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Basics

context: Navier-Stokes turbulence v(x, t)

additional scalar field 6(x, t)

advected by the velocity field but does not contribute to its dynamics
is subject to diffusion

examples are:

m temperature fields in liquids or gases
m dissolved chemicals of low concentration

interest for passive scalar lies in engineering and physics

coupled to understanding mixing properties, combustion and chemical reactions



g Passive scalar dynamics
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sl Oevi + vj0jv; = —0ip + vOjvi

turbulence
oivi=0

m the passive scalar advection-diffusion equation

Basics

00 + v;0;0 = Hajje

m k: passive scalar diffusity, Schmidt-Number Sc = v/«
m O: fluctuation of the passive scalar around a constant mean value ©

m the full passive scalar field is:

T=040(x,t)

© = const.

m passive scalar energy
Ey = / 62 (x)dV

= conserved in the limit Kk =0
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Basics

Phenomenology

Characteristics of the passive scalar

m passive scalar characteristics

equation contains only linear terms
dynamics governed by the velocity fields
produces rich dynamics

highly intermittent

ramp-cliff or mesa-canon structures

Figure: experiment = simulation
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Euler

Structure functions, spectra & transport

m like kinetic energy spectra, the scalar energy spectrum is believed to show power
law scaling in the inertial range.

Ep(k) ~ k=3

m scalar dissipation rate is x = x((V0)?)
m structure function of order i for a field f is defined as:

SE=(a() Iy = (| fx) = Fx+ 1) |
m analogon to Kolmogorovs 4/s5-law:

4

Si2 = (| || 40 [2) = =3

x!

= this last result is exact



Lagrangian point of view

——
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poasive m instead of using a fixed frame of reference we are now moving along with the

scalar in velocity fields
3d incom- i ) ) )
pressible m the transformation to Lagrangian coordinates is
turbulence
x — X(xo, t)
d
— X(x0, t) = u(X(xo, t), t)
dt
Lagrangian

xg = X(xo, 0): initial position

m passive scalar equation in Lagrangian coordinates for k = 0

d
0th + v;0,6 =0 = —0=0
dt

Why a Lagrangian description?

m should eliminate the mixing effect of the velocity fields
H NnO mesa-canon events

m only diffusive effects for finite x
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Software & simulations

Simulations



g The simulation code
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Code

B the passive scalar module is an extension to the existing simulation code of
H. Homann, which models full 3D turbulence and implements handling of tracer
particles

m introduces an extra computational effort of about 30%

m a pseudo-spectral scheme is used for advancing velocity as well as as passive
scalar fields

m derivatives are calculated in Fourier-space using the FFTW library
m products are calculated in real space
m spectral method enforces periodic boundary conditions

m timestepping via a Runga-Kutta integrator of 3rd order
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Forcing

m a substancial amount of experiments use grid generated turbulence

m passive scalar is forced via a temperature gradient
m numerically this works via changing the mean value as follows
0©0=g, geR

= 8:0 + vi(9;0 + g;) = k00

m for comparison a second driver is implemented
m this driver freezes low wave number mode shells in Fourier space



g The simulations
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m the simulations were carried out on a 64 CPU Opteron cluster
m the runs falls apart into two phases:
pre-simulation both velocity and passive scalar are decaying, no driving,
timestep adjusted to CFL criterion
i simulation driving is applied, tracers, fixed timestep

m grid extension is 27
m initial condition for #: assign random values to low wave number modes
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Results



& The impact of driving
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m resolution: 2563
mK=V
m goal: test the effect of the forcing scheme if any
m driving:
m frozen shells
Results m gradient

m same initial condition



Passive scalar field

Passive

tracers m snapshot of the passive scalar field
and
passive m about one Large Eddy Turnover after introducing the scalar
scalar in
3d incom- m the scalar has settled — almost no effect of the initial condition left
pressible

turbulence

Results

Figure: passive scalar field at t >~ T,




Ramp-cliff-structure

Passive

m the passive scalar field over a line
tracers

and — ramp-cliff events
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Results

Figure: example of ramp-cliff structure



Movie: Parallel evolution
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m the fields for comparison

m timestep resolution is 100 per frame 1/7th Largy Eddy Turnover

Results

Figure: gradient driven = frozen modes
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Results
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Energy spectra
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Structure functions

m passive scalar structure functions

m logarithmic derivatives
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Results

m absolute scaling exponents from 1st to 10th order

m as reference: experimental data from Wahrhaft and Mydlarski
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& Example of passive scalar evolution
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Results

m here initial passive scalar field is a single sine function
m grid resolution is 643, k = v, no driving

m time resolution is 1 timestep per frame



kappaZero.mpg
Media File (video/mpeg)


% Testing the integrator

Passive
iracers m 3rd run: test case with k =0
an
passive m grinds to a halt after about 1/7th Large Eddy
scalar in m numerical instable
3d incom-
pressible m 4th run: test case with kK = v
turbulence

m goal: test the advancer’s numerical quality
m start from a single sine field which exibits a distinct pdf

m freely decaying

Results




g Evolution of the scalar PDF
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& Evolution of the scalar PDF

Passive _
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passive m dissipation changes the shape
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Lagrangian description

Field snapshots

m resolution: 10243
m three points in time 1/30th, 1/7th and 1/4th Large Eddy Turnover
m grows numerically unstable at ~ 1/6th Large Eddy Turnover

m 10° tracer particles




Lagrangian description

Passive scalar values vs velocity values
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Lagrangian description
Lagrangian pdfs

Passive . o
P m field evaluated at the tracer positions
and . .
passive m no diffusion
scalar in
ke = pdfs should be constant
pressible
turbulence
pdfs along the trajectories
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Conclusion

m what we have reached
m a framework to simulate passive scalar turbulence
m tested the advancer
m evaluated the forcing schemes
m qualitative results show typical characteristics
m found the expected behaviour for scaling & spectra

m next step: extend Lagrangian description

m long term goal: understand the effect of diffusion



& The End
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Thank you for your attention

Conclusion
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