

Automatic speech recognition

Matthias Wächter, Jan Rademacher

Ameland, August 2007

Introduction to automatic speech recognition

- 2 Feature extraction
- Vocal tract length invariant features
 - 4 Hidden Markov models
- 5
 - Excursion: connection to diffusion processes
- 6 Summary & concluding remarks

Introduction to automatic speech recognition

- 2 Feature extraction
- 3 Vocal tract length invariant features
- 4 Hidden Markov models
- 5 Excursion: connection to diffusion processes
- 6 Summary & concluding remarks

Goal of automatic speech recognition

Symbolic representation of an utterance, which is only available as acoustic signal.

Goal of automatic speech recognition

Symbolic representation of an utterance, which is only available as acoustic signal.

Scopes of application:

- dictation,
- translation,
- input- or control functions,

• . . .

How does a word arise?

Creation of acoustic speech signal in two steps:

OLDENBURG

- Stimulus airflow generates ocillations or noise
- Signal shaping shaping of the stimuli by the vocal tract

The vocal tract and its length have a major influence on the formation of sounds.

How does a word arise?

Creation of acoustic speech signal in two steps:

OLDENBURG

- Stimulus airflow generates ocillations or noise
- Signal shaping shaping of the stimuli by the vocal tract

The vocal tract and its length have a major influence on the formation of sounds.

Speech signals

OLDENBURG

• can be divided into temporary segments, e.g.,

- words,
- syllables,
- phonemes "smallest distinguishable units of a language"
- are bandpass signals (mainly 200-6000 Hz)
- contain besides the message information on
 - noise: environmental noise, ...
 - way of articulation: emotions, cooperativeness, ...
 - habitual characteristics of a speaker: dialect, non-native language, ...
 - individual characteristics of a speaker: anatomy of the vocal tract → age, sex, ...

Speech signals

OLDENBURG

• can be divided into temporary segments, e.g.,

- words,
- syllables,
- phonemes "smallest distinguishable units of a language"

• are bandpass signals (mainly 200-6000 Hz)

- contain besides the message information on
 - noise: environmental noise, ...
 - way of articulation: emotions, cooperativeness, ...
 - habitual characteristics of a speaker: dialect, non-native language, ...
 - individual characteristics of a speaker: anatomy of the vocal tract → age, sex, ...

Speech signals

OLDENBURG

• can be divided into temporary segments, e.g.,

- words,
- syllables,
- phonemes "smallest distinguishable units of a language"
- are bandpass signals (mainly 200-6000 Hz)
- contain besides the message information on
 - noise: environmental noise, ...
 - way of articulation: emotions, cooperativeness, ...
 - habitual characteristics of a speaker: dialect, non-native language, ...
 - individual characteristics of a speaker: anatomy of the vocal tract → age, sex, ...

ASR is normally based on a phoneme recognition.

The phoneme recognition can be divided in two major parts:

• feature extraction

extraction of specific features out of the speech signal

phoneme recognition

feature based recognition of corresponding phonemes

Introduction to automatic speech recognition

2 Feature extraction

- 3 Vocal tract length invariant features
- 4 Hidden Markov models
- 5 Excursion: connection to diffusion processes
- 6 Summary & concluding remarks

Problem: Discrete time representation of a speech signal is not suitable for phoneme recognition.

Feature extraction:

Transformation of speech signals in a more suitable representation w.r.t. phoneme recognition.

Aims:

- reduction of the amount of data
- preservation of phoneme discriminative properties
- robustness against variabilities

Standard feature set for phoneme recognition:

Mel-Frequency Cepstral Coefficients (MFCC)

which are related to the human perception model.

Problem: Discrete time representation of a speech signal is not suitable for phoneme recognition.

Feature extraction:

Transformation of speech signals in a more suitable representation w.r.t. phoneme recognition.

Aims:

- reduction of the amount of data
- preservation of phoneme discriminative properties
- robustness against variabilities

Standard feature set for phoneme recognition:

Mel-Frequency Cepstral Coefficients (MFCC)

which are related to the human perception model.

Problem: Discrete time representation of a speech signal is not suitable for phoneme recognition.

Feature extraction:

Transformation of speech signals in a more suitable representation w.r.t. phoneme recognition.

Aims:

- reduction of the amount of data
- preservation of phoneme discriminative properties
- robustness against variabilities

Standard feature set for phoneme recognition:

Mel-Frequency Cepstral Coefficients (MFCC)

which are related to the human perception model.

Mel Frequency Cepstral Coefficients

Realization:

- Cut signal in time frames of 10-30ms, overlap ≈ 50%
- Calculate Hann-windowed spectrum per frame
- Pool frequencies w.r.t. psychoacoustically motivated MEL-scale

OLDENBURG

- Take log of magnitudes
- Decorrelate each frame by discrete cosine transform

Result: One feature vector per time frame.

Mel Frequency Cepstral Coefficients

Realization:

- Cut signal in time frames of 10-30ms, overlap ≈ 50%
- Calculate Hann-windowed spectrum per frame
- Pool frequencies w.r.t. psychoacoustically motivated MEL-scale

OLDENBURG

- Take log of magnitudes
- Decorrelate each frame by discrete cosine transform

Result: One feature vector per time frame.

Important individual speaker properties (like pitch and sex) are directly connected to the vocal tract length.

Problem for e.g. MFCC feature vectors:

niversität Oldenburg

Variation of vocal tract length leads to warping of the MEL magnitudes. As a consequence, the same utterance of different speakers results in different features! Important individual speaker properties (like pitch and sex) are directly connected to the vocal tract length.

Problem for e.g. MFCC feature vectors:

versität oldenburg

Variation of vocal tract length leads to warping of the MEL magnitudes. As a consequence, the same utterance of different speakers results in different features!

Usual approach: Vocal tract length normalization (VTLN)

- Assume linear frequency scaling (warping) of short time spectra
- Estimate warping factor α according to highest recognition rate of a subsequent HMM recognizer
- Disadvantage: high computational load

Alternative approach: Vocal tract length invariant (VTLI) features

• Apply translation invariant transformation to short time spectra: use autocorrelation sequence

Introduction to automatic speech recognition

- 2 Feature extraction
- Vocal tract length invariant features
 - 4 Hidden Markov models
- 5 Excursion: connection to diffusion processes
- 6 Summary & concluding remarks

Example:

Example:

Example:

n -

 $r_x(n_0, 0, m)$

Example:

Example:

VTLI features provide

- wanted invariance against frequency warping.
- additional (unwanted) invariances against a great class of operations.
- Example:

versität OLDENBURG

• reversed sequence leads to identical autocorrelation

$$\tilde{y}(k) = y(K - k) \implies r_{\tilde{y}\tilde{y}}(m) = r_{yy}(m)$$

in general:

Inversion of any zero of the z-transformed

$$Y(z) = \sum_{k} y(k) z^{-k}$$

has no impact on either the absolute value $|Y(e^{j\omega})|$ or the autocorrelation $r_{yy}(m)$.

VTLI features provide

- wanted invariance against frequency warping.
- additional (unwanted) invariances against a great class of operations.
- Example:

OLDENBURG

reversed sequence leads to identical autocorrelation

$$\tilde{y}(k) = y(K - k) \implies r_{\tilde{y}\tilde{y}}(m) = r_{yy}(m)$$

• in general:

Inversion of any zero of the z-transformed

$$Y(z) = \sum_{k} y(k) z^{-k}$$

has no impact on either the absolute value $|Y(e^{j\omega})|$ or the autocorrelation $r_{yy}(m)$.

- VTLI features provide
 - wanted invariance against frequency warping.
 - additional (unwanted) invariances against a great class of operations.
 - Example:

OLDENBURG

reversed sequence leads to identical autocorrelation

$$\tilde{y}(k) = y(K - k) \implies r_{\tilde{y}\tilde{y}}(m) = r_{yy}(m)$$

• in general:

Inversion of any zero of the z-transformed

$$Y(z) = \sum_{k} y(k) z^{-k}$$

has no impact on either the absolute value $|Y(e^{j\omega})|$ or the autocorrelation $r_{yy}(m)$.

- VTLI features provide
 - wanted invariance against frequency warping.
 - additional (unwanted) invariances against a great class of operations.
 - Example:

OLDENBURG

reversed sequence leads to identical autocorrelation

$$\tilde{y}(k) = y(K - k) \implies r_{\tilde{y}\tilde{y}}(m) = r_{yy}(m)$$

• in general:

Inversion of any zero of the z-transformed

$$Y(z) = \sum_{k} y(k) z^{-k}$$

has no impact on either the absolute value $|Y(e^{j\omega})|$ or the autocorrelation $r_{yy}(m)$.

Extension of y(k) to the complex plane:

$$u_{x}(k) = y_{x}(k) \cdot \exp\left(j\left(\frac{y_{x}(k)}{\sqrt{\sum_{k}|y_{x}(k)|^{2}}}\right)^{k} \cdot \frac{\pi}{4}\right)$$

Extension to complex plane reduces unwanted invariances.

Experiments:

- VTLI featureset composed of
 - Magnitude and phase of $r_{uu}(m)$ or $r_{yy}(m)$
 - Different correlation terms of *y*(*k*) and log(*y*(*k*))
 - Classical MFCCs
 - Gammtone features log(y(k))
- Reduction of feature set dimension via LDA.

VTLI featureset gives improved results compared to MFCCs for non-matching training and test conditions.

Extension of y(k) to the complex plane:

$$u_{x}(k) = y_{x}(k) \cdot \exp\left(j\left(\frac{y_{x}(k)}{\sqrt{\sum_{k}|y_{x}(k)|^{2}}}\right)^{k} \cdot \frac{\pi}{4}\right)$$

Extension to complex plane reduces unwanted invariances.

Experiments:

- VTLI featureset composed of
 - Magnitude and phase of $r_{uu}(m)$ or $r_{yy}(m)$
 - Different correlation terms of y(k) and log(y(k))
 - Classical MFCCs
 - Gammtone features log(y(k))
- Reduction of feature set dimension via LDA.

VTLI featureset gives improved results compared to MFCCs for non-matching training and test conditions.

Extension of y(k) to the complex plane:

$$u_{x}(k) = y_{x}(k) \cdot \exp\left(j\left(\frac{y_{x}(k)}{\sqrt{\sum_{k}|y_{x}(k)|^{2}}}\right)^{k} \cdot \frac{\pi}{4}\right)$$

Extension to complex plane reduces unwanted invariances.

Experiments:

- VTLI featureset composed of
 - Magnitude and phase of $r_{uu}(m)$ or $r_{yy}(m)$
 - Different correlation terms of y(k) and log(y(k))
 - Classical MFCCs
 - Gammtone features log(y(k))
- Reduction of feature set dimension via LDA.

VTLI featureset gives improved results compared to MFCCs for non-matching training and test conditions.

Introduction to automatic speech recognition

- 2 Feature extraction
- 3 Vocal tract length invariant features
- 4 Hidden Markov models
- 5 Excursion: connection to diffusion processes
- 6 Summary & concluding remarks

OLDENBURG

Model: coins \rightarrow "states" (hidden by the curtain) H H T T H T H H T T H \rightarrow "observation sequence"

HMM: Model of a system generating an observation sequence $O = \{o_1, \dots, o_T\}$.

HMM has different states q = 1, ..., N with transition probabilities $A = \{a_{ij}\}.$

OLDENBURG

States have emission probabilities $b = \{b_j(k)\}$ and start probabilities $\pi = \{\pi_j\}$.

"Hidden": state sequence $q = \{q_1, ..., q_T\}$ is a free parameter.

"Markov": next step depends only on present state.

Notation: Hidden Markov model $\lambda = (A, b, \pi)$

Task: Search λ_{max} , maximizing $P(O|\lambda) = \sum_{\{q\}} P(O, q|\lambda)$ (production probability) for given O: $\lambda_{max} = \arg \max_{\lambda} \{P(O|\lambda)\}$

Method: Expectation Maximization (EM) algorithm

- universal process for parameter estimation in the case of missing data.
- missing data: state sequence resp. state probabilities

Setimate initial values $\lambda = (A, b, \pi)$.

- Calculate the state probabilities for O and λ (E-step), $P(O|\lambda)$ comes for free.
- Calculate improved model $\overline{\lambda} = (\overline{A}, \overline{b}, \overline{\pi})$ based on state probabilities (M-step).
- Go to 2.

- Setimate initial values $\lambda = (A, b, \pi)$.
- Calculate the state probabilities for O and λ (E-step), $P(O|\lambda)$ comes for free.
- Calculate improved model $\overline{\lambda} = (\overline{A}, \overline{b}, \overline{\pi})$ based on state probabilities (M-step).
- Go to 2.

- Setimate initial values $\lambda = (A, b, \pi)$.
- Calculate the state probabilities for *O* and λ (E-step), $P(O|\lambda)$ comes for free.
- Solution Calculate improved model $\overline{\lambda} = (\overline{A}, \overline{b}, \overline{\pi})$ based on state probabilities (M-step).
- Go to 2.

- Setimate initial values $\lambda = (A, b, \pi)$.
- Calculate the state probabilities for *O* and λ (E-step), $P(O|\lambda)$ comes for free.
- Solution Calculate improved model $\overline{\lambda} = (\overline{A}, \overline{b}, \overline{\pi})$ based on state probabilities (M-step).
- ④ Go to 2.

- Setimate initial values $\lambda = (A, b, \pi)$.
- Calculate the state probabilities for *O* and λ (E-step), $P(O|\lambda)$ comes for free.
- Solution Calculate improved model $\overline{\lambda} = (\overline{A}, \overline{b}, \overline{\pi})$ based on state probabilities (M-step).
- ④ Go to 2.

First algorithm for caclulation of state probabilities:

OSSIETZKY Versität OLDENBURG

> Def.: $\alpha_t(i) = P(o_1, \dots, o_t, q_t = i | \lambda)$ Recursion: $\alpha_1(i) = \pi_i b_i(o_1)$ $\alpha_{t+1}(j) = \left\{ \sum_{i=1}^N \alpha_t(i) a_{ij} \right\} b_j(o_{t+1})$

First algorithm for caclulation of state probabilities:

ossietzki versität

OLDENBURG

Def.:
$$\alpha_t(i) = P(o_1, \dots, o_t, q_t = i | \lambda)$$

Recursion: $\alpha_1(i) = \pi_i b_i(o_1)$
 $\alpha_{t+1}(j) = \left\{ \sum_{i=1}^N \alpha_t(i) a_{ij} \right\} b_j(o_{t+1})$

First algorithm for caclulation of state probabilities:

ossietzky versität

OLDENBURG

Def.:
$$\alpha_t(i) = P(o_1, \dots, o_t, q_t = i|\lambda)$$

Recursion: $\alpha_1(i) = \pi_i b_i(o_1)$
 $\alpha_{t+1}(j) = \left\{\sum_{i=1}^N \alpha_t(i) a_{ij}\right\} b_j(o_{t+1})$

Effective calculation of $P(O|\lambda)$ by Forward algorithm:

$$P(O|\lambda) = \sum_{i=1}^{N} P(O, q_T = i|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$$

 $\Rightarrow \text{ for } N = 5, T = 100 \text{ about } 10^{70} \times \text{ less operations than}$ $P(O|\lambda) = \sum_{\{q\}} P(O, q|\lambda)$

Effective calculation of $P(O|\lambda)$ by Forward algorithm:

$$P(O|\lambda) = \sum_{i=1}^{N} P(O, q_T = i|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$$

 $\Rightarrow \text{ for } N = 5, T = 100 \text{ about } 10^{70} \times \text{ less operations than}$ $P(O|\lambda) = \sum_{\{q\}} P(O, q|\lambda)$

Introduction to automatic speech recognition

- 2 Feature extraction
- 3 Vocal tract length invariant features
- 4 Hidden Markov models
- 5 Excursion: connection to diffusion processes
 - 6 Summary & concluding remarks

Connection to diffusion processes

after Benabdallah, Löser & Radons, submitted to PRE

• $A = \{a_{ij}\}$ contains information of $D^{(k)}(q)$

OLDENBURG

• Problem: EM algorithm not practicable for many states

Now given:

OLDENBURG

- Observation sequence $O = \{o_1, \ldots, o_T\}$ and
- Modells $\lambda_1, \ldots, \lambda_L$.

Searching model λ^* with

$$P(O|\lambda^*) = \max_{l} \{\hat{P}(O|\lambda_l)\}$$

where $\hat{P}(O|\lambda_l) = \max_{\{q\}} \{P(O,q|\lambda_l)\}$

Def.:
$$\phi_i(t) = \hat{P}(o_1, \dots, o_t, q_t = i|\lambda)$$

recursion: $\phi_i(1) = \pi_i b_i(o_1)$
 $\phi_j(t+1) = \left[\max_i \{\phi_i(t)a_{ij}\}\right] b_j(o_{t+1})$

universität

OLDENBURG

Def.:
$$\phi_i(t) = \hat{P}(o_1, \dots, o_t, q_t = i | \lambda)$$

recursion: $\phi_i(1) = \pi_i b_i(o_1)$
 $\phi_j(t+1) = \left[\max_i \{\phi_i(t)a_{ij}\} \right] b_j(o_{t+1})$

universität

OLDENBURG

Def.:
$$\phi_i(t) = \hat{P}(o_1, \dots, o_t, q_t = i|\lambda)$$

recursion: $\phi_i(1) = \pi_i b_i(o_1)$
 $\phi_j(t+1) = \left[\max_i \{\phi_i(t)a_{ij}\}\right] b_j(o_{t+1})$

UNIT OLDENBURG

Def.:
$$\phi_i(t) = \hat{P}(o_1, \dots, o_t, q_t = i|\lambda)$$

recursion: $\phi_i(1) = \pi_i b_i(o_1)$
 $\phi_j(t+1) = \left[\max_i \{\phi_i(t)a_{ij}\}\right] b_j(o_{t+1})$
 $\hat{P}(O|\lambda) = \max_i \{\phi_j(T)\}$

universität

OLDENBURG

- Observable phoneme sequences consist of 3 different phonemes
- Each phoneme is represented by a "one state" HMM
- Each phoneme can be one ore more time frames long
- Alphabet consists of three phonemes (b/l/ah)

OLDENBURG

- Observable phoneme sequences consist of 3 different phonemes
- Each phoneme is represented by a "one state" HMM
- Each phoneme can be one ore more time frames long
- Alphabet consists of three phonemes (b/l/ah)

OLDENBURG

- Observable phoneme sequences consist of 3 different phonemes
- Each phoneme is represented by a "one state" HMM
- Each phoneme can be one ore more time frames long
- Alphabet consists of three phonemes (b/l/ah)

OLDENBURG

- Observable phoneme sequences consist of 3 different phonemes
- Each phoneme is represented by a "one state" HMM
- Each phoneme can be one ore more time frames long
- Alphabet consists of three phonemes (b/l/ah)

OLDENBURG

- Observable phoneme sequences consist of 3 different phonemes
- Each phoneme is represented by a "one state" HMM
- Each phoneme can be one ore more time frames long
- Alphabet consists of three phonemes (b/l/ah)

OLDENBURG

- Observable phoneme sequences consist of 3 different phonemes
- Each phoneme is represented by a "one state" HMM
- Each phoneme can be one ore more time frames long
- Alphabet consists of three phonemes (b/l/ah)

OLDENBURG

- Observable phoneme sequences consist of 3 different phonemes
- Each phoneme is represented by a "one state" HMM
- Each phoneme can be one ore more time frames long
- Alphabet consists of three phonemes (b/l/ah)

OLDENBURG

- Observable phoneme sequences consist of 3 different phonemes
- Each phoneme is represented by a "one state" HMM
- Each phoneme can be one ore more time frames long
- Alphabet consists of three phonemes (b/l/ah)

- Observable phoneme sequences consist of 3 different phonemes
- Each phoneme is represented by a "one state" HMM
- Each phoneme can be one ore more time frames long
- Alphabet consists of three phonemes (b/l/ah)

- Observable phoneme sequences consist of 3 different phonemes
- Each phoneme is represented by a "one state" HMM
- Each phoneme can be one ore more time frames long
- Alphabet consists of three phonemes (b/l/ah)

OLDENBURG

- Observable phoneme sequences consist of 3 different phonemes
- Each phoneme is represented by a "one state" HMM
- Each phoneme can be one ore more time frames long
- Alphabet consists of three phonemes (b/l/ah)

- Observable phoneme sequences consist of 3 different phonemes
- Each phoneme is represented by a "one state" HMM
- Each phoneme can be one ore more time frames long
- Alphabet consists of three phonemes (b/l/ah)

In general, a phoneme is represented by a three state left-to-right HMM.

Introduction to automatic speech recognition

- 2 Feature extraction
- 3 Vocal tract length invariant features
- 4 Hidden Markov models
- 5 Excursion: connection to diffusion processes
- 6 Summary & concluding remarks

Hidden-Markov-models:

• universal approach for pattern recognition

Avantages:

- flexible, adaptable to many problems
- efficient training and test algorithms available

Disadvantages / limitations:

 model design and initialization requires expert know-how

- We saw an overwiew of some common concepts
- Many advanced techniques exist:
 - Artificial neural networks (ANN) for feature extraction
 - Pure ANN
 - "Tandem" features: MFCC processed by ANN
 - Inclusion of context information
 - Grammars for natural speech or special tasks
 - Context in feature extraction