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Goal of automatic speech recognition

Symbolic representation of an utterance,
which is only available as acoustic signal.
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Goal of automatic speech recognition

Symbolic representation of an utterance,
which is only available as acoustic signal.

Scopes of application:
@ dictation,
@ translation,
@ input- or control functions,
° ...
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Creation of acoustic speech signal in two steps:
@ Stimulus - airflow generates ocillations or noise
@ Signal shaping - shaping of the stimuli by the vocal tract
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Creation of acoustic speech signal in two steps:
@ Stimulus - airflow generates ocillations or noise
@ Signal shaping - shaping of the stimuli by the vocal tract

The vocal tract and its length have a major influence
on the formation of sounds. J
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Speech signals
@ can be divided into temporary segments, e.q.,

e words,
e syllables,
e phonemes -
“smallest distinguishable units of a language”

@ are bandpass signals (mainly 200-6000 Hz)
@ contain - besides the message - information on

@ noise: environmental noise, ...
e way of articulation: emotions, cooperativeness, ...
@ habitual characteristics of a speaker:
dialect, non-native language, ...
e individual characteristics of a speaker:
anatomy of the vocal tract — age, sex, ...
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ASR is normally based on a phoneme recognition. )
. feature symbolic
m vectors phoneme series
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The phoneme recognition can be divided in two major parts:

o feature extraction
extraction of specific features out of the speech signal

@ phoneme recognition
feature based recognition of corresponding phonemes
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a Feature extraction
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Problem: Discrete time representation of a speech signal is
not suitable for phoneme recognition.

Feature extraction:

Transformation of speech signals in a more suitable
representation w.r.t. phoneme recognition.
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Problem: Discrete time representation of a speech signal is
not suitable for phoneme recognition.

Feature extraction:

Transformation of speech signals in a more suitable
representation w.r.t. phoneme recognition.

Aims:
@ reduction of the amount of data
@ preservation of phoneme discriminative properties
@ robustness against variabilities

Standard feature set for phoneme recognition:

Mel-Frequency Cepstral Coefficients (MFCC) J

which are related to the human perception model.
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Mel Frequency Cepstral Coefficients

Realization:

@ Cut signal in time frames of
10-30ms, overlap =~ 50%

@ Calculate Hann-windowed
spectrum per frame

@ Pool frequencies w.r.t.
psychoacoustically
motivated MEL-scale

© Take log of magnitudes

@ Decorrelate each frame by
discrete cosine transform
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Mel Frequency Cepstral Coefficients

Realization:

@ Cut signal in time frames of
10-30ms, overlap =~ 50%

@ Calculate Hann-windowed
spectrum per frame

@ Pool frequencies w.r.t.
psychoacoustically
motivated MEL-scale

© Take log of magnitudes

@ Decorrelate each frame by
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Result: One feature vector per time frame.J




Vocal tract length variation
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Important individual speaker properties (like pitch and sex)
are directly connected to the vocal tract length.

Nasenraum

Mundraum

)\ _ Vokaltrakt

Gaumen

Rachenraum

(Pharynx) Lippen

Supraglottales
System Zunge
Unterkiefer

Subglottales
System



Vocal tract length variation

0
universitdt|OLDENBURG

Important individual speaker properties (like pitch and sex)
are directly connected to the vocal tract length.
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Variation of vocal tract length leads to warping of the MEL
magnitudes. As a consequence, the same utterance of
different speakers results in different features!




Tackling VTL variations
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Usual approach: Vocal tract length normalization (VTLN)

@ Assume linear frequency scaling (warping) of short time
spectra

@ Estimate warping factor a according to highest
recognition rate of a subsequent HMM recognizer

@ Disadvantage: high computational load

Alternative approach: Vocal tract length invariant (VTLI)
features

@ Apply translation invariant transformation to
short time spectra: use autocorrelation sequence



What’'s next?
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e Vocal tract length invariant features
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VTLI features provide
@ wanted invariance against frequency warping.

@ additional (unwanted) invariances against a great class
of operations.

@ Example:
@ reversed sequence leads to identical autocorrelation

yK)y=y(K-k) = rygyg(m)=ry,(m)

@ in general:
Inversion of any zero of the z-transformed

Y(2) =) y(k)z ¥
k

has no impact on either the absolute value |Y(e/?)| or the
autocorrelation ryy,(m).

Unwanted invariances may reduce discriminative properties. )
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Extension of y(k) to the complex plane:
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: g Vo2 ) 4

Extension to complex plane reduces unwanted invariances. )
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Experiments:

@ VTLI featureset composed of

Magnitude and phase of ry,(m) or ryy,(m)
Different correlation terms of y(k) and log(y(k))
Classical MFCCs

Gammtone features log(y(k))

@ Reduction of feature set dimension via LDA.
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Extension of y(k) to the complex plane:

u(k)=y(/<)-exp(j (y—(k) T
: g Vo2 ) 4

Extension to complex plane reduces unwanted invariances. )

Experiments:

@ VTLI featureset composed of

Magnitude and phase of ry,(m) or ryy,(m)
Different correlation terms of y(k) and log(y(k))
Classical MFCCs

Gammtone features log(y(k))

@ Reduction of feature set dimension via LDA.

VTLI featureset gives improved results compared to MFCCs
for non-matching training and test conditions. J
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Hidden Markov Models
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Example: coin toss behind a curtain
with two different (unfair) coins,
observationn HHTTHTHHTTH

Model: coins — “states” (hidden by the curtain)
HHTTHTHHTTH — “observation sequence”



Hidden-Markov-models (HMM)
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HMM: Model of a system generating an observation
sequence O = {o1,...,0T}.

@\M
o1 02 03 04 o5

HMM has different states g=1, ..., N with
transition probabilities A = {a;}.

States have emission probabilities b= {b;j(k)}
and start probabilities 7= = {m;}.

“Hidden”: state sequence q={q1,...,9T7} is a free
parameter.

“Markov”: next step depends only on present state.



Training of HMM
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Notation: Hidden Markov model A = (A, b, )

Task: Search Amax, maximizing P(OIA) = 3., P(O, gIA)
(production probability) for given O:
Amax = argmaxx{P(O|A)}

Method: Expectation Maximization (EM) algorithm
@ universal process for parameter estimation in the
case of missing data.
@ missing data:
state sequence resp. state probabilities
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Iterative EM-algorithm
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© Estimate initial values A = (A, b, 7).

@ Calculate the state probabilities for O and A (E-step),
P(O|X) comes for free.

@ Calculate improved model A = (A4, b, 7)
based on state probabilities (M-step).

Q Goto 2.

Result: Optimal adaptation of HMM A to training data. )
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Algorithm example: forward probability
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First algorithm for caclulation of state probabilities:
Def.: ai(i) = P(o1,...,0t,qt=1i|A)
T bi(o1)

Recursion: az(i)

N
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Effective calculation of P(O|A) by Forward algorithm:
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Production probability
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Effective calculation of P(O|A) by Forward algorithm:
N N

PON) = Y.PO.qr=ir) = Y ar()
i=1 i=1

= for N=5,T =100 about 107%x less operations than

POIA) = Y .P(O,ql)
{q}
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e Excursion: connection to diffusion processes



Connection to diffusion processes
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after Benabdallah, Loser & Radons, submitted to PRE

@ Letstates < measurement values
(typically several thousand)

q
o o o [ ] o o
oV
az
o o 6 o
<
o o o [ ] o o
t 0 t
ot Ot+1

@ A = {a;} contains information of D(*)(q)
@ Problem: EM algorithm not practicable for many states



Recognition: Viterbi decoding
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Now given:
@ Observation sequence O = {o01,...,07} and
@ Modells A1,..., AL.

Searching model A* with
P(OIA™) = max{P(OA)}

where PA(O|A) = r?a}x{P(O,qI)\z)}
q



Viterbi decoding algorithm
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Def: ¢i(t) = P(oi,..., o0t qr = i)

recursion: ¢i(1) = m;bi(o1)
b1 = | max{oas| blors)
q
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Def: ¢i(t)

recursion: ¢;(1)

Viterbi decoding algorithm

P(o1,..., 0t Qt = i|A)
i bi(o1)
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Viterbi decoding algorithm
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Def.: ¢i(t) = P(o1,...,0t gt =i|\)
recursion: ¢i(1) = mibi(o1)

oi(t+1) [mgx{m(t)ai,-}] by(ots1)
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Def: ¢i(t)

recursion: ¢;(1)

Viterbi decoding algorithm

P(o1,...,0t Qe = i|A)
Mibi(o1)

Be+1) = [ maxigtlag} | bylorsn)
PO = max{g;(T)}
q
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@ Observable phoneme sequences consist of 3 different
phonemes

@ Each phoneme is represented by a “one state” HMM
@ Each phoneme can be one ore more time frames long
@ Alphabet consists of three phonemes (b/l/ah)

@ Given: observation sequence O = {/b/l/ah/ah/}
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In reality, "one state” HMMs are not sufficient:

5

l

In general, a phoneme is represented by a three state
left-to-right HMM. J
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e Summary & concluding remarks



Summary on HMM
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Hidden-Markov-models:

@ universal approach for pattern recognition
Avantages:

o flexible, adaptable to many problems

@ efficient training and test algorithms available

Disadvantages / limitations:

@ model design and initialization requires expert
know-how



Concluding remarks
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@ We saw an overwiew of some common concepts

@ Many advanced techniques exist:

e Artificial neural networks (ANN) for feature extraction

e Pure ANN
o “Tandem” features: MFCC processed by ANN

e Inclusion of context information

o Grammars for natural speech or special tasks
e Context in feature extraction



