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Motivation: Experimental Evidence

Douady, Couder, Brachet (1991):

Turbulence (Re ∼ 80000) is
created within water seeded with a
large number of very small bubbles

Regions of high vorticity and low
dissipation are low pressure regions

2∆p + ε2 − ω2 = 0

→ Bubbles migrate to these
regions
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Motivation: Experimental Evidence

Now that we know that filaments are there, what role do they
play in turbulence? (

”
Filaments - Dog or Tail?“)

A good starting point might be to learn about vortex
filaments in general.
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Basic Equations

Euler equation of an incompressible fluid

∂t~u + ~u ·∇~u = −∇p ∇ ·~u = 0

Evolution of vorticity

∂t~ω + ~u ·∇~ω = ~ω ·∇~u with vorticity ~ω = ∇× ~u

Vortex-stretching due to the term ~ω ·∇~u vanishes in two
dimensions.



Filaments

Definition

A filament is an isolated vortex
tube of small diameter dA and
constant vorticity ω.

Let ~X (s, t) be the centerline of a filament and s a parameter
of arc length.

This is conveniently described by means the Serret-Frenet
equations from differential geometry.



Filaments

Serret-Frenet Equations

~X ′ = ~t

~t ′ = κ~n

~n′ = τ~b − κ~t
~b′ = −τ~n

′ ≡ ∂
∂s

Curvature κ = ‖~t′‖
‖~t‖ , κ = 1

R

Torsion τ =
~b ·~n′

‖~X ′‖
=

~X ′×~X ′′ · ~X ′′′

‖~X ′×~X ′′‖



Dynamics of a Single Filament

Formal analogue to magnetostatics:

∇ ·~u = 0

∇× ~u = ~ω

∇ · ~B = 0

∇× ~B = µ0
~j

Biot-Savart Law:

~u(~x) = − 1

4π

∫
d3x ′

(~x − ~x ′)× ~ω(~x ′)

‖~x − ~x ′‖3

Consider ideal filaments

~ω(~x) = Γ

∫
ds ′δ

(
~x − ~X (s ′)

)
~t

⇒ This is analogous to the concept of filamentary wires



Dynamics of a Single Filament

Theorem of Biot-Savart for an ideal filament:

~u(~x) = − Γ

4π

∫
~X

ds ′

[
~x − ~X (s ′)

]
×~t

‖~x − ~X (s ′)‖3

Artifact of the idealization: ~u(~x) diverges like 1
‖~x−~X‖

Self-induction:

~u(~X (s)) = − Γ

4π

∫
~X

ds ′

[
~X (s)− ~X (s ′)

]
×~t

‖~X (s)− ~X (s ′)‖3

Taylor-Expansion yields

~u(~X (s)) =
Γ

4π

[
~X ′ × ~X ′′

∫
ds ′

|s − s ′|
+O(1)

]
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Theorem of Biot-Savart for an ideal filament:

~u(~x) = − Γ
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∫
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ds ′

[
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∫
~X
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[
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]
×~t

‖~X (s)− ~X (s ′)‖3

Taylor-Expansion yields

~u(~X (s)) =
Γ

4π

[
~X ′ × ~X ′′︸ ︷︷ ︸
∼ ~b

∫
ds ′

|s − s ′|
+O(1)

]



A Special Case: Smoke Ring Dynamics

Assume constant vorticity inside the ring:

ω0(~x) =
Γ

πσ2
, |~x | < σ

0, |x | > σ.

Lamb (1932): Ring moves perpendicular to its plane at
velocity

u⊥ =
Γ

4πR

[
ln

(
8R

σ

)
− 1

4
+O

(σ
R

)]
With R/σ � 1:

ln

(
8R

σ

)
≈ const.

⇒ u⊥ =
C1

R
∼ κ.



Local Induction Approximation (LIA)

To render the self-induction integral finite, introduce a cut-off
so that |s ′ − s| > ε
Further, self-induction by distant parts of the filament are
neglected by limiting the Taylor-expansion to the leading
order.

∂~X (s, t)

∂t
= ln

(
L

ε

)
Γ

4π

(
~X ′(s, t)× ~X ′′(s, t)

)
Rescaling t yields the local induction evolution (LIE)

⇒ ∂~X

∂t
= κ(s, t)~b(s, t).

→ Around s the filament looks like a ring-vortex of radius
1/κ(s, t), the local curvature radius of the filament.
This approximation is known as Local Induction
Approximation (LIA), sometimes also called

”
Smoke Ring

Approximation“



Hasimoto-Transformation

Starting from the LIA evolution equation ~̇X (s, t) = κ(s, t)~b,
introduce the following formal substitutions

~N(s, t) =
(
~n + i~b

)
eiΦ mit Φ =

∫ s

0
dsτ(s, t)

ψ(s, t) = κ(s, t)eiΦ

κ = |ψ| τ = Φ′

⇒ −iψ̇ = ψ′′ +
1

2
|ψ|2ψ.

Time evolution in LIA can be related to a cubic Schrödinger
equation.



Soliton Solutions to the LIA Equation

Like the non-linear SE the LIA has soliton solutions

Consider the simplest case: a wave travels along the filament
at constant speed c

ψ(s − ct) = κ(s − ct)ei
R s
0 dsτ(s−ct).

Into the NLSE

⇒ (c − 2τ)κ2 = 0 τ = τ0 =
c

2
= const.

Integration yields

κ = ±2τ0sech(±τ0(s − ct)).



Soliton Solutions to the LIA Equation

κ and τ together with the Serret-Frenet
equations yield parametric expressions of
(~X ,~t,~n,~b).



LIA: Properties & Shortcomings

Assumptions:

Filaments have to be sufficiently thin (σ/R � 1)

Induction by distant parts of the filament have to be
neglectable

Consequences:

Calculations are drastically simplified (especially useful for
numerical simulations)
There are several conserved quantities:

Maximum projected area of a closed vortex filament C

~P(t) =
1

2

∫
C

ds(~X × ~X ′)

(Momentum conservation) ⇒ A non-circular vortex ring can
never become perfectly circular
Total torsion
Arc length ⇒ No vortex-stretching!
. . .



Beyond LIA: Global Induction Effects

General case:
”
Full“ Biot-Savart law

Remove the divergent part of the Biot-Savart integral

~u( ~X (s, t)) = − Γ

4π

∫
~X

ds ′

[
~X (s, t)− ~X (s ′, t)

]
×~t

‖~X (s, t)− ~X (s ′, t)‖3

by cutting off the line integral (just as in LIA).

Take higher orders of the Taylor expansion into account

Influences on the filament evolution can thus be divided in
two portions:

local influences: LIA
global influences: Higher order terms
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Vortex Knots

A knot is a circle embedded in R3

Lord Kelvin (1875) was the first to
investigate the existence and stability of
vortex knots in Euler flow.

Knots are useful for modelling of
(topologically) complex structures.



Torus Knots

Closed curves which can be drawn
on a torus’ surface

Classification by number of toroidal
(p) and poloidal (q) windings: Tp,q



Torus Knots



Dynamics of Vortex Knots

Evolution in LIA

Theorem (Ricca 1995)

A torus knots Tp,q is linearly stable in
LIA, if and only if p < q.

Numerical simulations (Ricca,
Samuels, Barenghi 1997) indicate,
that vortex knots which satisfy this
condition can travel distances
several times their own size.



Dynamics of Vortex Knots

Evolution in LIA

In the reverse case, q > p, the
vortex knot structure decays much
faster.



Dynamics of Vortex Knots

Development due to the
”
full“ BSL

Adding global influences stabilizes
the knot evolution in both cases.

This is due to a rotation of the

”
arms“ of the knot around each

other (see Jiminez (1975) on
stability of co-rotating vortices),



LIA vs. Full Biot-Savart Law

ε =
Rmax − Rmin

2



Summary

In order to understand the role they play in turbulence
filaments are investigated

The dynamics of an isolated vortex filament in Euler flow is
described by the Biot-Savart law → Divergence has to be
handled

From the LIA viewpoint, the filament is locally seen as part of
a vortex ring of a radius corresponding to local curvature

By Hasimoto transformation the LIA evolution equation can
be related to a NLSE → Solitons

The LIA is the local portion of the desingularized BS integral

Knot vortex dynamics gain stability by taking into account the
global portions of the BSI.


