... identifizieren.1

Bose-Oszillator:


\begin{displaymath}H_B=\displaystyle \frac{\hat{p} ^2}{2m} +
\displaystyle \frac...
...} \hat{q} ^2 = \hbar \omega (b^+b^-+1/2)=\hbar
\omega (N_B+1/2)\end{displaymath}

mit $b^\pm =\sqrt{\displaystyle \frac{m\omega }{2\hbar }}\cdot
(\hat{q}
\mp \displaystyle \frac{i\hat{p} }{m\omega }) \qquad [b^\pm =(b^\mp )^\dagger ]$ und $N_B=b^+b^-$
mit $[ \hat{q} ,\hat{p} ] =i\hbar $ erhält man

Vertauschungsrelation: $[b^-,b^+]=1 \hspace{0.2cm} ;\hspace{0.2cm}
[b^+,b^+]=[b^-,b^-]=0$ $\Rightarrow $ Bose-Oszillator

$E_{n_B}=\hbar \omega (n_B+1/2) \qquad n_B=0,1,2,....$

Fermi-Oszillator:

\begin{displaymath}H_F=i\omega \hat{\psi } \hat{\pi }=-\displaystyle
\frac{\hbar \omega }{2} \cdot (f^-f^+-f^+f^-)=\hbar \omega \cdot
(N_F-1/2)\end{displaymath}

mit $f^\pm = \frac{1}{\sqrt{2\hbar }} \cdot (\hat{\psi
}\mp i\hat{\pi}) \qquad [f^\pm =(f^\mp)^\dagger ]$ und $N_F=f^+f^-$
mit $\{ \hat{\psi},\hat{\pi} \} = 1 \qquad \{ \hat{\psi},\hat{\psi}
\} =\{ \hat{\pi},\hat{\pi} \} = 0$ erhält man
Anti-Vertauschungsrelation: $\{ f^-,f^+\} =1 \hspace{0.2cm}
;\hspace{0.2cm} \{
f^+,f^+\} =\{ f^-,f^-\} =0$ $\Rightarrow $ Fermi-Oszillator
$E_{n_F}=\hbar \omega (n_F-1/2) \qquad n_F=0,1$
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...)2

\begin{displaymath}Q_1\left
\vert 1+\right >= Q_1(\left \vert E0 \right > + \lef...
...ht > + \left \vert E0 \right
>)=\sqrt{E} \left \vert 1+ \right>\end{displaymath}

$Q_1\left
\vert 1-\right >= Q_1(\left \vert E0 \right > - \left \vert E1 \right
...
...t \vert E1 \right > - \left \vert E0 \right
>)=-\sqrt{E} \left \vert 1- \right>$
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.