Introduction to the Standard Model Exercises 7

Deadline: Monday 06 June 2016 (12 am)
at Dr. Giudice's office (KP 301) and Ms Sonja Esch (KP 310)

Topics covered: Vertex correction, parton model.

1. (3.0 P) The vertex correction to $-\mathrm{i} e_{R} \gamma^{\mu}$ is given by $-\mathrm{i} e_{R} \Gamma_{2}^{\mu}$, where:
$\Gamma_{2}^{\mu}=A^{\mu} \int_{0}^{1} d x \int_{0}^{1-x} d y \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\frac{(d-2)^{2}}{d} k^{2}+Q^{2}[(2-d) x y+2 x+2 y-2]}{\left(k^{2}+Q^{2} x y+\mathrm{i} \epsilon\right)^{3}}$,
with $A^{\mu}=-2 \mathrm{i} \gamma^{\mu} e_{R}^{2} \mu^{4-d}$. Calculate separately the UV and the IR divergent terms showing that:
$U V: \Gamma_{2}^{\mu} / A^{\mu}=\frac{\mathrm{i}}{16 \pi^{2}}\left(\frac{4 \pi}{-Q^{2}}\right)^{\frac{4-d}{2}} \frac{\Gamma\left(\frac{4-d}{2}\right) \Gamma\left(\frac{d}{2}\right)^{2}}{\Gamma(d-1)}$,
$I R: \Gamma_{2}^{\mu} / A^{\mu}=\frac{\mathrm{i}}{16 \pi^{2}}\left(\frac{4 \pi}{-Q^{2}}\right)^{\frac{4-d}{2}} \frac{\Gamma\left(\frac{4-d}{2}\right) \Gamma\left(\frac{d-4}{2}\right) \Gamma\left(\frac{d}{2}\right)}{\Gamma(d-2)}\left(\frac{d^{2}-8 d+24}{4(d-2)}\right)$.
2. (1.0 P) Derive the following expression:
$\frac{1}{(1-z)^{1+\epsilon}}=-\frac{1}{\epsilon} \delta(1-z)+\frac{1}{[1-z]_{+}}-\epsilon\left[\frac{\ln (1-z)}{1-z}\right]_{+}+\sum_{n=2}^{\infty} \frac{(-\epsilon)^{n}}{n!}\left[\frac{\ln ^{n}(1-z)}{1-z}\right]_{+}$,
where the plus-distributions have been used.
Hint: one way to do this is to write:

$$
\int_{0}^{1} d x x^{-1+\epsilon} f(x)=\int_{0}^{1} d x x^{-1+\epsilon} f(0)+\int_{0}^{1} d x x^{-1+\epsilon}[f(x)-f(0)]
$$

and to evaluate the first term and Taylor expand the second term.
3. (2.0 P) Consider the inelastic electron-proton scattering $e p \rightarrow e X$. Let us call k and k^{\prime} the initial and the final electron momentum respectively, M the mass of the proton, p the momentum of the proton and q the momentum transfer of the virtual photon.
It is common to replace the variables $\nu=(p q) / M$ and q^{2}, by the dimensionless variables:

$$
x=\frac{-q^{2}}{2 p q}=\frac{-q^{2}}{2 M \nu}, \quad y=\frac{p q}{p k}
$$

Show that the allowed kinematic region for $e p \rightarrow e X$ is $0 \leq x \leq 1$ and $0 \leq y \leq 1$.
4. (2.0 P) During the lecture we evaluated the $e p \rightarrow e X$ cross section for the electron to be scattered into the $d E^{\prime} d \Omega$ element in the target proton rest frame (the laboratory frame). Show that:

$$
d E^{\prime} d \Omega=\frac{\pi}{E E^{\prime}} d Q^{2} d \nu=\frac{2 M E}{E^{\prime}} \pi y d x d y
$$

where E and E^{\prime} are the initial and final energy respectively, and $Q^{2} \equiv-q^{2}$.
5. (3.0 P) In the center-of-mass frame of the proton process $\gamma^{*} q_{1} \rightarrow g q_{2}$, let us indicate the virtual photon momentum as $q=\left(q_{0}, \vec{k}\right)$, the initial parton momentum as $q_{1}=(k,-\vec{k})$, the final parton momentum as $q_{2}=\left(k^{\prime}, \vec{k}^{\prime}\right)$, the gluon momentum as $g=\left(k^{\prime},-\vec{k}^{\prime}\right)$. Show that:

$$
\begin{aligned}
s & =2 k^{2}+2 k q_{0}-Q^{2}=4 k^{\prime 2} \\
t & =-Q^{2}-2 k^{\prime} q_{0}+2 k k^{\prime} \cos \theta=-2 k k^{\prime}(1-\cos \theta) \\
u & =-2 k k^{\prime}(1+\cos \theta)
\end{aligned}
$$

where $Q^{2} \equiv-q^{2}$ and θ is the angle between \vec{k} and \vec{k}^{\prime}.
Moreover, prove the following relation:

$$
4 k k^{\prime}=-t-u=s+Q^{2}
$$

An interesting quantity is the transverse momentum of the outgoing quark, $p_{T}=k^{\prime} \sin \theta$. Show that:

$$
p_{T}^{2}=\frac{s t u}{\left(s+Q^{2}\right)^{2}}
$$

and, in the limit of small-angle scattering, $(-t) \ll s$, that

$$
p_{T}^{2}=\frac{s(-t)}{\left(s+Q^{2}\right)}
$$

Further, show that for small scattering angles $(\cos \theta \simeq 1)$,

$$
d \Omega=\frac{4 \pi}{s} d p_{T}^{2}
$$

