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Introduction Localized structures in 3KRD system

Reaction-Diffusion Systems

∂tu = D∇2u + R(u)

u = u(r, t) = (u1, u2, . . . , un)T –a vector of concentration
variables, r ⊂ Rm, m = 1, 2, 3;
∇2– the Laplace operator;
R(·)– a local reaction kinetics;
D– a diagonal diffusion coefficient matrix;
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Reaction-Diffusion Systems: 1K systems
1937:

R. Fisher The wave of advance of advantageous genes;
A. N. Kolmogorov, I. G. Petrovsky,
N. Piskunoff A study of the equation of dissusion
with increase in the quantity of matter, and its application
to a bilological problem;

∂tu = d2uxx + u− u2

1938:

Y. B. Zeldovich, D. A. Frank-Kamenetsky
A theory of thermal propagation of flame;

∂tu = d2uxx + u(1− u)(u− α), α ∈ (0, 1)
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Reaction-Diffusion Systems: 2K systems

1952:

A. M. Turing The chemical basis of morphogenesis

∂tu = Du∇2u + f(u, v),

∂tv = Dv∇2v + g(u, v)

Belousov-Zhabotinsky reaction, other autocatalytic and
oscillatory chemical reactions, different musters on animal’s
skin, nerve pulse transmission, bacteria growth processes,
structures, observed in semiconductors or gas-discharge
systems, .....
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Reaction-Diffusion Systems: 3K and more

∂tuα = Dα∇2uα + Rα(u)

a model of blood clotting, population dynamics, ecology,
photosensitive Belousov-Zhabotinsky reaction ,glycolysis, a
model of CO oxidation on Pt(110), a model of Dictyostelium
amoebae, patterns arising in gas-discharge system......
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Experimental set-up

Planar dc gas-discharge system with high-ohmic electrode:

gold layer

semiconductor

discharge gap

U0

R0

illuminated area

light source and
optical system

CCD camera

ITO layer

glass substrate

d = 0.1− 2 mm;
Gases: N2, He, Ar;
p ≈ 30− 400 hPa;
Semiconductor: GaAs
dc = 0.5− 1.5 mm;
ρSC ≈ 107 − 108 Ω · cm;
U0 = 1− 5 kV
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Examples of observed patterns

stripes hexagons spots

spirals targets chains



Introduction Localized structures in 3KRD system

Possible Model Systems

The current patterns are 3D objects, evolving on the time scale
of 1 ms− 1 s

fluid based models, (e.g., drift-diffusion): τe ≈ 10 ns;
particle based models (PIC): ≈ 10−12 s;

⇓
direct numerical simulation is very time-consuming or even

impossible

⇓
an appropriate reduced discharge models should be developed

or qualitative models should be used
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Phenomenological three-component RD model

∂tu = Du∆u + f(u)− κ3v + κ1 −
κ2

‖Ω‖

∫
Ω

udr,

τ∂tv = Dv∆v + u− v;

u = u(r, t)–is related to the avalanche multiplication of charged
carriers in the discharge gap;
v = v(r, t)–the voltage drop at the semiconductor plate;
κ1– is connected with the normalized applied voltage;
κ2– describes a normalized internal resistance of the voltage
source.

∂tu = Du∆u + f(u)− κ3v − κ4w + κ1 −
κ2

‖Ω‖

∫
Ω

udr,

τ∂tv = Dv∆v + u− v,

θ∂tw = Dw∆w + u− w;

∂tu = Du∆u + f(u)− κ3v − κ4w + κ1,

τ∂tv = Dv∆v + u− v,

θ∂tw = Dw∆w + u− w;

u = u(r, t), v = v(r, t), w = w(r, t), r ⊂ R2, f(u) = λu− u3,
Du, Dv, Dw, λ, τ, θ, κ3, κ4 ≥ 0
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Turing instability

The idea (Turing, 1952):
The homogeneous solution of the system is stable in
absence of diffusion;
A difference in diffusion constants of components could be
enough to destabilize the homogeneous solution;
Another control parameter can be used (in our case we
choose κ1 as the control parameter)
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Stationary Turing patterns

(a) κ1 = −1.1 (b) κ1 = −0.5 (c) κ1 = 0.0 (d) κ1 = 1.1
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Stationary solutions
(a) (b)
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Linear stability analysis

The system in general form: ∂tu = Lu;

Equation for perturbation ũ = u− us:

∂tũ = L′(us)ũ +
1
2!

L′′(us)ũũ +
1
3!

L′′′(us)ũũũ + · · · ,

Linearized system: ∂tũ = L′(us)ũ;
Eigenvalue problem: L′(us)F = λF ;
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Eigenvalue problem: L′(us)F = λF ;



Introduction Localized structures in 3KRD system

Linear stability analysis

The system in general form: ∂tu = Lu;
Equation for perturbation ũ = u− us:
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L′′′(us)ũũũ + · · · ,

Linearized system: ∂tũ = L′(us)ũ;
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Linear stability analysis

Neutral stability: λ = 0, Gr = ∂us/∂r, r = (x, y);

us(r + ε) = us(r) + ε
∂us

∂r
+ O(ε2).

ũ ∼ ũneinφ:
λnũn = L′

pũn,
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λnũn = L′

pũn,
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Critical modes
(a) n = 0 (b) n = 1

(c) n = 2 (d) n = 3
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Properties of the operator L′(us)

L′(us) =

Du4+ λ− 3ū2 −κ3 −κ4
1
τ

Dv4−1
τ 0

1
θ 0 Dw4−1

θ


L′(us) 6= L′†(us)

L′(us) = ML(us),

where

M = M † =

1 0 0
0 −1/κ3τ 0
0 0 −1/κ4θ

 ,

and

L = L† =

Du4+ λ− 3u2
s −κ3 −κ4

−κ3 −κ3Dv4+ κ3 0
−κ4 0 −κ4Dw4+ κ4

 .
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Properties of the operator L′(us)

Two eigenvalue problems:

L′(us)F = λF ,

L′(us)F = λ̄F ,

L′†(us)F∗ = λ̄F∗,

L′†(us)F
∗ = λF∗

.

〈F∗|F〉 = 0 if λ 6= λ̄, F∗ = M−1F ,

〈F∗|F〉 = 0 if λ 6= λ̄, F∗ = M−1F

If λ is real (e.g., λ = 0):

G∗r = M−1G =

 ∂us
∂r

−κ3τ
∂vs
∂r

−κ4θ
∂ws
∂r

 .

However, in this case 〈G∗r |G〉 6= 0.
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Stability diagramm

Stable

0.0 1.0 1.5

2.0

1.0

0.5

1.5
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Order of bifurcations

Limit case: τ = 0, θ = 0, Dv = 0

Eigenvalue problem with eigenvalue λ and eigenfunction
F = (fu, fv, fw)T :

λfu = Du4fu + (f ′(us)− κ3)fu − κ4fw

Dw4fw + fu − fw = 0

In the limit case the operator L′(us) is Hermitian. All λ’s
are real.
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Order of bifurcations
Let us now consider τ > 0:

µfu = Du4fu + (f ′(us)− κ3)fu − κ4fw

τµfv = fu − fv

0 = Dw4fw + fu − fw

(
µ− κ3τµ

τµ+1

)
fu = Du4fu + (f ′(us)− κ3)fu − κ4fw

0 = Dw4fw + fu − fw

λ = µ− κ3τµ
τµ+1

µ1,2 = λτ−1+κ3τ
2τ ±

√
λ
τ +

(
λτ−1+κ3τ

2τ

)2

fv1,2 = 1
1+τµ1,2

fu
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Order of bifurcations

λ = µ− κ3τµ
τµ+1

µ1,2 = λτ−1+κ3τ
2τ ±

√
λ
τ +

(
λτ−1+κ3τ

2τ

)2

fv1,2 = 1
τµ1,2

fu

µ = 0 ⇒ λ = 0;

For some λ < 0 µ is complex;
Bifurcation point:

τc =
1

λ + κ3
;

λ = 0 ⇒ µ1,2 =
{
0, κ3τ−1

τ

}
⇒ fv1,2 = fu.

Propagator mode: Generalized eigenfunction

L′(us)L′(us)Pr = 0 ⇒ L′(us)Pr = Gr
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Breathing DSs

Destabilization via the mode n = 0:

−1.5 −1  −0.5 0   0.2
−0.8

−0.4

0   

0.4 

0.8

Re(λ)

Im
(λ
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n=0
n=1
n=2
n=3
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Breathing DSs
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Amplitude equation
The idea:

Two-scale expansion in the vicinity of bifurcation point,
θ = θc: ũ = AeiωtFc + c.c. + r

θ = θc + ε: ũ = A(t)eiωt(Fc + εFε) + c.c. + r;
Amplitude equation is a normal form of a Hopf bifurcation;
Complex coefficients can be immediately evaluated if the
solitary stationary solution is known;

∂tA = εa1A + a2A|A|2,

a1 =
〈L′

ε(us)Fc|F∗
c 〉

〈Fc|F∗
c 〉

, a2 =
〈L′′′

c (us)FcFcFc|F∗
c 〉

2〈Fc|F∗
c 〉

.



Introduction Localized structures in 3KRD system

Amplitude equation

Re(a1) < 0, Re(a2) > 0 Re(a1) < 0, Re(a2) < 0

-0.06 0 0.06
ReHAL
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L

-0.25 0 0.25
ReHAL

-0.25

0

0.25

Im
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Moving DSs
Destabilization via the mode n = 1:

-1 -0.5 0 0.1
-0.8

-0.4

0

0.4

0.8

Re(l)

Im
(l

)
n=0

n=1

n=2

n=1(2)
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Moving DSs

Destabilization via the mode n = 1:
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Drift-Bifurcation due to a change of shape
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Breathing and moving DSs
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Breathing DSs with oscillatory tails
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