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Goal of ASR

Goal of automatic speech recognition
Symbolic representation of an utterance,
which is only available as acoustic signal.

Scopes of application:
dictation,
translation,
input- or control functions,
. . .
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How does a word arise?

Creation of acoustic speech signal in two steps:
Stimulus - airflow generates ocillations or noise
Signal shaping - shaping of the stimuli by the vocal tract

The vocal tract and its length have a major influence
on the formation of sounds.
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Properties of speech signals

Speech signals
can be divided into temporary segments, e.g.,

words,
syllables,
phonemes –
“smallest distinguishable units of a language”

are bandpass signals (mainly 200-6000 Hz)
contain – besides the message – information on

noise: environmental noise, . . .
way of articulation: emotions, cooperativeness, . . .
habitual characteristics of a speaker:
dialect, non-native language, . . .
individual characteristics of a speaker:
anatomy of the vocal tract → age, sex, . . .
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Basic scheme of ASR

ASR is normally based on a phoneme recognition.

The phoneme recognition can be divided in two major parts:

feature extraction
extraction of specific features out of the speech signal
phoneme recognition
feature based recognition of corresponding phonemes
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Feature extraction

Problem: Discrete time representation of a speech signal is
not suitable for phoneme recognition.

Feature extraction:
Transformation of speech signals in a more suitable

representation w.r.t. phoneme recognition.

Aims:
reduction of the amount of data
preservation of phoneme discriminative properties
robustness against variabilities

Standard feature set for phoneme recognition:

Mel-Frequency Cepstral Coefficients (MFCC)

which are related to the human perception model.
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Mel Frequency Cepstral Coefficients

Realization:
1 Cut signal in time frames of

10-30ms, overlap ≈ 50%
2 Calculate Hann-windowed

spectrum per frame
3 Pool frequencies w.r.t.

psychoacoustically
motivated MEL-scale

4 Take log of magnitudes
5 Decorrelate each frame by

discrete cosine transform
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Result: One feature vector per time frame.
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Vocal tract length variation

Important individual speaker properties (like pitch and sex)
are directly connected to the vocal tract length.

Problem for e.g. MFCC feature vectors:
Variation of vocal tract length leads to warping of the MEL
magnitudes. As a consequence, the same utterance of

different speakers results in different features!
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Tackling VTL variations

Usual approach: Vocal tract length normalization (VTLN)
Assume linear frequency scaling (warping) of short time
spectra
Estimate warping factor α according to highest
recognition rate of a subsequent HMM recognizer
Disadvantage: high computational load

Alternative approach: Vocal tract length invariant (VTLI)
features

Apply translation invariant transformation to
short time spectra: use autocorrelation sequence
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Vocal tract length invariant features
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Invariances of VTLI features

VTLI features provide
wanted invariance against frequency warping.
additional (unwanted) invariances against a great class
of operations.
Example:

reversed sequence leads to identical autocorrelation

ỹ(k) = y(K − k) ⇒ rỹỹ(m) = ryy(m)

in general:
Inversion of any zero of the z-transformed

Y(z) =
∑

k

y(k)z−k

has no impact on either the absolute value |Y(ejω)| or the
autocorrelation ryy(m).

Unwanted invariances may reduce discriminative properties.
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Enhanced VTLI features

Extension of y(k) to the complex plane:

(k) = y(k) · exp
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Extension to complex plane reduces unwanted invariances.

Experiments:
VTLI featureset composed of

Magnitude and phase of r(m) or ryy(m)
Different correlation terms of y(k) and log(y(k))
Classical MFCCs
Gammtone features log(y(k))

Reduction of feature set dimension via LDA.

VTLI featureset gives improved results compared to MFCCs
for non-matching training and test conditions.
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Hidden Markov Models

Example: coin toss behind a curtain
with two different (unfair) coins,
observation: H H T T H T H H T T H

Model: coins → “states” (hidden by the curtain)
H H T T H T H H T T H → “observation sequence”

1 2

H H T T H T



Hidden-Markov-models (HMM)

HMM: Model of a system generating an observation
sequence O = {o1, . . . ,oT}.

1 2 3

o1 o2 o3 o4 o5

HMM has different states q = 1, . . . , N with
transition probabilities A = {j}.

States have emission probabilities b = {bj(k)}
and start probabilities π = {πj}.

“Hidden”: state sequence q = {q1, . . . , qT} is a free
parameter.

“Markov”: next step depends only on present state.



Training of HMM

Notation: Hidden Markov model λ = (A, b,π)

Task: Search λm, maximizing P(O|λ) =
∑

{q} P(O,q|λ)
(production probability) for given O:
λm = rgmxλ{P(O|λ)}

Method: Expectation Maximization (EM) algorithm
universal process for parameter estimation in the
case of missing data.
missing data:
state sequence resp. state probabilities



Iterative EM-algorithm

1 Estimate initial values λ = (A, b,π).
2 Calculate the state probabilities for O and λ (E-step),
P(O|λ) comes for free.

3 Calculate improved model λ = (A, b,π)
based on state probabilities (M-step).

4 Go to 2.

Result: Optimal adaptation of HMM λ to training data.
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Algorithm example: forward probability

First algorithm for caclulation of state probabilities:

Def.: αt() = P(o1, . . . ,ot , qt = |λ)

Recursion: α1() = π b(o1)

αt+1(j) =

(

N
∑

=1

αt()j

)

bj(ot+1)

t

q

oTo1 · · · ot
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Production probability

Effective calculation of P(O|λ) by Forward algorithm:

P(O|λ) =
N
∑

=1

P(O, qT = |λ) =
N
∑

=1

αT()

⇒ for N = 5, T = 100 about 1070× less operations than

P(O|λ) =
∑

{q}

P(O,q|λ)
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Connection to diffusion processes

after Benabdallah, Löser & Radons, submitted to PRE

Let states ⇔ measurement values
(typically several thousand)

t

q

ot ot+1


21

22
 2

3

A = {j} contains information of D(k)(q)
Problem: EM algorithm not practicable for many states



Recognition: Viterbi decoding

Now given:
Observation sequence O = {o1, . . . ,oT} and
Modells λ1, . . . , λL.

Searching model λ∗ with

P(O|λ∗) =mx


{P̂(O|λ)}

where P̂(O|λ) =mx
{q}

{P(O,q|λ)}



Viterbi decoding algorithm

Def.: ϕ(t) = P̂(o1, . . . ,ot , qt = |λ)

recursion: ϕ(1) = π b(o1)

ϕj(t + 1) =
�

mx


{ϕ(t)j}
�

bj(ot+1)

P̂(O|λ) = mx
j

{ϕj(T)}

t
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oTo1 · · · ot
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Example: simple phoneme recognition

Observable phoneme sequences consist of 3 different
phonemes
Each phoneme is represented by a “one state” HMM
Each phoneme can be one ore more time frames long
Alphabet consists of three phonemes (b/ /h)
Given: observation sequence O = {/b/ /h/h/}

START

b b b

l l l

ah ah ah

END
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In reality, ”one state” HMMs are not sufficient:

b

S1 S2 S3

· · · · · ·

· · · · · ·

In general, a phoneme is represented by a three state
left-to-right HMM.
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Summary on HMM

Hidden-Markov-models:
universal approach for pattern recognition

Avantages:
flexible, adaptable to many problems
efficient training and test algorithms available

Disadvantages / limitations:
model design and initialization requires expert
know-how



Concluding remarks

We saw an overwiew of some common concepts

Many advanced techniques exist:

Artificial neural networks (ANN) for feature extraction

Pure ANN
“Tandem” features: MFCC processed by ANN

Inclusion of context information
Grammars for natural speech or special tasks
Context in feature extraction


