Outline	Motivation	The Model	Numerical Simulations	Conclusions
		00000000000000 0000000	000 0000000000000000000000000000000000	

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

27.08.2007

Westfälische Wilhelms-Universität Münster

Cornelia Petrović

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions

Motivation - some notes to the experiment

The Model

The basic model Ensemble of coupled oscillators

Numerical Simulations

Single oscillator N coupled oscillators

Conclusions

Westfälische Wilhelms-Universität Münster

Cornelia Petrović

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions

The exothermic CO-Oxidation on Palladium-supported catalyst

Langmuir-Hinschelwood-mechanism:

- $\begin{array}{ccc} \mathrm{CO} + \ast \leftrightarrow & \mathrm{CO} \ast & (1) \\ \mathrm{O}_2 + 2 \ast \rightarrow & 2 \, \mathrm{O} \ast & (2) \\ \mathrm{CO} \ast + \mathrm{O} \ast \rightarrow & 2 \, \mathrm{CO}_2 + 2 \ast & (3) \end{array}$
- *: place of adsorption on Pd

Westfälische Wilhelms-Universität Münster

Cornelia Petrović

Outline	Motivation	The Model	Numerical Simulations	Conclusions
		000000000000000 0000000	000 00000000000000000000000	

The exothermic CO-Oxidation on Palladium-supported catalyst

Cornelia Petrović

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators

Westfälische Wilhelms-Universität Münster

000000000000000000000000000000000000000	lusions
0000000 0000000000000000000000000000000	

The exothermic CO-Oxidation on Palladium-supported catalyst

The frequency of big excursions increases.

- The amplitudes of small excursions increase.
- The complexity of the structure of small excursions increases.
- The maximum conversion rate of CO decreases.

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Outline	Motivation	The Model ●oooooooooooooooooooooooooooooooooooo	Numerical Simulations	Conclusions
The basic model				

The basic model

The basic ingredient:

- a single relaxationsoscillator,
 - corresponding to a single Palladium particle.

Westfälische Wilhelms-Universität Münster

Cornelia Petrović

The basic model

The basic ingredient:

- a single relaxationsoscillator,
 - corresponding to a single Palladium particle.

This particle is considered to be in one of two phases: palladium or palladium oxide,

palladium

Cornelia Petrović

palladium oxide

Westfälische Wilhelms-Universität Münster

The basic model

The basic ingredient:

- a single relaxationsoscillator,
 - corresponding to a single Palladium particle.

This particle is considered to be in one of two phases: palladium or palladium oxide,

- palladium => active = reduced
- ▶ palladium oxide ⇒ inactive = oxidized

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

(a) < (a) < (b) < (b)

degree of oxidation of the Palladium

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Outline	Motivation	The Model 000●00000000000 0000000	Numerical Simulations	Conclusions
The basic model				

Phase space consists of two regions with different dynamical behaviour:

- active region
- passive region

These regions are separated by a line which is given by a function

$$y = f(x, Q) \tag{4}$$

- x: degree of oxidation
- y: CO-concentration in the reactor
- Q: determines the shape of f

Westfälische Wilhelms-Universität Münster

Cornelia Petrović

Outline	Motivation	The Model	Numerical Simulations	Conclusions
		00000000000000000000000000000000000000	000 00000000000000000000000000000000000	
The basic mode	el			

We choose the function f as

$$f(x,Q) = \exp\left(\frac{-x^2}{Q}\right).$$
 (5)

f(x,Q) passive f(x,Q)active

Cornelia Petrović

Sfrag replacements

Westfälische Wilhelms-Universität Münster

イロト イヨト イヨト イヨト

Outline	Motivation	The Model	Numerical Simulations	Conclusions
The basic model				

Dynamical behaviour

active region:

$$\dot{x} = \bar{\beta} (1 - x)$$

$$\dot{y} = -y + \alpha y_0$$
(6)
(7)

- y_0 : CO inlet concentration, $y_0 \leq 1$
- $\begin{array}{ll} \alpha : & \mbox{exchange factor,} \\ & \mbox{representing the flow rate F through the reactor:} \\ & \mbox{0} \leq \alpha \leq 1, \\ & \mbox{lim}_{F \to \infty} \alpha = 1. \end{array}$

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Outline	Motivation	The Model 000000●00000000 0000000	Numerical Simulations	Conclusions
The basic model				

Dynamical behaviour II

passive region:

$$\dot{x} = -\beta_0 x \tag{8}$$

$$\dot{y} = \alpha (y_0 - y) \tag{9}$$

Westfälische Wilhelms-Universität Münster

Cornelia Petrović

Outline	Motivation	The Model 0000000●0000000 0000000	Numerical Simulations	Conclusions
The basic model				

Dynamical behaviour III

Introducing the function

$$\Theta(x, y, Q) := \Theta_0\left(\exp\left(\frac{-x^2}{Q}\right) - y\right) = \begin{cases} 1 & \text{active region} \\ 0 & \text{passive region} \end{cases}$$
(10)

with Θ_0 denoting the usual Heaviside step function, all the equations above can be summarized in:

Westfälische Wilhelms-Universität Münster

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators

Outline	Motivation	The Model 0000000●0000000 0000000	Numerical Simulations	Conclusions
The basic model				

Dynamical behaviour III

Introducing the function

$$\Theta(x, y, Q) := \Theta_0\left(\exp\left(\frac{-x^2}{Q}\right) - y\right) = \begin{cases} 1 & \text{active region} \\ 0 & \text{passive region} \end{cases}$$
(10)

with Θ_0 denoting the usual Heaviside step function, all the equations above can be summarized in:

$$\dot{x} = [\Theta(x, y, Q) - x] \cdot \beta$$

$$\dot{y} = \underbrace{-\Theta(x, y, Q)y}_{\text{reaction}} + \underbrace{\alpha y_0}_{\text{gas inlet}} \underbrace{-\alpha[1 - \Theta(x, y, Q)] \cdot y}_{\text{gas outlet}}$$
(11)
(12)

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions
The basic model				

Dynamical behaviour IV

The frequency β is defined by

$$\beta = \Theta(x, y, Q) \cdot \overline{\beta} + (1 - \Theta(x, y, Q)) \cdot \beta_0.$$
(13)

Westfälische Wilhelms-Universität Münster

Cornelia Petrović

Outline	Motivation	The Model ○○○○○○○●○○○○○○ ○○○○○○○	Numerical Simulations	Conclusions
The basic model				

Dynamical behaviour IV

The frequency β is defined by

$$\beta = \Theta(x, y, Q) \cdot \overline{\beta} + (1 - \Theta(x, y, Q)) \cdot \beta_0.$$
(13)

with

$$\beta_0 \gg \bar{\beta}$$
 (14)

 \implies two different time scales (15)

$$\implies$$
 relaxation oscillator (16)

Westfälische Wilhelms-Universität Münster

Cornelia Petrović

degree of oxidation of the Palladium

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions
The basic model				

The frequency $\bar{\beta}$ is a monotonically increasing function of the flow rate $\alpha :$

$$\bar{\beta} = \bar{\beta}(\alpha) \tag{17}$$

Westfälische Wilhelms-Universität Münster

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions
The basic model				

Long time behaviour

There exists a critical flow rate α_c :

$$\begin{array}{ll} \alpha < \alpha_{c} & \Longrightarrow & \text{fixed point} \\ \alpha > \alpha_{c} & \Longrightarrow & \text{limit cycle} \end{array}$$
(18)

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

 $\alpha > \alpha_{c}$

Long time behaviour for different flow rates

Fixed points for $\alpha = 0.74, 0.75, ...0.79$, limit cycles for $\alpha = 0.80, 0.83, 0.85, 0.87, 0.90, 0.93$.

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

The extended model contains N coupled relaxation oscillators. Thereby, there are several assumptions which are based on experimental observations:

Westfälische Wilhelms-Universität Münster

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators

The extended model contains N coupled relaxation oscillators. Thereby, there are several assumptions which are based on experimental observations:

The gases' concentrations are the same everywhere in the reactor (instantaneous changes).

Westfälische Wilhelms-Universität Münster

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators

The extended model contains N coupled relaxation oscillators. Thereby, there are several assumptions which are based on experimental observations:

- The gases' concentrations are the same everywhere in the reactor (instantaneous changes).
- There are large distances between the Pd particles due to the low concentration of Pd in the catalyst.

The extended model contains N coupled relaxation oscillators. Thereby, there are several assumptions which are based on experimental observations:

- The gases' concentrations are the same everywhere in the reactor (instantaneous changes).
- There are large distances between the Pd particles due to the low concentration of Pd in the catalyst.
- The particles do not have exactly the same size, there is a distribution of the Pd particle sizes.

Outline	Motivation	The Model ○○○○○○○○○○○○○○○ ○●○○○○○	Numerical Simulations	Conclusions
Ensemble of coupled oscillators				

Therefore we assume:

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Outline	Motivation	The Model ○○○○○○○○○○○○○○○ ○●○○○○○	Numerical Simulations	Conclusions
Ensemble of coupled	oscillators			

Therefore we assume:

There are no neighbourhood relations between the oscillators; the global coupling takes place over the gas phase.

Westfälische Wilhelms-Universität Münster

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators

Outline	Motivation	The Model ○○○○○○○○○○○○○○○ ○●○○○○○	Numerical Simulations	Conclusions
Ensemble of coupled	oscillators			

Therefore we assume:

- There are no neighbourhood relations between the oscillators; the global coupling takes place over the gas phase.
- The oscillators have different frequencies which are hierarchically ordered, representing the hierarchically ordered sizes of the palladium particles.

Outline	Motivation	The Model ○○○○○○○○○○○○○○○ ○○●○○○○	Numerical Simulations	Conclusions
Ensemble of coupled oscillators				

The dynamical sytem now reads:

$$\dot{x}_{i} = [\Theta(x_{i}, y, Q) - x_{i}] \cdot \beta_{i}, \quad i = 1, ...N$$

$$\dot{y} = \underbrace{-\overline{N}y}_{\text{reaction}} + \underbrace{\alpha y_{0}}_{\text{gas inlet}} \underbrace{-\alpha[1 - \overline{N}] \cdot y}_{\text{gas outlet}}$$
(20)

Westfälische Wilhelms-Universität Münster

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators

The dynamical sytem now reads:

$$\dot{x}_i = [\Theta(x_i, y, Q) - x_i] \cdot \beta_i, \quad i = 1, ...N$$
 (21)

$$\dot{y} = -\overline{N} y + \alpha y_0 - \alpha (1 - \overline{N}) \cdot y$$
 (22)

Thereby, the average conversion rate \overline{N} and the frequencies β_i are given by

$$\overline{N} = \frac{1}{N} \sum_{i=1}^{N} \Theta(x_i, y, Q)$$
(23)

$$\beta_i = [1 - \Theta(x_i, y, Q)]\beta_0 + \Theta(x_i, y, Q)\overline{\beta_i}$$
(24)

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Frequencies of the active particles

The frequencies $\overline{\beta_i}$ are chosen to show a linear decay, dependent on

▶ the particle size,

Cornelia Petrović

smaller particles have higher frequencies than bigger ones

Westfälische Wilhelms-Universität Münster

Frequencies of the active particles

The frequencies $\overline{\beta_i}$ are chosen to show a linear decay, dependent on

- the particle size,
 - smaller particles have higher frequencies than bigger ones
- and the flow rate,
 - for small flow rates all the particles have more similar frequencies.

Westfälische Wilhelms-Universität Münster

-

Cornelia Petrović

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Outline	Motivation	The Model ○○○○○○○○○○○○○○○ ○○○○○●	Numerical Simulations	Conclusions
Ensemble of co	upled oscillators			

$$\beta_i = \beta_i(\alpha) = H(i, \alpha) \tag{25}$$

 $H(i, \alpha)$: mon. decreasing with growing i $H(i, \alpha)$ and $\frac{\partial H}{\partial i}(i, \alpha)$: mon. increasing with growing α

Westfälische Wilhelms-Universität Münster

(4) (日本)

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators

Outline	Motivation	The Model	Numerical Simulations •oo •oo	Conclusions
Single oscillator				

Numerical Simulations - a single oscillator

Runge-Kutta method of order 4, step-size 0.005.

$$Q = 3$$

$$y_0 = 0.9$$

$$\bar{\beta} = 0.0098 \cdot \alpha, \qquad \beta_0 = 0.09$$

$$\alpha_c = \exp\left(-\frac{1}{Q}\right) \frac{1}{y_0} \approx 0.796.$$
(26)

Westfälische Wilhelms-Universität Münster

Cornelia Petrović

Outline	Motivation	The Model	Numerical Simulations	Conclusion
		000000000000000000000000000000000000000	000	
		0000000	000000000000000000000000000000000000000	
Single oscillator				

ments PSfrag replacements PSfrag replacements TIME SCHES OF the degree of Oxidation

 $\alpha = \textbf{0.80}, \textbf{0.83}, \textbf{0.85}, \textbf{0.87}, \textbf{0.90}, \textbf{0.93}$

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Outline	Motivation	The Model	Numerical Simulations	Conclusions
		000000000000000 0000000	000 •0000000000000000000000	
N coupled oscillators				

Numerical simulations - N = 10 coupled oscillators

$$Q = 3$$

$$y_0 = 0.9$$

$$\bar{\beta}_i = 0.01 \left[1 - \frac{(N-2)}{N^2} \cdot i \right] \cdot \alpha, \qquad \beta_0 = 0.09$$

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Numerical Simulations

Conclusions

N coupled oscillators

ments PSfrag replacements PSfrag replacements Time-series of the CO-concentration

 $\alpha = \textbf{0.80}, \textbf{0.83}, \textbf{0.85}, \textbf{0.87}, \textbf{0.90}, \textbf{0.93}$

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Outline	Motivation	The Model	Numerical Simulations	Conclu
		000000000000000 0000000	000 00●0000000000000000000000000000000	
N coupled osci	llators			

 The frequency of big excursions increases. ions

- The amplitudes of small excursions increase.
- The complexity of the structure of small excursions increases.
- The maximum conversion rate of CO decreases.

Westfälische Wilhelms-Universität Münster

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions
N coupled oscillators				

- ▶ Where do the additional excursions come from?
- Why does their amplitude grow with increasing flow rate?
- What does actually happen when one couples the oscillators?

Westfälische Wilhelms-Universität Münster

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

х

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Image: A image: A

0.8

A

- region A: The fast oscillators move to the passive state, apparently uninfluenced..
- region B: All oscillators move to the active state prematurly compared to the uncoupled scenario.
- ▶ **region C**: According to the different frequencies $\bar{\beta}_i$ the limit cycles spread.
- region D: The slow oscillators move prematurely to the passive state.

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions
N coupled oscillators				

region A $\alpha = 0.80$

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Westfälische Wilhelms-Universität Münster

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions
N coupled oscillators	i -			

Several observations:

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions
N coupled oscillators	i -			

Several observations:

Cornelia Petrović

- ► There is a basic frequency which characterizes the big breakdowns. ⇒ synchronization of the oszillators.
- ► This basic frequency is **not** the natural frequency of the fastest oscillator. ⇒ existence of plateaus.

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions
N coupled oscillators				

Cascade of breakdowns

Outline	Motivation	The Model	Numerical Simulations	Conclusions
		000000000000000 0000000	000 0000000000000000000000000000000000	
N coupled oscillators				

Cascade of breakdowns II

Observation: With growing flow rate α more and more particles are needed to start the final cascade of breakdowns.

Westfälische Wilhelms-Universität Münster

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions
N coupled oscillators				

Cascade of breakdowns II

Observation: With growing flow rate α more and more particles are needed to start the final cascade of breakdowns. There are two concurring mechanisms:

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions
N coupled oscillators				

Cascade of breakdowns III

- If a particle moves to the passive region, y grows up to some value y which is dependent on
 - α (flow rate)
 - I (part of particles which are in the active region)

For given α and I and for growing $\alpha \tilde{y}$ increases. \Rightarrow Less particles need to move to the passive region.

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions
N coupled oscillators				

Cascade of breakdowns III

- If a particle moves to the passive region, y grows up to some value y which is dependent on
 - α (flow rate)
 - I (part of particles which are in the active region)

For given α and I and for growing $\alpha \tilde{y}$ increases. \Rightarrow Less particles need to move to the passive region.

With growing *α* the relative differences between the frequencies grow, too: compared to the fast oscillators the slow osillators get slower...... ⇒ More particles need to move to the passive region to be able to make the others go with them.

region B

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Outline	Motivation	The Model	Numerical Simulations	Conclusions
		000000000000000 0000000	000 0000000000000000000000000000000000	
N coupled oscillators				

Numerical simulations - N = 100 coupled oscillators

$$Q = 3$$

$$y_0 = 0.9$$

$$\bar{\beta}_i = 0.01 \left[1 - \frac{(N-2)}{N^2} \cdot i \right] \cdot \alpha, \qquad \beta_0 = 0.09$$

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions
N coupled oscilla	ators			

Observation: existence of middle-sized excursions which do not appear additionly but take the place of every second big excursions.

Westfälische Wilhelms-Universität Münster

Cornelia Petrović

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions
N coupled oscillators				

Observation: existence of middle-sized excursions which do not appear additionly but take the place of every second big excursions. **Explaination**:

 $ightarrow \approx 70-80$ particles move to the passive region.

Westfälische Wilhelms-Universität Münster

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions
N coupled oscillators				

Observation: existence of middle-sized excursions which do not appear additionly but take the place of every second big excursions. **Explaination**:

- $ightarrow \approx 70-80$ particles move to the passive region.
- There are oscillators which are so slow that they can join only every second breakdown.

Time-series of the degree of oxidation of particles No. 1 and No. 91.

Cornelia Petrović

Westfälische Wilhelms-Universität Münster

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions

Conclusions

- We made a model for an ensemble of coupled relaxation oscillators and examined its properties regarding the appearance of synchronization.
- Motivation: experimental observations of the exothermic CO-oxidation on Palladium-supported catalyst.
- The oscillators are coupled globally; their frequencies obey a hierarchical distribution.
- Most important according to the dynamics of the system is some kind of cascade of breakdowns which is the the result of several mechanisms.
- These mechanism and thus frequency and form of the breakdowns can be controlled by the choice of the distribution of frequencies.

Outline	Motivation	The Model 000000000000000000000000000000000000	Numerical Simulations	Conclusions

Thank you for your attention!

・ロト・西ト・南・・田・ 日・ ろんの

Westfälische Wilhelms-Universität Münster

Synchronization of a Hierarchical Ensemble of Coupled Excitable Oscillators