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Reaction-Diffusion Systems

du = DV?u + R(u)

@ u=u(r,t) = (u,us,...,u,) —a vector of concentration
variables, r C R"™, m =1,2,3;

@ V2-the Laplace operator;
@ R(-)—alocal reaction kinetics;
@ D- a diagonal diffusion coefficient matrix;
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Reaction-Diffusion Systems: 1K systems
1937:

@ R. Fisher The wave of advance of advantageous genes;

@ A. N. Kolmogorov,I. G. Petrovsky,
N. Piskunoff A study of the equation of dissusion

with increase in the quantity of matter, and its application
to a bilological problem;

Ou = dPugy +u — u®
1938:

@ Y. B. Zeldovich, D. A. Frank—-Kamenetsky
A theory of thermal propagation of flame;

Ou = d*uge +u(l —u)(u — a), a € (0,1)
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Reaction-Diffusion Systems: 2K systems

1952:
@ A. M. Turing The chemical basis of morphogenesis
ou = D, V?u + f(u,v),
O = D,V + g(u,v)



Introduction

[e]e] o]

Reaction-Diffusion Systems: 2K systems

1952:
@ A. M. Turing The chemical basis of morphogenesis

O = D, V?u + f(u,v),
O = D,V%0 + g(u, v)

Belousov-Zhabotinsky reaction, other autocatalytic and
oscillatory chemical reactions, different musters on animal’s
skin, nerve pulse transmission, bacteria growth processes,
structures, observed in semiconductors or gas-discharge
systems, .....
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Reaction-Diffusion Systems: 3K and more

Oug = Do V2uy + R, (u)

a model of blood clotting, population dynamics, ecology,

photosensitive Belousov-Zhabotinsky reaction ,glycolysis, a
model of CO oxidation on Pt(110), a model of Dictyostelium
amoebae, patterns arising in gas-discharge system
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Experimental set-up

Planar dc gas-discharge system with high-ohmic electrode:

discharge gap

@ d=0.1—-2mm;

glass substrate @ Gases: Ns, He, Ar;

@ p ~ 30 — 400 hPa;

@ Semiconductor: GaAs
@ d.=05—1.5mm;

@ psc ~ 107 — 1089 -cm;
@ Uyp=1-5kV

semiconductor

gold layer

illuminated area

light source and CCD camera

optical system
ITO layer
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Examples of observed patterns

stripes hexagons spots
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Possible Model Systems

The current patterns are 3D objects, evolving on the time scale
ofIms—1s
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Possible Model Systems

The current patterns are 3D objects, evolving on the time scale
ofIms—1s

@ fluid based models, (e.g., drift-diffusion): 7. ~ 10ns;
@ particle based models (PIC): ~ 10~'2s;

4

direct numerical simulation is very time-consuming or even
impossible

4

an appropriate reduced discharge models should be developed
or qualitative models should be used
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Phenomenological three-component RD model

Ow = DyAu+ f(u) — kv + k1 — @/ udr,
1€l Ja

TOw = DyAv + u — v;

u = u(r, t)—is related to the avalanche multiplication of charged
carriers in the discharge gap;

v = v(r, t)—-the voltage drop at the semiconductor plate;

r1— is connected with the normalized applied voltage;

ko— describes a normalized internal resistance of the voltage
source.
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Phenomenological three-component RD model

Opu = DyAu + f(u) — Kgv — Kgw + K1 — ||/;22||/ udr,
Q

7O = DyAv + u — v,
00w = Dy Aw + u — w;
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Phenomenological three-component RD model

Ou = DyAu+ f(u) — kv — Kqw + K1,
TOw = DyAv +u — v,
00w = Dy Aw + u — w;
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Turing instability

The idea (Turing, 1952):

@ The homogeneous solution of the system is stable in
absence of diffusion;

@ A difference in diffusion constants of components could be
enough to destabilize the homogeneous solution;

@ Another control parameter can be used (in our case we
choose «; as the control parameter)
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Stationary solutions
(@) (b)

-0.5 0 0.5 _q)
X
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Linear stability analysis

@ The system in general form: 0;u = Lu;
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Linear stability analysis

@ The system in general form: 0;u = Lu;
@ Equation for perturbation u = u — ug:

~ ~ 1 . 1 o
o = £/ (ug)u + 52"(u5)uu + 52'"(us)uuu +y

@ Linearized system: d;u = £/(ug)u;
@ Eigenvalue problem: £'(ug)F = A\ F;
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Linear stability analysis

@ Neutral stability: A =0, G, =0dus/0r, r = (z,y);
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Linear stability analysis

@ Neutral stability: A =0, G, =0dus/0r, r = (z,y);

Oug

us(r+e€) =ug(r) +e o

+ O(€%).



Introduction

Localized structures in 3KRD system
0000 o]
[e]e] [e]e]
(o]

00@00000000000000000000

Linear stability analysis

@ Neutral stability: A =0, G, =0dus/0r, r = (z,y);

Oug

us(r+e€) =ug(r) +e o

+ O(€%).

@ U ~ uye?:

~ .
Ay, = Epun,
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Critical modes
(@n=0 (b)n=1
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Properties of the operator £'(uy)

Dy + X\ — 3u? —K3 —Ky
Dy/A—1
& (ug) = 1 - 0
0 0

’QI(US) # SIT(US)
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Properties of the operator £'(uy)

Dy + X\ — 3u? —K3 —K4
S’(us) _ 1 DyA—1 0
1 r DuwA—1
9 0 =5
QI(US) # SIT(US)
£ (ug) = M L(ug),
where
1 0 0
M=M =0 —1/ksr 0 ,
0 0 —1/k40
and
Dy A+ X\ — 3’11,? —K3 —Ky
L=1L"= —K3 —k3 Dy A\ + K3 0

—K4 0 —ka Dy N + Ky -qb
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Properties of the operator £'(uy)

@ Two eigenvalue problems:
£ (ug)F = AT, £ (ug) F* = AF*,
2/ (ug)F = \F, LT (ug)F = \F.
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Properties of the operator £'(uy)

@ Two eigenvalue problems:
£ (ug)F = \F, £ (ug) F* = \F*,
2/ (ug)F = \F, LT (ug)F = \F.

(F'lFy=0 if X#£X, F =M"'F,
(FYF)=0 it \£X  F=MF
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Properties of the operator £'(uy)
@ Two eigenvalue problems:
£ (ug)F = \F,

£ (ug) F* = \F*,
£ (us)F = \F,

£ (ug)F = \F".
(FIF)=0 if N#£DM,

F =M1F,
(FX|Fy=0 if XX,

Fr=M'F

If Xis real (e.g., A = 0):

dus
* Mfl _ ar(9vs
QT = g = —R3T or o
—m498

g‘lf‘s
However, in this case (G*|G) # 0.
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o]

[e]e]
000000e0000000000000000

2.0

1.5

® 1.0
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Stable

0.0

1.0

1.5
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Order of bifurcations

@ Limitcase: =0,0=0, D,

=0

Localized structures in 3KRD system
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Order of bifurcations

@ Limitcase: 7=0,0=0, D, =0
@ Eigenvalue problem with eigenvalue A and eigenfunction

‘7:: (fu7f117fw)T:

AMu = DudS fu + (f(us) — £3) fu — Kafuw
DwAfw +fu - fw =0
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Order of bifurcations

@ Limitcase: 7=0,0=0, D, =0
@ Eigenvalue problem with eigenvalue A and eigenfunction

‘7:: (fu7fvafw)T:

AMu = DudS fu + (f(us) — £3) fu — Kafuw
DwAfw +fu - fw =0

@ In the limit case the operator £/(us) is Hermitian. All X’s
are real.
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Order of bifurcations
@ Let us now consider 7 > 0:

:Uqu = DuAfu + (f/(us) - ’{3)fu - Kf4fw

Tﬂfv = fu - fv
0= DwAfw "‘fu - fw
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Order of bifurcations
@ Let us now consider © > 0:
:Uqu = DuAfu + (f/(us) - ’{3)fu - Kf4fw
e = Jw — v
0= DwAfw + fu - fw

(b= 7225) fu = Dul fu + (' (us) = K3) fu — Kafu
OZDwAfw+fu_fw
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Order of bifurcations

@ Let us now consider 7 > 0:

pfu = Dy fu +
Tifo = fu— fo

0= DyAfuw+ fu— fuw

(b — 228 fu = DyAfy +
0 ::l)kafh)+‘fﬁ _'fw

K3TW
A= = Tp+1

(f'(us) = K3) fu

(f'(us) — K3) fu

Localized structures in 3KRD system
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— K fu

- "Q4fw

pi2 = AT— 1+H3T:l:\/

for2 =

1+T#12f

)\T 1+f€3’7’)
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Order of bifurcations

K3T U
Tr+1

12 = AT— 1+Fi37’ :|:\/ )\7’ 1—‘1—/‘;37’)
forz = TH, 2f

A=p—

@ u=0=XA=0;
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Order of bifurcations

— ,, _ haTu
A= i T+l

19 = AT— 1+fi37':|:\/ AT— 1+I‘€37’)2
forz = Tﬂlzf

@ u=0=XA=0;
@ Forsome A < 0 uis complex;
@ Bifurcation point:

1

)\+I<&3;

To —
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Order of bifurcations

K3T U
Tr+1

19 = AT— 1+fi37':|:\/ AT— 1+I‘€37’)2
forz = Tﬂlzf

A=p—

@ u=0=XA=0;
@ Forsome A < 0 uis complex;
@ Bifurcation point:

1

Te = )\+I<L3;

@ N=0= p1o={0,8T"11 = f,,5=f,.
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Order of bifurcations

_ ., _ kaTp
A=p Tu+1

A —1 ,\ Ar—14 2
fvl 2= sy fu

@ n=0=A=0;
@ Forsome A < 0 uis complex;

@ Bifurcation point:
1

)\+I<é3;

@ A=0= uo={0,%1} = f15= fu.
@ Propagator mode: Generalized eigenfunction

£ (ug) & (ug)Pr = 0 = £'(ug)Pr = G tP

Te =
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Breathing DSs

@ Destabilization via the mode n = 0:

0.8 —
® n=0
® n=1 L4 ® ..‘~
| o n=2 [
0.4 e
—~~ o
S o o cmn
o
&
- [ )
-0.4- .
° o ..I'
-0.8— : :
°-15 -1 -0.5 0 02

Re(\) -tP
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Breathing DSs

space space
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Amplitude equation
The idea:
@ Two-scale expansion in the vicinity of bifurcation point,
0=0.:0=Ae“'F,+cc. +r
0=0.+e U= A(t)e“ (F.+eF) +cc +r;
@ Amplitude equation is a normal form of a Hopf bifurcation;
@ Complex coefficients can be immediately evaluated if the

solitary stationary solution is known;

O:A = a1 A + a2A\A|2,

<£fs(u5)'7:c“7::> _ <£/c,/(u5)fcfc?cu::>
(FelFey 7 2(F|Fy)

a)p = ag =
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Amplitude equation
Re(a1) < 0, Re(a2) > 0 Re(a1) < 0, Re(a2) <0
0.06 0.25
< <
E ° E °
—-0.06 -0.25
-006 O 0.06 -025 O 0.25

Re(A) Re(A)
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Moving DSs

@ Destabilization via the mode n = 1:

0.8
® n=0 o
e n=1 o 0 0 o0g
04l © n=2 |© e © © 0o
Tle =) 0
—~~
< 0 «—
= 0 ® 809 O ®
E O —> -« —>
-0.4 « s
@ ® o 000
O o ooQ°
~—
-0. : :
-% -0.5 0 0.1
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Moving DSs

@ Destabilization via the mode n = 1:
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Moving DSs: Drift-Bifurcation

@ Fredholm alternative:

£ (ug)Pr =G & (Gi|Gr) =0
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Moving DSs: Drift-Bifurcation

@ Fredholm alternative:

£ (ug)Pr =G & (Gi|Gr) =0

@ Bifurcation point:




Introduction

Localized structures in 3KRD system
0000 o]
[e]e] [e]e]
5

0000000000000 000e000000

Moving DSs: Drift-Bifurcation

@ Fredholm alternative:

£ (ug)Pr =G & (Gi|Gr) =0

@ Bifurcation point:
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Drift-Bifurcation due to a change of shape

-2

current density j/Am

X coordinate z/mm
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Drift-Bifurcation due to a change of shape

084 m EqG1)
A Numerical results

v3/(mms )

voltage Up/V
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Breathing and moving DSs
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Breathing and moving DSs
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Breathing and moving DSs

time
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Breathing DSs with oscillatory tails
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Breathing DSs with oscillatory tails
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