Filaments

Michael Köpf

29. August 2007

Douady, Couder, Brachet (1991):

- Turbulence (${\rm Re} \sim 80000$) is created within water seeded with a large number of very small bubbles
- Regions of high vorticity and low dissipation are low pressure regions

$$2\Delta p + \epsilon^2 - \omega^2 = 0$$

ightarrow Bubbles migrate to these regions

- Now that we know that filaments are there, what role do they play in turbulence? ("Filaments - Dog or Tail?")
- A good starting point might be to learn about vortex filaments in general.

Overview

Dynamics of an Isolated Filament

- Basic Definitions
- A Special Case: Smoke Ring Dynamics
- Localized Induction Approximation (LIA)
- Beyond LIA: Global Induction

Application to Vortex Knots

- Knots, Torus Knots
- Numerical Results

Overview

Dynamics of an Isolated Filament

- Basic Definitions
- A Special Case: Smoke Ring Dynamics
- Localized Induction Approximation (LIA)
- Beyond LIA: Global Induction

Application to Vortex Knots

- Knots, Torus Knots
- Numerical Results

Basic Equations

Euler equation of an incompressible fluid

$$\partial_t \vec{u} + \vec{u} \cdot \nabla \vec{u} = -\nabla p \qquad \qquad \nabla \cdot \vec{u} = 0$$

Evolution of vorticity

$$\partial_t \vec{\omega} + \vec{u} \cdot \nabla \vec{\omega} = \vec{\omega} \cdot \nabla \vec{u} \qquad \text{with vorticity } \vec{\omega} = \nabla \times \vec{u}$$

• Vortex-stretching due to the term $\vec{\omega} \cdot \nabla \vec{u}$ vanishes in two dimensions.

Filaments

Definition

A *filament* is an isolated vortex tube of small diameter dA and constant vorticity ω .

- Let $\vec{X}(s,t)$ be the centerline of a filament and s a parameter of arc length.
- This is conveniently described by means the Serret-Frenet equations from differential geometry.

Filaments

Serret-Frenet Equations

$$\vec{X}' = \vec{t}
\vec{t}' = \kappa \vec{n}
\vec{n}' = \tau \vec{b} - \kappa \vec{t}
\vec{b}' = -\tau \vec{n}$$

$$egin{aligned} & ' \equiv rac{\partial}{\partial s} \ & \text{Curvature } \kappa = rac{\| ec{t}' \|}{\| ec{t} \|}, \ \kappa = rac{1}{R} \ & \text{Torsion } au = rac{ec{b} \cdot ec{n}'}{\| ec{X}' \|} = rac{ec{X}' imes ec{X}'' \cdot ec{X}'''}{\| ec{X}' imes ec{X}'' \|} \end{aligned}$$

Dynamics of a Single Filament

Formal analogue to magnetostatics:

$$abla \cdot \vec{u} = 0$$
 $abla \cdot \vec{B} = 0$
 $abla \times \vec{B} = \mu_0 \vec{j}$
 $abla \times \vec{B} = \mu_0 \vec{j}$

Biot-Savart Law:

$$\vec{u}(\vec{x}) = -\frac{1}{4\pi} \int d^3x' \frac{(\vec{x} - \vec{x}') \times \vec{\omega}(\vec{x}')}{\|\vec{x} - \vec{x}'\|^3}$$

Consider ideal filaments

$$\vec{\omega}(\vec{x}) = \Gamma \int ds' \delta \left(\vec{x} - \vec{X}(s') \right) \vec{t}$$

⇒ This is analogous to the concept of filamentary wires

Dynamics of a Single Filament

• Theorem of Biot-Savart for an ideal filament:

$$\vec{u}(\vec{x}) = -\frac{\Gamma}{4\pi} \int_{\vec{X}} ds' \frac{\left[\vec{x} - \vec{X}(s')\right] \times \vec{t}}{\|\vec{x} - \vec{X}(s')\|^3}$$

- Artifact of the idealization: $\vec{u}(\vec{x})$ diverges like $\frac{1}{\|\vec{x}-\vec{X}\|}$
- Self-induction:

$$\vec{u}(\vec{X}(s)) = -\frac{\Gamma}{4\pi} \int_{\vec{X}} ds' \frac{\left| \vec{X}(s) - \vec{X}(s') \right| \times \vec{t}}{\|\vec{X}(s) - \vec{X}(s')\|^3}$$

Taylor-Expansion yields

$$ec{u}(ec{X}(s)) = rac{\Gamma}{4\pi} \left[\, ec{X}' imes ec{X}'' \int rac{ds'}{|s-s'|} + \mathcal{O}(1)
ight]$$

Dynamics of a Single Filament

• Theorem of Biot-Savart for an ideal filament:

$$\vec{u}(\vec{x}) = -\frac{\Gamma}{4\pi} \int_{\vec{X}} ds' \frac{\left[\vec{x} - \vec{X}(s')\right] \times \vec{t}}{\|\vec{x} - \vec{X}(s')\|^3}$$

- Artifact of the idealization: $\vec{u}(\vec{x})$ diverges like $\frac{1}{\|\vec{x}-\vec{X}\|}$
- Self-induction:

$$\vec{u}(\vec{X}(s)) = -\frac{\Gamma}{4\pi} \int_{\vec{X}} ds' \frac{\left| \vec{X}(s) - \vec{X}(s') \right| \times \vec{t}}{\|\vec{X}(s) - \vec{X}(s')\|^3}$$

Taylor-Expansion yields

$$\vec{u}(\vec{X}(s)) = \frac{\Gamma}{4\pi} \left[\underbrace{\vec{X}' \times \vec{X}''}_{s + \vec{b}} \int \frac{ds'}{|s - s'|} + \mathcal{O}(1) \right]$$

A Special Case: Smoke Ring Dynamics

• Assume constant vorticity inside the ring:

$$\omega_0(\vec{x}) = \begin{array}{cc} \frac{\Gamma}{\pi \sigma^2}, & |\vec{x}| < \sigma \\ 0, & |x| > \sigma. \end{array}$$

 Lamb (1932): Ring moves perpendicular to its plane at velocity

$$u_{\perp} = \frac{\Gamma}{4\pi R} \left[\ln \left(\frac{8R}{\sigma} \right) - \frac{1}{4} + \mathcal{O} \left(\frac{\sigma}{R} \right) \right]$$

With $R/\sigma \gg 1$:

$$\ln\left(\frac{8R}{\sigma}\right) \approx const.$$

$$\Rightarrow u_{\perp} = \frac{C_1}{R} \sim \kappa.$$

Local Induction Approximation (LIA)

- To render the self-induction integral finite, introduce a cut-off so that $|s'-s|>\epsilon$
- Further, self-induction by distant parts of the filament are neglected by limiting the Taylor-expansion to the leading order.

$$rac{\partial ec{X}(s,t)}{\partial t} = \ln \left(rac{L}{\epsilon}
ight)rac{\Gamma}{4\pi} \left(ec{X}'(s,t) imes ec{X}''(s,t)
ight)$$

• Rescaling t yields the local induction evolution (LIE)

$$\Rightarrow \frac{\partial \vec{X}}{\partial t} = \kappa(s, t) \vec{b}(s, t).$$

- \rightarrow Around s the filament looks like a ring-vortex of radius $1/\kappa(s,t)$, the local curvature radius of the filament.
- This approximation is known as Local Induction
 Approximation (LIA), sometimes also called "Smoke Ring Approximation"

Hasimoto-Transformation

• Starting from the LIA evolution equation $\vec{X}(s,t) = \kappa(s,t)\vec{b}$, introduce the following formal substitutions

$$\vec{N}(s,t) = (\vec{n} + i\vec{b}) e^{i\Phi} \text{ mit } \Phi = \int_0^s ds \tau(s,t)$$

$$\psi(s,t) = \kappa(s,t) e^{i\Phi}$$

$$\kappa = |\psi| \qquad \tau = \Phi'$$

$$\Rightarrow -i\dot{\psi} = \psi'' + \frac{1}{2} |\psi|^2 \psi.$$

 Time evolution in LIA can be related to a cubic Schrödinger equation.

Soliton Solutions to the LIA Equation

- Like the non-linear SE the LIA has soliton solutions
- Consider the simplest case: a wave travels along the filament at constant speed c

$$\psi(s-ct) = \kappa(s-ct)e^{i\int_0^s ds\tau(s-ct)}.$$

Into the NLSE

$$\Rightarrow (c-2\tau)\kappa^2 = 0$$
 $\tau = \tau_0 = \frac{c}{2} = const.$

Integration yields

$$\kappa = \pm 2\tau_0 \operatorname{sech}(\pm \tau_0(s-ct)).$$

Soliton Solutions to the LIA Equation

• κ and τ together with the Serret-Frenet equations yield parametric expressions of $(\vec{X}, \vec{t}, \vec{n}, \vec{b})$.

LIA: Properties & Shortcomings

Assumptions:

- ullet Filaments have to be sufficiently thin $(\sigma/R\ll 1)$
- Induction by distant parts of the filament have to be neglectable

Consequences:

- Calculations are drastically simplified (especially useful for numerical simulations)
- There are several conserved quantities:
 - ullet Maximum projected area of a closed vortex filament ${\mathcal C}$

$$ec{P}(t) = rac{1}{2} \int_{\mathcal{C}} d\mathsf{s}(ec{X} imes ec{X}')$$

(Momentum conservation) \Rightarrow A non-circular vortex ring can never become perfectly circular

- Total torsion
- Arc length ⇒ No vortex-stretching!
- .

Beyond LIA: Global Induction Effects

General case: "Full" Biot-Savart law

Remove the divergent part of the Biot-Savart integral

$$ec{u}(X(ec{s},t)) = -rac{\Gamma}{4\pi}\int_{ec{X}}ds'rac{\left[ec{X}(s,t)-ec{X}(s',t)
ight] imesec{t}}{\|ec{X}(s,t)-ec{X}(s',t)\|^3}$$

by cutting off the line integral (just as in LIA).

- Take higher orders of the Taylor expansion into account
- Influences on the filament evolution can thus be divided in two portions:
 - local influences: LIA
 - global influences: Higher order terms

Overview

Dynamics of an Isolated Filament

- Basic Definitions
- A Special Case: Smoke Ring Dynamics
- Localized Induction Approximation (LIA)
- Beyond LIA: Global Induction

Application to Vortex Knots

- Knots, Torus Knots
- Numerical Results

Vortex Knots

- A knot is a circle embedded in \mathbb{R}^3
- Lord Kelvin (1875) was the first to investigate the existence and stability of vortex knots in Euler flow.

 Knots are useful for modelling of (topologically) complex structures.

Torus Knots

 Closed curves which can be drawn on a torus' surface

• Classification by number of toroidal (p) and poloidal (q) windings: $\mathcal{T}_{p,q}$

Torus Knots

Dynamics of Vortex Knots

Evolution in LIA

Theorem (Ricca 1995)

A torus knots $\mathcal{T}_{p,q}$ is linearly stable in LIA, if and only if p < q.

 Numerical simulations (Ricca, Samuels, Barenghi 1997) indicate, that vortex knots which satisfy this condition can travel distances several times their own size.

Dynamics of Vortex Knots

Evolution in LIA

 In the reverse case, q > p, the vortex knot structure decays much faster.

Dynamics of Vortex Knots

Development due to the "full" BSL

- Adding global influences stabilizes the knot evolution in both cases.
- This is due to a rotation of the "arms" of the knot around each other (see Jiminez (1975) on stability of co-rotating vortices),

LIA vs. Full Biot-Savart Law

Summary

- In order to understand the role they play in turbulence filaments are investigated
- The dynamics of an isolated vortex filament in Euler flow is described by the Biot-Savart law → Divergence has to be handled
- From the LIA viewpoint, the filament is locally seen as part of a vortex ring of a radius corresponding to local curvature
- \bullet By Hasimoto transformation the LIA evolution equation can be related to a NLSE \to Solitons
- The LIA is the local portion of the desingularized BS integral
- Knot vortex dynamics gain stability by taking into account the global portions of the BSI.