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The formation of regular stripe patterns during transfer of surfactantmonolayers onto solid substrates is investigated.
Two coupled differential equations describing the surfactant density and the height profile of the water subphase are
derived within the lubrication approximation. If the transfer is carried out in the vicinity of a first order phase transition
of the surfactant, the interaction with the substrate plays a key role. This effect is included in the surfactant free-energy
functional via a height-dependent external field. Using transfer velocity as a control parameter, a bifurcation from a
homogeneous transfer to regular stripe patterns arranged parallel to the contact line is investigated in one and two
dimensions. Moreover, in the two-dimensional case, a secondary bifurcation to perpendicular stripes is observed in a
certain control parameter range.

Introduction

Self-organized processes in dewetting systems provide effective
methods for the controlled fabrication of micro- and nanostruc-
tured surfaces. Monolayers of amphiphilic molecules such as pul-
monary lung surfactant DPPC (dipalmitoylphosphatidylcho-
line)1-3 and also of metals such as gold and silver4 are known
to form regular stripe patterns upon transfer onto solid substrates.
Typically, these experiments utilize the Langmuir-Blodgettmeth-
od, where the substrate is withdrawn from a trough filled with
water on which a monolayer has been prepared. Furthermore,
similar patterns are also observed in controlled evaporation
processes.4,5 Here, we want to focus on systems with lipid mono-
layers of surfactants such as DPPC or DMPE (dimyristoyl-
phosphatidylethanolamine). The corresponding experiments are
conducted under conditions close to the so-called main transition
of the monolayer, that is, the first order phase transition between
the liquid-expanded (LE) and the liquid-condensed (LC) phase
using the Langmuir-Blodgett method. The observed patterns
consist of ordered arrays of LEandLCdomains, including regular
stripes either parallel or perpendicular to the three-phase contact
line as well as a combination of both resulting in a rectangular
structure.1,2 Remarkably, the monolayer is transferred at a lateral
pressure below the transition pressure, that is, directly from the
pure LE phase. The partial condensation necessary for the
formation of the observed patterns is attributed to substrate-
monolayer interactions and is usually referred to as substrate-
mediated condensation (SMC).3,6-9

The theoretical investigation of dewetting systems with surfac-
tants is typically based on the lubrication approximation which
greatly facilitates the description of thin film flow.10-12 A model
for thin film dynamics with a surfactant phase transition was
derived earlier.13 It consists of two coupled nonlinear differential
equations describing the height profile of the film and the sur-
factant density. Thermodynamics of the surfactant is incorpo-
rated via a Cahn-Hilliard-type free-energy functional which
describes a transition between two stable phases of different
surfactant density.

Here, we present a theoretical description of the situationwhere
a monolayer is transferred from an evaporating thin liquid film
onto a solid substrate. For that purpose, we extend themodel13 by
inclusion of evaporative effects and substrate-mediated conden-
sation. The latter is included in the surfactant free-energy func-
tional via a height-dependent external field. Within a certain
range of transfer velocities, we shall find, instead of homogeneous
transfer, two types of regular stripe patterns, one arranged
parallel and the other perpendicular to the contact line.

Thin Film Flow

To focus on the effect of substrate-mediated condensation, let
us look at a simple model system where surfactants are per-
petually transferred toa solid substrate.Weconsider an evaporating
thin film of water on a plate which is removed in the negative
x-direction from a water reservoir which ensures a constant film
height at the right boundary of the system (see Figure 1). A
meniscus is then given by the balance of evaporation and the
supply of fresh water, which is carried from the reservoir by
the moving plate, yielding a contact line moving relatively to the
substrate. The water reservoir is assumed to be covered with a
surfactantmonolayer of constant density, which is then carried by
the flow toward the contact line. The liquid film is described by
its height profile h(x,t), which indicates the local film thickness,
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whereas the surfactant density at the surface above point x =
(x,y) is described by the function γ(x,t). Using lubrication approx-
imation, the dimensionless time evolution equations for the height
profileH(X,T ) and the surfactant density Γ(X,T ) are obtained as

DTH ¼ -r 3
H3

3
rP þ H2

2
rΣ̂-V0H

� �
-EvΔμ ð1Þ

DTΓ ¼ -r 3
ΓH2

2
rP þ ΓHrΣ̂-V0Γ

� �
ð2Þ

with the generalized pressure P= ε3Ca-1σ̂32H - Π(H) and the
scaled surface tension Σ̂= εCa-1σ̂. Here, ε= h0/l0 is the ratio of
the characteristic height and length scales of the system in
question and is assumed to be small in thin film geometries.
The inverse capillary number Ca-1 = σ0/(ηU0) is the surface ten-
sion of water σ0 in the absence of any surfactant, scaled by the
dynamic viscosity η and a characteristic velocity U0. Generally,
the surface tension varies across the surface, depending on the
local surfactant density Γ and its spatial derivatives. This depen-
dence is described by the lateral pressure Plat and the relation14

σ̂ :¼ σ

σ0
¼ 1-Plat ð3Þ

and will be discussed in more detail below. The substrate-liquid
interaction is described in terms of the disjoining pressure Π(H).
In the literature, different expressions for Π(H ) have been
considered (see ref 12 and references therein for a discussion of
possible choices). Here, we will use Π(H) = A3H

-3 - A9H
-9,

where A3,A9 > 0, yielding a precursor height Hp, defined by
Π(Hp) = 0. The transfer velocity, that is, the velocity of substrate
withdrawal V0 = v0/U0 enters both equations as an advective
contribution. In order to model evaporation, we have included a
sink term in the evolution equation forH, so that the fluid volume
is not conserved. HereΔμ= μw- μv denotes the difference of the
chemical potentials of the water film and the ambient vapor
phase, whereas Ev = ηl0

2Qe/h0
3 is the evaporation number with

effective rate constant Qe. The pressure in the vapor above the
film is assumed to be close to the saturation pressure, allowing us
to identify the chemical potential of the water film with the
negative generalized pressure,15,16 that is, μw = -P, μv = const.

Surfactant Thermodynamics and Substrate-Mediated
Condensation

Since the surfactant density varies across the surface, its
free-energy is given by the functional17 F [Γ] =

R
d2X f(X ) with

the free-energy density

f ¼ ε2
K

2
ðrΓÞ2 þFhomðΓÞ ð4Þ

whereK= κγ0
2/(h0

2σ0) with characteristic surfactant density γ0 is
the nondimensionalized line tension κ of surfactant phase bound-
aries. The function Fhom represents the free energy of a system
with homogeneous surfactant density Γ. In the following, we
consider a bistable system where the low- and high-density
minimaofFhom correspond to the liquid-expanded and the liquid-
condensed phase, respectively.

Substrate-monolayer interactions lower the free energy of the
surfactant at the three-phase contact line and thus facilitate its
condensation onto the substrate.6 This effect can be modeled by
inclusion of a height-dependent external field in the surfactant
free-energy density. Restricting ourselves to free-energy densities
that can be approximated sufficiently well by a fourth-order
polynomial around the critical surfactant density Γcr, we obtain

~Fhomð~Γ,HÞ ¼
X4
k¼ 0

Fk
~Γk þSðHÞ~ΓþO ð~Γ5Þ ð5Þ

where Γ~ = Γ - Γcr, so that we can identify Fhom(Γ,H ) =
~Fhom(Γ-Γcr,H ). Although Fhom(Γ,H ) is not necessarily sym-
metric, it must possess two minima in order to model a phase
transition, leading to a restriction in the choice of the coefficients
Fk. This means that Fhom(Γ,H ) is a general double-well potential
centered around Γ = Γcr with a height-dependent first-order
contribution.However, for the sakeof simplicity, in the following,
we assume Fhom(Γ,H ) to be symmetric for vanishing S. It has to

Figure 1. Schematic of a surfactant-laden meniscus. The height
profile h(x,y,t) indicates the film thickness at location (x,y) and
time t, whereas γ(x,y,t) describes the surfactant density at the
surface above (x,y).

Figure 2. Snapshots of one-dimensional simulations at different
transfer velocitiesV0,where the solid red linedenotes the surfactant
densityΓ and the dashed blue line corresponds to the height profile
H: (a) homogeneous transfer of LC surfactant, (b) periodic pattern
of alternating LE and LC domains, (c, d) periodic patterns with nar-
rower LC domains, and (e) homogeneous transfer of LE surfactant.
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be emphasized that this is no real limitation, since, around the
coexistence plateau, a wide range of experimentally obtained
pressure-area isotherms can be fitted reasonably well under the
assumption of a symmetricFhom. Alas, the exact form of the height
dependence S(H) is difficult to obtain experimentally, and so far
only the overall strength of the SMC has been measured from a
change of lateral pressure in the monolayer when it is transferred
from the water onto the substrate.8 However, it is clear from the
experimental evidence that S(H ) goes to a finite negative value
for H f Hp, leading to a tilt of Fhom toward its higher density
minimum, that is, the LC phase, as themonolayer approaches the
substrate. Also, S(H ) should vanish quickly forHf ¥, since the
SMC has a measurable effect only very close to the substrate.
Although the following results are qualitatively valid for a class of
functionsS(H ) meeting theseminimal constraints, without loss of
generality we choose S(H ) = βψ(H ), whereψ(H ) =

R
dHΠ(H )

with integration constant zero is the potential of the substra-
te-liquid interaction and β is a positive coupling constant. By this
choice, SMC acts on length scales comparable to the substrate-
liquid interaction.

With the chemical potential

μ ¼ δF ½Γ�
δΓ

¼ - ε2Kr2Γþ DFhom

DΓ
ðΓ,HÞ ð6Þ

we can write down the lateral pressure in the form

Plat ¼ - f þΓμ ¼ PhomðΓÞ- ε2K
1

2
ðrΓÞ2 þΓr2Γ

� �
ð7Þ

where the local part ofPlat is denoted asPhom :=-FhomþΓ∂Fhom/
∂Γ. Inserting eq 5 yields a third-order polynomial in Γ for Phom.
For the purpose of numerical calculations, we have estimated the
coefficients of the polynomial from a fit to an experimentally
obtained pressure-area isotherm of DPPC at 25 �C.18 The next
point to emphasize is that the pressure in inhomogeneous systems
of spatially varying density Γ is described by a tensor P with the
componentsPij= Platδijþε2K(∂iΓ)(∂jΓ).

19,20 Since ε is assumed to
be small, all terms of order ε5 in eqs 1 and 2 can be safely ignored.
Therefore, the lateral pressure enters the equations only in
the form of r 3P = r(Plat þ ε2K(rΓ)2), so that one can simply
use the scalar pressure P = Plat þ ε2K(rΓ)2 throughout all
calculations.

Numerical Simulation

Wediscretize eqs 1 and 2 using 384 and 384� 384 gridpoints in
one and two dimensions, respectively. Derivatives are approxi-
mated by second-order finite differences, and an embedded
adaptive Runge-Kutta scheme of order 4 (5) is employed for
time stepping.21 The simulations for our choice of parameters18

are performed on a domain of lengthL in one dimension and on a
square domain of sizeL� L in two dimensions, whereL=1600.
Our goal is to simulate the substrate withdrawal from a water

reservoir which is covered with surfactant in the liquid-expanded
phase. Therefore, the following boundary conditions hold:

ΓðLÞ ¼ ΓL, DX 2ΓðLÞ ¼ 0 ¼ DXΓð0Þ ¼ DX 2Γð0Þ

HðLÞ ¼ HL, DX 2HðLÞ ¼ 0 ¼ DXHð0Þ ¼ DX 2Hð0Þ
wherewe chooseΓL=0.835,which is the density of the LEphase,
and HL = 1.5. In two-dimensional simulations, periodic bound-
ary conditions in the Y-direction are used. As initial conditions,
we use a kinklike function going from the density of the pure LC
phase to ΓL for Γ and a Gaussian drop centered at X= L forH.
Random noise of amplitude 0.1 is added to both Γ(X,0) and
H(X,0). Note that the choice of the initial conditions has no
influence on the long-time evolution of the system, since after very
short simulation time, the film profileH evolves into a stationary
meniscus, as shown in Figure 2a. Its shape is determined by the
balance of evaporation and the supply of fresh water, which is
carried from the water bath into the integration domain by the
moving substrate.

Using the transfer velocity V0 as a control parameter, different
operation regimes of the system eq 1/eq 2 are found: for small
values of V0, the transfer is homogeneous and the substrate is
coated with a monolayer in the LC phase (see Figure 2a).
However, if we increase the velocity to some critical value Vcr,l

≈ 2.4, the system bifurcates, exhibiting a periodic spatiotemporal
pattern, consisting of alternating domains of surfactant in the LE
and the LC phase (see Figure 2b). These domains are created at
the contact line and then advected by the flow. The creation of a
new domain goes along with a small bump in the height profile,
which quickly evaporates. Upon further increase of the control
parameter, the initially broadLCdomains get narrower, while the
LE stripes grow (see Figure 2c and d). Finally, the transfer again
becomes homogeneous for velocities V0 J Vcr,u = 4.8, and the
substrate is coated with a pure LE monolayer (see Figure 2e).
Figure 3 displays the bifurcation diagram showing the wave-
number k = 2π/λ, where λ is the period length of the observed
structures, as a function of the transfer velocity, and can be
compared qualitatively to similar bifurcation diagrams obtained
fromexperiments2,22All aforementioned patterns have analoga in
the two-dimensional case, where stripes parallel to the contact line
correspond to the alternating domains of the one-dimensional
simulations (see Figure 4a). However, the formation of these
stripes is not stable for velocities close to the upper and lower
bounds Vcr,u and Vcr,l: After a few stripes are produced, the
regularity breaks down and disordered domains are created (see
Figure 4b). Nevertheless, there exists a velocity range 2.58jV0j
3.10, where this disordered state is only transient and marks a
transition fromparallel to perpendicular stripes (seeFigure 4c-f).

Figure 3. Wavenumbers of the observed patterns against transfer
velocity. The letters (a)-(e) mark the wavenumbers corresponding
to the velocity values used in Figure 2.
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Conclusions and Outlook

Using the lubrication approximation, we have developed a
theoretical description for surfactant monolayers which exhibit
substrate-mediated condensation during transfer onto a solid.
For that purpose, we have incorporated a height-dependent
external field in the surfactant free-energy functional. A first
investigation of the control parameter space has been presented,
showing a bifurcation from homogeneous transfer to regular
stripe patterns parallel to the contact line as well as a secondary
bifurcation to perpendicular stripes. Our model correctly predicts
the existence of the four basic operation regimes known from
experiments, going from transfer of a homogeneousLCmonolayer

first to perpendicular stripes, then to parallel stripes, and finally to
a homogeneous LE layer. From these first results, we expect the
system to have a rich phase space and bifurcation behavior. To
analyze the bifurcation scenario in detail, it is now necessary to
perform a linear stability analysis of the nonhomogeneous sta-
tionary solutions of eqs 1 and 2 leading to a nontrivial eigenvalue
problem with a space-dependent linearization operator. This
problem will be the subject of future investigation.
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Figure 4. Patterns obtained in two-dimensional simulations, where the height information corresponds to the profileH, while the surfactant
density is color-coded: (a) stable stripe pattern obtained forV0=3.3 and (b) irregular domains found atV0=2.55 aswell as a time-sequence
(c-f ) of a system with V0 = 2.9, where a transition from parallel to perpendicular stripes is observed.


