency

determine

〈

dδu
dt

∣
∣
∣
∣
δv

〉

numerically

. . . and try to understand

solve pdf equation analytically (method of characteristics)

. . . or numerically
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Summary

slender vortices are crucial to turbulent dynamics

framework for a statistical description of turbulence
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