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Motivation: Experimental Evidence

Douady, Couder, Brachet (1991):
+ €,

@ Turbulence (Re ~ 80000) is
created within water seeded with a
large number of very small bubbles

@ Regions of high vorticity and low
dissipation are low pressure regions . -

20p+ €2 —w? =0

— Bubbles migrate to these
regions
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Motivation: Experimental Evidence

@ Now that we know that filaments are there, what role do they
play in turbulence? (,,Filaments - Dog or Tail?")

@ A good starting point might be to learn about vortex
filaments in general.
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e Knots, Torus Knots
o Numerical Results
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Basic Equations

@ Euler equation of an incompressible fluid
Ot +u-Vi=-Vp V-i=0
@ Evolution of vorticity
0+ u-Vio=d-Vi with vorticity & =V x 0

@ Vortex-stretching due to the term & - Vi vanishes in two
dimensions.



Filaments

Definition

A filament is an isolated vortex
tube of small diameter dA and
constant vorticity w.

v
X(s,t)~

o Let X(s, t) be the centerline of a filament and s a parameter
of arc length.

@ This is conveniently described by means the Serret-Frenet
equations from differential geometry.



Filaments

Serret-Frenet Equations
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Dynamics of a Single Filament

@ Formal analogue to magnetostatics:

Vg = 0 V-
Vxid = @ V x

@ Biot-Savart Law:

/d3 (X=X x d(X)

[X —x'[|3
@ Consider ideal filaments
B(R) =T / ds's (%~ X(s)

=- This is analogous to the concept of filamentary wires



Dynamics of a Single Filament

@ Theorem of Biot-Savart for an ideal filament:

i(x) = —r[ds’ [)?_ X(SI)] i

amJx o |I% =X

@ Artifact of the idealization: u#(X) diverges like Hz_l)?”

ro KO -XE) xE
4r 3 X (s) = X(SIP

@ Self-induction:

i(X(s)) =~

Taylor-Expansion yields
ds’
|s = 5|

H(X(s)) = — [)? « X"

e + 0(1)}



Dynamics of a Single Filament

@ Theorem of Biot-Savart for an ideal filament:

r [z - )?(s')] x T
/ ds’ —
Aamx o |IX = X(s)IP

o Artifact of the idealization: d(X) diverges like

6(%) = —

1
X=X

L [X(j) S)}
am Jx o (|X(s) = X(s)]?

@ Self-induction:

i(X(s)) =~

Taylor-Expansion yields

iR() = 4 | &

+ 0(1)]

*/ |s—s’|
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A Special Case: Smoke Ring Dynamics

@ Assume constant vorticity inside the ring:
r

wo(R) = 7o?’ IX| <o
0, x| > o.
e Lamb (1932): Ring moves perpendicular to its plane at
velocity
r 8R 1 o
a o ()30 (R
L 47TR|:n<O'> 4+O R]
With R/o > 1:
-
(5)
In{ — /A const.
o
G
= Uu, = — ~K.




Local Induction Approximation (LIA)

@ To render the self-induction integral finite, introduce a cut-off
so that |s' —s| > ¢

@ Further, self-induction by distant parts of the filament are
neglected by limiting the Taylor-expansion to the leading

order.
X(s,t) (LN T /2 S
T =In (€> E (X (S, t) x X (S, t))

@ Rescaling t yields the local induction evolution (LIE)

= ‘?;: = k(s, t)b(s, t).
— Around s the filament looks like a ring-vortex of radius
1/k(s, t), the local curvature radius of the filament.
@ This approximation is known as Local Induction
Approximation (LIA), sometimes also called ,, Smoke Ring

Approximation*



Hasimoto-Transformation

e Starting from the LIA evolution equation X(s, t) = x(s, t)b,
introduce the following formal substitutions

N(s,t) = (FH— 15) ¢'® mit ¢ = /0 dst(s,t)

U(s,t) = nls,0)e®
n=lgl =

: 1
= —ipp = ¢ + S|Py

@ Time evolution in LIA can be related to a cubic Schrodinger
equation.



Soliton Solutions to the LIA Equation

@ Like the non-linear SE the LIA has soliton solutions

o Consider the simplest case: a wave travels along the filament
at constant speed ¢

(s — ct) = k(s — ct)e! Jo ds7(s—ct),
Into the NLSE
= (c—27)k?=0 T:T():%:COI‘ISt.
@ Integration yields

k = £+271psech(L7p(s — ct)).



Soliton Solutions to the LIA Equation

@ x and T together with the Serret-Frenet
equations yield parametric expressions of

—

(X, t,n,b).




LIA: Properties & Shortcomings

Assumptions:
e Filaments have to be sufficiently thin (0/R < 1)
@ Induction by distant parts of the filament have to be
neglectable
Consequences:
e Calculations are drastically simplified (especially useful for
numerical simulations)

@ There are several conserved quantities:
e Maximum projected area of a closed vortex filament C

B(t) = %/Cds()? < %)

(Momentum conservation) = A non-circular vortex ring can
never become perfectly circular

e Total torsion

o Arc length = No vortex-stretching!

e ...



Beyond LIA: Global Induction Effects

General case: ,, Full” Biot-Savart law
@ Remove the divergent part of the Biot-Savart integral

oy T [ gelFE R 0]
i(X(s, t)) = —M/)? 1X(s,t) — X(s, t)||3

by cutting off the line integral (just as in LIA).

@ Take higher orders of the Taylor expansion into account

@ Influences on the filament evolution can thus be divided in
two portions:

o local influences: LIA
o global influences: Higher order terms
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Vortex Knots

@ A knot is a circle embedded in R3

@ Lord Kelvin (1875) was the first to
investigate the existence and stability of
vortex knots in Euler flow.

@ Knots are useful for modelling of
(topologically) complex structures.




Torus Knots

@ Closed curves which can be drawn
on a torus' surface

o Classification by number of toroidal
(p) and poloidal (q) windings: 7, 4




Uy, Urm?




Dynamics of Vortex Knots

Evolution in LIA

Theorem (Ricca 1995)

A torus knots 7, 4 is linearly stable in
LIA, if and only if p < g.

@ Numerical simulations (Ricca,
Samuels, Barenghi 1997) indicate,
that vortex knots which satisfy this
condition can travel distances
several times their own size.




Dynamics

Evolution in LIA

@ In the reverse case, g > p, the
vortex knot structure decays much
faster.




Dynamics of Vortex Knots

Development due to the ,full* BSL

o Adding global influences stabilizes
the knot evolution in both cases.

@ This is due to a rotation of the
,arms’ of the knot around each
other (see Jiminez (1975) on
stability of co-rotating vortices),




LIA vs. Full Biot-Savart Law
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Summary

@ In order to understand the role they play in turbulence
filaments are investigated

@ The dynamics of an isolated vortex filament in Euler flow is
described by the Biot-Savart law — Divergence has to be
handled

@ From the LIA viewpoint, the filament is locally seen as part of
a vortex ring of a radius corresponding to local curvature

e By Hasimoto transformation the LIA evolution equation can
be related to a NLSE — Solitons

@ The LIA is the local portion of the desingularized BS integral

@ Knot vortex dynamics gain stability by taking into account the
global portions of the BSI.



