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1 Introduction

Understanding the laws of nature is probably one of the most exciting challenges

Mankind can accept. The concept of symmetries provides an extremely successful

approach to derive the rules the universe obeys. With the combination of space-time

and internal gauge symmetries, a Quantum Field Theory (QFT) has been created with

a tremendous predictive power, the Standard Model of particle physics (SM). Since the

construction of the Large Hadron Collider (LHC) at CERN we have a source for highly

accurate experimental results to check the validity of the SM. All comparisons seem to be

in perfect agreement and with the discovery of a particle, consistent with the properties

of the Higgs, even the last element of the SM may have been found. Certainly this will

not be the end of the challenge. There are open questions the SM can never answer,

some of them by its construction alone: What is the source of gravitation? What is

dark matter (DM)? Why are the neutrinos massive? Why is there a matter-antimatter

asymmetry? . . . What could be more beautiful than finding the answers in a larger

symmetry nature exhibits? This is what Supersymmetry (SUSY) does.

With the LHC we are confident to explore things beyond the SM (BSM). We know it will

discover something new, but we do not know what. It might be SUSY. In order to verify

a new discovery the necessity of highly precise predictions for proton-proton collisions

is indispensable. Therefore the techniques of perturbative Quantum Chromodynamics

(QCD) have been established as an effective tool. Nevertheless, in a certain region of the

particle phase space the fixed order computations show a large discrepancy compared

to the experimental results. Furthermore these regions somehow spoil the convergence

of the perturbative series and our computations become unreliable. This is where

resummation makes its important contribution for the improvement of the fixed order

computations and to assure the predictive power even in the critical kinematic regions.

The Minimal Supersymmetric Standard Model (MSSM) is one of the most promising

candidates BSM we are looking for. It contains superpartners for each SM particle.

Among them the sleptons are the supersymmetric counterparts of the leptons and our

particles of interest during this thesis. Due to their only electroweak gauge couplings,
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sleptons are among the lightest superpartners containing the sneutrino as a possible

DM candidate if it is the lightest stable supersymmetric particle (LSP). Even if this

is not the case, slepton phenomenology is of high interest. They would decay into the

LSP, probably the neutralino in minimal Supergravity (mSUGRA) or the gravitino in

gauge mediated SUSY-breaking models (GMSB), and their corresponding lepton. For

slepton pair production this would lead to a highly energetic lepton pair, which can be

easily detected, and some missing energy.

Our main goal of the thesis is making precise predictions for slepton pair production at

the LHC. We therefore will firstly study the necessary theoretical background of SUSY

and QCD at the LHC in Ch. 2.1 and 2.2, respectively. Afterward, we present in Ch. 3

all the important formulas to apply threshold and transverse momentum resummation.

This is followed by its applications to slepton pair production in Ch. 4, which is divided

in an analytical and numerical part and the implications for DM. Finally, we will come

to the conclusion of the work and give a brief outlook in Ch. 5.

Apart from the main chapters, we will present all the necessary computations for the

used Feynman amplitudes in App. A and B. In addition, updated results for gaugino

pair production are stated in App. C, since the program code developed in this thesis

is an extension of Jonathan Debove’s, originally created for resummation techniques

applied to gaugino pair production [1].
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2.1 Supersymmetry and the MSSM

The probably most important approach to understand nature is to study its symmetries.

Most of the progress made in understanding the laws and mechanisms of particle physics

has been achieved through studying the symmetries of the particles they exhibit. It is

known, thanks to the Noether theorem that every global symmetry corresponds to a

conserved quantity. So the origin for the possibility to label our particles with different

quantum numbers lies in the symmetries, a given theory, i.e. a Lagrangian, obeys. The

fundamental Lorentz invariance, the Abelian and non-Abelian gauge symmetries and the

study of flavor symmetries play an important role for the research and development of

QFT. But a symmetry unlike all the others has been proposed and brought to attention

by Wess and Zumino in 1974. Its name is Supersymmetry. [2]

In this section we want to mention and briefly explain all the necessary basics to pursue

the study of slepton pair production in this thesis. Firstly, we will show reasonable

motivations to look for physics BSM and deal with SUSY. After the introduction of the

general concepts we will directly go to the model of interest, the MSSM.

The whole section will be based on the Refs. [3] and [4].

2.1.1 Motivation

With the discovery of a new boson at the LHC, which is consistent with the properties

of the SM Higgs particle, the final missing ingredient of the SM could have been found.

Yet even then the chapter of particle physics would not be closed. There are still open

questions, even apart from the trivially missing gravitational force. Until now the SM

provides a remarkable description of the world we live in and it fits incredibly well the

experimental measurements. But not all of them!

From the experimental data of, e.g. WMAP, we know that only a little piece the

universe consists of can be described by the SM. There is roughly 95% of energy which
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is unknown. We have no clue about the origin yet, but we know that the SM cannot

explain that part of dark energy and dark matter. In addition, we have other unsolvable

problems like the matter and anti matter asymmetry in the universe or the neutrino

oscillations. There are also unsatisfactory aspects in the SM like the grand unification

of the three SM forces at high energies, which is not fulfilled in the SM, or the hierarchy

problem, which describes the large MP /MW ratio of the Planck mass and W boson mass.

It is rather obvious that there must be physics between those 16 orders of magnitude.

This comes along with the fine-tuning problem, which is due to the scalar nature of

the Higgs particle. Therefore the corrections to its mass depend quadratically, and so

tremendously on ΛUV, which is the upper scale limit up to which we think the SM is

valid. Since all the masses of the SM particles are generated with the Higgs mechanism

the whole theory is directly or indirectly sensitive to ΛUV. So we have to either accept

this, avoid it with theories without a Higgs mechanism or to extend the SM somehow

with respect to the mentioned problems.

All this opens the field for physics BSM, e.g. extra dimensions, technicolor, seesaw

mechanisms, LR-models, . . . and of course SUSY.

Let us have a closer look at the fine-tuning problem. We know that the bare mass of

every particle in the Lagrangian receives corrections from loop diagrams. It is relatively

easy to compute those diagrams while introducing a cut-off scale ΛUV, a scale up to

which our theory is supposed to be valid, e.g. the Planck scale MP . For fermions and

vector bosons this will lead to a logarithmically dependence on ΛUV, which is not large

even if the scale is. For the Higgs it is different. In the SM the Higgs mass will get its

corrections from fermion loops depicted in Fig. 2.1 (a).

f
H

(a)

H

S

(b)

Figure 2.1: Virtual corrections contributing to the Higgs mass. (a) shows a virtual
fermion and (b) a virtual scalar particle.
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This will give us the contribution

∆m2
H =

|λf |2
16π2

[
−2Λ2

UV + 6m2
f ln

ΛUV

mf

]
, (2.1)

where λf is a Yukawa coupling. It shows the quadratic dependence. If the scale for

new physics would be the Planck scale, this would lead to a correction 30 orders of

magnitude larger than the expected value of (100 GeV)2. But maybe ΛUV is smaller

and of the order of 1 TeV and there SUSY comes into the scene. Therewith we will get

scalar superpartners of the fermions, the sfermions. They will also couple to the Higgs

(Fig.2.1 (b)) and lead to a contribution

∆m2
H =

λs
16π2

[
Λ2

UV − 2m2
S ln

ΛUV

ms

]
. (2.2)

In SUSY each chiral fermion state has its own superpartner. Therefore the quadratic

dependence exactly cancels if λs = |λf |2. Now only a logarithmic dependence remains

that we can handle.

Unfortunately SUSY is not an exact symmetry of nature, otherwise we would have seen

e.g. a massless particle with spin 1/2. So why bother about such a theory? Firstly

it has an undoubted mathematical fascination and some physicists incline that “God”

must have made use of such a nice symmetry to create Mother Nature. Secondly, it can

partially solve our open questions and can be combined with other theories to get a

very large symmetry nature could have obeyed until it was broken.

2.1.2 Concepts of Supersymmetry

SUSY is a theory in which fermions can be transformed into bosons and vice versa. There-

fore the Poincaré group has to be enlarged and is then called the Super-Poincaré-Group.

The Poincaré transformations (PT) include Lorentz transformations and translations.

The infinitesimal generators are Pµ for the translations and Kµν for rotations and

boosts. They fulfill the Poincaré algebra

[Pµ, P ν ] = 0 , (2.3)

[Pµ,Kνσ] = i(gµνP σ − gµσP ν) , (2.4)

[Kµν ,Kσρ] = −i(gµσKνρ + gνρKµσ − gµρKνσ − gνσKµρ) (2.5)
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and therewith we can do a finite transformation on a field:

φ(x)→ φ′(x) = eiaµPµ+ i
2
ωµνKµνφ(x) . (2.6)

The explicit form of the generators depends on the field’s nature. E.g. for a spin 1/2

field it is

Pµ = i∂µ , (2.7)

Kµν = i(xµ∂ν − xν∂µ) +
i

4
[γµ, γν ] . (2.8)

All these are bosonic operators which act only in the 4-momentum vector space and

cannot change the spin of a particle. So why are there no fermionic operators which

can lead to a symmetry in nature? This is what SUSY does and it is the only way to

enlarge the Poincaré group 1. Therefore we have to enlarge our 4-dimensional space

time and add two Grassmann valued spinors as components X(xµ, θa,θ̄ȧ). The quantum

fields which depend on X are called superfields.

During this thesis we will not make use of the superfield formalism, even if it is more

elegant and opens a nice access to the enlarged PT. It is enough to consider an easy

supersymmetric example. Therefore we show one of the first-mentioned supersymmetric

Lagrangians. It is convenient to use Weyl spinor formalism, because this is the irreducible

representation of the Lorentz group for spin 1/2 fields. For fixing the notations we will

write the Dirac spinor as

ΨD =

(
ψα

χ†α̇

)
, γµ =

(
0 σµ

σ̄µ 0

)
, σµ = (1,~σ) , (2.9)

where α and α̇ are spinor indices and σi are the Pauli matrices.

For any kind of symmetry the action of the theory must be invariant under the corre-

sponding transformation. First we want to find a theory with two free massless fields,

where one is a Weyl spinor field ψ and the other one a complex scalar field φ. The

action reads then

S =

∫
d4x(Lscalar + Lfermion) (2.10)

=

∫
d4x(−∂µφ∗∂µφ+ iψ†σ̄µ∂µψ) . (2.11)

1This is based on the Haag-Lapuszanski-Sohnius theorem.
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The field content corresponds to a single chiral multiplet. A simple supersymmetric

transformation is

δφ = εψ δφ∗ = ε†ψ† , (2.12)

δψα = −i(σµε†)α∂µφ+ εαF , δψα̇ = i(σµε†)α̇∂µφ
∗ + ε†α̇F

∗ , (2.13)

where we have introduced an auxiliary complex scalar field F with two degrees of

freedom to satisfy the invariance also off-shell and to get a closed group. Due to the

Noether theorem this symmetry gives rise to a conserved current, called the supercurrent

Jµ. Its integrated time component J0 over the spatial space leads to the conserved

charges Q and Q†, which are the generators of the supersymmetric transformations.

Qα |bos〉 = |ferm〉α Qα |ferm〉α = |bos〉 (2.14)

This gives us the enlarged Poincaré group which includes now also fermionic generators

and fulfills the algebra

[Qα,P
µ] = 0 , (2.15)

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ , (2.16)

[Kµν , Qα] = −i(σµν) βα Qβ , (2.17)

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 . (2.18)

Until now we have seen a free supersymmetric chiral field theory. Before we will

consider the gauge part we want to look at the most general supersymmetric non gauge

interactions. It can be shown that the most general renormalizable and supersymmetric

interaction is

LW = (−1

2
W ijψiψj +W iFi) + c.c , (2.19)

where

W ij =
δ2W

δφiδφj
, W i =

δW

δφi
(2.20)

and W is a holomorphic function of the scalar fields, the superpotential

W =
1

2
M ijφiφj +

1

6
yijkφiφjφk . (2.21)
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Here M ij is a symmetric mass matrix for the fermion fields and yijk is a Yukawa coupling

of a scalar and two fermionic fields. We can express the auxiliary field F in terms of

the superpotential W . The whole Lagrangian now reads

L = −∂µφ∗i∂µφi − V (φ,φ∗) + iψ†iσ̄µ∂µψi

− 1

2
M ijψiψj −

1

2
M∗ijψ

†iψ†j − 1

2
yijkφiψjψk −

1

2
y∗ijkφ

∗iψ†jψ†k , (2.22)

where we have defined the scalar potential for the theory as

V (φ,φ∗) =W kW ∗k = F kF ∗k

= M∗ikM
kjφ∗iφj +

1

2
M iny∗jknφiφ

∗jφ∗k

+
1

2
M∗iny

jknφ∗iφjφk +
1

4
yijny∗klnφiφjφ

∗kφ∗l . (2.23)

Using the Euler Lagrange equations and looking at the linearized equations of motion

(EOM) we will get e.g.

∂µ∂µφi =M∗ikM
kjφj + . . . , (2.24)

∂µ∂µψi =M∗ikM
kjψj + . . . . (2.25)

So we have the same EOM for the fields in the chiral supermultiplet. If we now

diagonalize the mass matrices and redefine the fields with unitary matrices we see that

the superpartners have exactly the same mass. Therefore we must break SUSY.

The steps to construct the supersymmetric gauge part of the theory is more or less the

same. The field content are vectorfields Aaµ, where a = 1, . . . n2 − 1 for a SU(N), a = 1

for U(1), and their supersymmetric partners λa, called gauginos. Again we need an

auxiliary field Da which makes sure that the group closes off-shell. It has, like F , no

mass term and no kinetic term. The Lagrangian density of the gauge supermultiplet is

L = −1

4
F aµνF

µνa + iλ†aσ̄µDµλ
a +

1

2
DaDa , (2.26)

Fαµν = ∂µA
a
ν − ∂νAaµ + gfabsAbµA

c
ν , (2.27)

Dµλ
a = ∂µλ

a + gfabcAbµλ
c , (2.28)

while using the expression for the usual Yang Mills field strength tensor, the covariant

derivative of the gaugino field Dµ, and the structure constants of the gauge group. If

we couple the chiral multiplet with the gauge multiplet the EOM for the Da field will



2.1 Supersymmetry and the MSSM 9

change to gain still a supersymmetric action of the theory.

Since SUSY and gauge transformations commute the supersymmetric chiral fields

must be in the same representation of the gauge group. In addition to the common

gauge interactions, which we get after the introduction of the covariant derivative, it

is also allowed to have gauge interactions including the gaugino and Da fields. Our

supersymmetric Lagrangian is

L = Lchiral + Lgauge −
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ) + g(φ∗T aφ)Da . (2.29)

The first additional two terms are supersymmetrizations of the original SM gauge terms.

Again we can replace the part of the auxiliary field by changing the scalar potential:

V (φ, φ∗) = F ∗iFi +
1

2
DaDa = W ∗i W

i +
1

2

∑
a

g2
a(φ
∗T aφ)2 . (2.30)

We call the two parts the F-term and the D-term and they will be essential for SUSY-

breaking. The sum over a indicates the different gauge group couplings. Now we have

found a complete SUSY theory.

2.1.3 The Minimal Supersymmetric Standard Model

Lagrangian and particle content

With the knowledge of the previous section we already know the particle content of the

MSSM, shown in Tab. 2.1 and 2.2 with their corresponding representations of the gauge

groups. The only novelty is an additional Higgs doublet to assure that all particles will

get their mass.

Table 2.1: The chiral supermultiplets in the MSSM and their gauge group
representations.

Names Field Spin 0 Spin 1/2 SU(3)c,SU(2)L,U(1)Y

Squarks & quarks Q (ũL, d̃L) (uL,dL) (3, 2, 1/3)
ū ˜̄uL ūL (3̄, 1, − 4/3)

d̄ ˜̄d∗L d̄L (3̄, 1, 2/3)

Sleptons & leptons L (ν̃eL , ẽL) (νeL , eL) (1, 2, − 1)
ē ˜̄eL ēL (1, 1, 1)

Higgs & Higgsino Hu (H+
u , H

0
u) (H̃+

u , H̃
0
u) (1,2, 1)

Hd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) (1,2,−1)
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Table 2.2: The gauge supermultiplets in the MSSM and their gauge group
representations.

Names Spin 1/2 Spin 1 SU(3)c,SU(2)L,U(1)Y

Gluino & gluon g̃ g (8,1, 0)

Wino & W W̃±, W̃ 0 W±, W 0 (1,3,0)

Bino & B B̃0 B0 (1,1, 0)

After the Higgs gets a non-zero vacuum expectation value (vev), the bino, wino

and Higgsino mix to the mass eigenstates neutralino and chargino similarly as in the

electroweak gauge sector of the SM.

The superpotential for the MSSM is

WMSSM = ūyuQHu − d̄ydQHd − ēyeLHd + µHuHd . (2.31)

Here Hu, Hd, Q, L, ū and ē are the chiral fields corresponding to the chiral supermulti-

plets. They are expressed in the weak isospin representation (e.g. Q3 = (t,b), ū3 = t̄).

The last term is the supersymmetric version of the Higgs mass term and yu, yd, ye are

Yukawa coupling matrices in family space, which define the masses of the three families

and the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix. It is worth to mention

that a general superpotential could also contain additional terms, but they would give

rise to lepton and baryon number violation which is highly suppressed with respect to

the experimental knowledge.

We will consider a simple approximation of this superpotential. All Yukawa couplings

are set to zero except for the members of the heavy third family.

WMSSM ≈ yt(t̄tH0
u − t̄bHH+

u )− yb(b̄tH−d − b̄bH0
d)− yτ (τ̄ ντH

−
d − τ̄ τH0

d) (2.32)

+ µ(H+
u H

−
d −H0

uH
0
d) (2.33)

The Yukawa interactions are completely symmetric in a general SUSY theory. There-

with we get, in addition to the common Higgs-lepton-lepton and Higgs-quark-quark

couplings, the squark-higgsino-quark and slepton-higgsino-lepton couplings. However,

the interactions due to the superpotential are usually not the most important ones,

since the Yukawa couplings are very small. Instead, processes for the superpartners in

the MSSM are dominated by the supersymmetric gauge interactions.

To avoid lepton and baryon number violation in the superpotential the MSSM is consid-
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ered as a theory symmetric under R-parity defined as

PR = (−1)3(B−L)+2s (2.34)

and which is a multiplicatively conserved quantum number. All the SM particles are

labeled with R-parity +1 and all their superpartners with -1, so that a vertex must

always include an even number of supersymmetric particles which entails that the LSP is

stable and provides a good candidate for DM. Nevertheless one can doubt that R-parity

is an exact symmetry, because in the SM every discrete symmetry is inexact (C, P, T)

and we know about processes which can lead to baryon or lepton number violation.

Breaking scenarios

We know that SUSY is not an exact symmetry, at least nowadays. There are two differ-

ent possibilities how to break a symmetry by either explicit terms in the Lagrangian

or via spontaneous symmetry breaking like in the electroweak sector. In fact there is

no consensus how to break SUSY “best”. To do phenomenology the introduction of a

SUSY breaking term which parametrizes the low-energy scale of the unknown breaking

mechanism is needed.

To break a symmetry spontaneously we need a field with a non-vanishing vev at the

energy scale where SUSY is broken. This is well-known for the electroweak symmetry

breaking. Since the theory must be still Lorentz invariant, only scalar fields may ac-

quire vevs. With regard to SUSY transformations the only field in the chiral multiplet

which could obtain such a vev is the auxiliary field F . Looking at our scalar potential

V (φ) = FiF
∗i only for a vanishing φ we will get a minimum. Hence the scalar potential

or the superpotential has to be changed. This has been worked out by O’Raifeartaigh.

But it has been shown that the F-term breaking cannot be accomplished in the MSSM

and one has to look beyond. In addition, this is also experimentally excluded due to

the occurrence of too low slepton masses.

SUSY-breaking could also be achieved in the gauge supermultiplet. For the same reasons

as for F-term breaking only the auxiliary field Dα can acquire a non-vanishing vev and

we call this type of breaking mechanism the D-term breaking. Fayet and Iliopoulos have

shown that such a breaking works by adding a new term to the scalar potential in the

Lagrangian. Anyway, this type of breaking is not possible only with the particle content

of the MSSM. [4]

Most people think the breaking mechanism occurs in a hidden sector that is weakly cou-

pled to the chiral supermultiplets in the MSSM. This coupling could be e.g. gravitation
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or weak coupling. In this point of view it is possible to break SUSY with F- or D-type

mechanisms. Then the hidden sector contains unknown particles which show no or less

interactions with the visible sector. The breaking in the visible sector happens due to

the interaction of the two sectors.

Anyway, even if the breaking mechanism is unknown there should be breaking terms

present nowadays wherewith we can do phenomenology. These terms should be soft,

of positive mass dimension, so that we do not introduce new divergences. Soft SUSY-

breaking terms assure the cancellations of quadratic divergent radiative corrections to

scalar (mass)2 terms up to all orders in perturbation theory. The mass scale at which

SUSY is broken should not be much larger than 1 TeV to avoid the fine-tuning problem.

The form of a general SUSY-breaking term is restricted. It must be gauge invariant,

should be renormalizable and should give all the superpartners different masses. For

the MSSM it could be

Lsoft = −(
1

2
Maλ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj) + c.c− (m2)ijφ

j∗φi . (2.35)

Ma is a gaugino mass term for each gauge group, m2 is a scalar mass term and aijk and

bij are scalar couplings. All these terms definitely break SUSY since they involve only

masses for the superpartners. It is worth to mention that we cannot add such mass terms

for the SM particles because it would break the electroweak symmetry explicitly. The

masses of the SM particles must be generated with spontaneous electroweak symmetry

breaking e.g. via the higgs mechanism. For the MSSM the phenomenological breaking

term will be

LMSSM
soft = −1

2
(M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.)

− (˜̄uauQ̃Hu − ˜̄dadQ̃Hd − ˜̄eaeL̃Hd + c.c.)

− Q̃†m2
Q̃
Q̃− L̃†m2

L̃
L̃− ˜̄um2

˜̄u
˜̄u† − ˜̄dm2

˜̄d

˜̄d† − ˜̄em2
˜̄e
˜̄e†

−m2
HuH

∗
uHu −m2

Hd
H∗dHd − (bHuHd + c.c) , (2.36)

with Mi being the gluino, wino and bino mass terms. The indices for the representations

of the gauge groups have been suppressed. The second line represents (scalar)3 couplings

and the bold printed expressions are all 3× 3 matrices in family space. In the third

line are the sfermion mass terms for squarks and sleptons. The last line represents the

SUSY-breaking part to the Higgs potential.

With all these new matrices and couplings, the MSSM will gain some kind of arbitrariness,
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because we introduce a lot of new parameters for masses, phases and mixing angles. By

redefinition of the fields we can “rotate” some parameters away and we end up with 105

parameters in addition to the 19 of the SM. With some special considerations for the

breaking we can reduce the enormous amount of arbitrariness in the Lagrangian and we

can get a theory with predictive power. There are some experimental discoveries which

constrain the parameters, e.g. the amount of CP violation or flavor violation. If e.g.

m2
L̃

had non-suppressed off-diagonal elements, unacceptable large lepton flavor changing

would be generated. In fact we have several theories for SUSY-breaking assuming some

underlying simplicity and symmetry of the Lagrangian. We will briefly mention the

most popular model for predictions, the minimal supergravity (mSUGRA).

There are mainly two assumptions for mSUGRA breaking. First the soft supersymmetry

breaking universality, the hypothesis, that all mass matrices are proportional to the unit

matrices, second that the triple scalar couplings are proportional to the Yukawa ones

and that there is no introduction of new complex phases.

m2
Q̃

= m2
Q̃

1 , m2
ū = m2

ū1 , m2
d̄

= m2
d̄1 , m2

ē = m2
ē1 , m2

L̃
= m2

L̃
1 , (2.37)

au = Au0yu , ad = Ad0yd , ae = Ae0yu , (2.38)

arg(M1) = arg(M2) = · · · = arg(Au0) = 0 . (2.39)

These assumptions are only approximations since we have already in the SM nonzero

phase e.g. for the CP-violation. Nevertheless, up to a certain accuracy this should be

correct.

This is the basis for mSUGRA. The breaking occurs in a hidden sector and is connected

to the visible MSSM sector mostly through gravitational-strength interactions. Due to

the fact that the gravitational force is colorblind, this could be a reasonable assumption.

In addition, the assumption of mass and coupling unification at high energy scales has

been made. Therefore we have to evaluate the renormalization group equation (RGE)

and “calculate back” the masses and couplings to the point of the electroweak scale.

With all shown assumptions we are left with four parameters

m1/2 = M1 = M2 = M3 , (2.40)

m2
0 = m2

Q = m2
ū = m2

d̄ = m2
ē = m2

L̃
= m2

H1
= m2

H2
, (2.41)

A0 = Au0 = Ad0 = Ae0 , (2.42)

tanβ =
〈H0

u〉
〈H0

d〉
(2.43)
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and a relative sign for µ since the Higgs mass is fixed already by the SUSY theory itself.

This implies that all the sfermions have been degenerated in mass independent of their

flavor and family.

The squarks and sleptons

In the MSSM each fermion has its own superpartner. As we distinguish left and right

chiral fermions in the SM we denote different superpartners with L-type and R-type, to

see which fermion it belongs to. So we have to introduce 21 new scalar fields. For the

squarks we have ũL, ũR, d̃L, d̃R whereas for the sleptons we have ν̃eL , ẽL ẽR, since the

neutrino is also in the MSSM considered as massless. All the sfermions are represented

in the same way with the same quantum numbers in the gauge group, e.g. ẽR = ˜̄eL is a

SU(2)L singlet state.

In general all sfermions with the same quantum numbers can mix with each other

and we get a 6× 6 (or for sneutrinos 3× 3) mixing matrix. The elements depend on

the fermion masses and of course on the breaking terms and Higgs mass. Since the

experimental observations restrict the flavor mixing dramatically we neglect it as it is

done in mSUGRA. The L- and R-type mixing is completely given by the off-diagonal

element which is proportional to the fermion masses, so that the L-R mixing will be

only important for the heavy third generations (τ̃ , t̃ and b̃). The general 2× 2 mixing

matrix is

M2
f̃

=

(
m2
LL m2

LR

m2∗
LR m2

RR

)
. (2.44)

The entries are

m2
LL = m2

F̃
+ (T 3

f − ef sin2 θW )m2
Z cos 2β +m2

f , (2.45)

m2
RR = m2

F̃ ′
+ ef sin2 θWm

2
Z cos 2β +m2

f , (2.46)

m2
LR = mfA

∗
f −mfµ(tanβ)−2T 3

f , (2.47)

where mF̃ (F̃ ′) are soft breaking mass terms, Af is the trilinear Higgs-sfermion-sfermion

coupling, mf , ef and T 3
f are the fermion mass, fractional electric charge and the third

component of the weak isospin, θW is the Weinberg angle for the electroweak mixing

and mZ is the Z-Boson mass.



2.1 Supersymmetry and the MSSM 15

We can easily diagonalize this matrix with a unitary matrix Sf̃ :

diag(m2
1,m

2
2) = Sf̃M2Sf̃† . (2.48)

With the introduction of a mixing angle the matrix Sf̃ can be written as

Sf̃ =

(
cos θf̃ sin θf̃
− sin θf̃ cos θf̃

)
. (2.49)

With the convention of mf̃1
mf̃2

the mass eigenvalues are

mf̃1,2
=

1

2

[
m2
LL +m2

LR ±
√

(m2
LL −m2

RR)2 + 4|m2
LR|2

]
(2.50)

and therewith follows the mixing angle

tan 2θf̃ =
2mLR

m2
LL −m2

RR

. (2.51)
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2.2 QCD at the LHC

It is well known that QCD is a theory with an asymptotically free behavior at high

energies and hence a vanishing coupling αs. This can be seen after solving the RGE2 in

lowest order. One gets as the result

αs(µ
2
r) =

2π

(11− 2nf/3) ln
(
µ2r
Λ2

) , (2.52)

where µr is the artificial renormalization scale parameter and Λ is a scale we find in

nature for QCD. Since nf is the number of quark flavors, the denominator is positive

and for a scale µr > Λ the coupling becomes smaller than one. For this reason we can

treat QCD perturbatively at high energy scales. We refer to reactions at this scale region

as hard processes. Below the scale Λ we have to deal with hadronization of quarks and

gluons that are nonperturbative problems and which we call soft processes. To make

useful predictions it is indispensable to know at which energy scale the transition to the

perturbative treatment of QCD takes place. It is known that this happens very rapidly

at the order of 1 to 3 GeV, nevertheless, it is still a subject of many measurements [6].

As we will see in higher order corrections of the perturbative series, the coupling in

combination with logarithmic prefactors is no longer small, even for large momentum

transfers due to soft and collinear parts of the computations. This somehow spoils

the convergence of the perturbative series and soft processes become important and

enter crucially the hard processes. But due to the factorization theorem 3, which shows

that the separation of the soft and the hard processes can be achieved, we are still

able to treat hadron collisions perturbatively at large momentum transfer. To gain

the factorization, we need to introduce Parton Distribution Functions (PDFs), which

represent the low energy regime and are therefore not computable with first principles.

In this section we will basically deal with the study of PDFs together with the important

Dokshitzer–Gribov–Lipatov–Altarelli–Parisi equations (DGLAP). For a demonstration

we will encounter a crucial process at the LHC, the Drell-Yan process. The next-to-

leading order (NLO) computations for slepton pair production at the LHC yield similar

problems. Lastly, we will introduce some useful kinematic variables which are convenient

for collider physics.

2A pedagogical introduction can be found in Refs. [2] and [5].
3For a detailed study see Ref. [7].
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2.2.1 The Drell-Yan process

In 1970 Drell and Yan first developed a model for the production of a lepton pair with

two initial state hadrons at high energies [8]. The associated Feynman diagram for this

process is shown in Fig. 2.2. Here a quark and an antiquark of the hadrons annihilate

into a virtual photon which “decays” into a lepton pair. In addition, we get an undefined

hadronic state X in which we are not interested.

xAPA

xB PB
Q2

p1

p2PB

PA

Figure 2.2: Feynman diagram for the Drell-Yan process: pp→ ll̄ +X, where X can be
any hadronic state.

Due to the factorization theorem we can write the cross section for the Drell-Yan

process as a convolution of the PDFs, which represent the soft contributions, and the

hard partonic subprocess,

σHAB =
∑
a,b

1∫
0

1∫
0

dxAdxBfa/A(xA)fb/B(xB)σab (xAPA, xBPB) , (2.53)

where fa/A and fb/B are the PDFs of the two initial state hadrons and the sum runs

over all partons a, b in the hadrons, including the antipartons. Of course, for the first

order computation (LO) only the PDFs of the quarks and their antiquarks lead to

contributions. Here the PDFs describe the probability of finding a parton of type a

(b) with a longitudinal momentum fraction xA (xB) of the hadron A (B), where a

(b) denotes the different partons we will consider, i.e. u, d, c, s, g. For higher order

processes, e.g. the real quark emission process gq → qq̄q → q + ll̄, it is necessary to

use the PDFs for gluons g as well. We will study the PDFs in more detail in the next

chapter.

The LO partonic process of the lepton pair production, with a photon as the mediator,
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is relatively easy to compute and we get for the unpolarized and spin and color averaged

cross section

σab =
1

3

4πα2
em

Q2
, (2.54)

where we have made the assumption of massless quarks and leptons. This is reasonable

due to the large initial and final state energy of the particles compared to their mass.

The squared momentum of the photon is referred to as Q2.4

Anyway, this result is not precise enough to fit with the experimental data. We need

higher order corrections with respect to the strong coupling. Therefore we have to

include the virtual diagrams of the quark self energy and the vertex correction.

Figure 2.3: Virtual corrections for the O(αsα) contribution to the NLO Drell-Yan cross
section, if it is interfered with the LO Feynman diagram. In addition, there
would be a third diagram with the antiquark self energy.

As always we handle the appearing ultraviolet (UV) divergences with the method

of renormalization. That means by a redefinition of our involving masses, fields and

couplings we will get rid of them. For specific points in phase space we have to deal

with additional divergences, the so called infrared divergences (IR) [10]. But how do we

get rid of them? First of all it is important to know that we cannot distinguish between

the virtual processes with two final state leptons and the real emission processes with

an additional gluon in the final state, which is soft. We cannot detect a gluon with

almost no energy. Therefore we have to add real corrections too, since they are of the

same order in the perturbative series.

4The computation can be found in almost every textbook about particle physics, for example in Refs.
[5] and [9].
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Figure 2.4: Real correction contributions for the O(αsα) contribution to the NLO Drell-
Yan cross section. In addition, there is a u-channel for the quark emission
and similar antiquark emission diagrams.

Due to the Bloch-Nordsieck theorem [11], which is actually for Quantum Electro-

dynamics (QED), the soft divergences will cancel each other. But in QCD we will

encounter additional problems. Due to the massless quarks and gluons, which can emit

a collinear massless particle, we will encounter also collinear (or mass) singularities.

But the Kinoshita-Lee-Nauenberg theorem [12] states that also the collinear divergences

cancel exactly if we sum over all initial and final degenerate states. The resulting

observable is then called an infrared safe quantity. However it is not possible to sum

over all degenerate states. The soft divergences can be handled at higher scales, because

they are power suppressed if the scale is high enough. And due to the factorization

theorem we can absorb our remaining soft and collinear divergences into the unphysical

bare PDFs, which will then become scale dependent.

2.2.2 Parton distribution functions

First of all we want to maintain the “naive” parton model which we have used in Eq.

(2.53) for LO predictions. We know that hadrons are deeply bound states of quarks.

Due to the exchange of soft gluons, the coupling and hence the attractive force between

the quarks is large. If the quarks emitted hard gluons, the “recoil” would break the

hadron apart. With regard to Heisenbergs Uncertainty Principle the time scale for the

interaction between the quarks and gluons inside the hadron is large with respect to the

scattering of a hadron with e.g. an high energy electron, the deep inelastic scattering

(DIS). Long before the virtual photon will interact with a parton, the partonic states

are already prepared. So the photon “sees” in a good approximation a “frozen sea” of

partons inside the hadron. With DIS we can measure the PDFs of a specific hadron [9].

Nevertheless we have to abandon this “naive” parton model, because from experiments

of DIS we know that the PDFs depend on the energy scale of the exchanged photon. In
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addition, we have still to handle the remaining divergences. Since we cannot calculate

the hadronic or even the partonic cross section from first principles, the theory has only

a predictive power by relating one cross section to the other.

NLO Drell-Yan process and corrections to PDFs

Now we want to show how a correction to the PDF will enter during a rather simple

NLO computation for the Drell-Yan process. For simplification let us only assume real

gluon emission and not in addition, the in principle more important, quark emission.

Considering again massless quarks we get

(pa − k)2 = 2pa · k = p0k0 (1− cos θ) (2.55)

in the denominator of our Feynman amplitude for such processes (Fig. 2.4 (left)). This

is the reason for the already mentioned IR divergences at certain points in phase space,

i.e. if the gluons are emitted soft (k0 → 0) or collinear (θ → 0).

To get a finite result we have to add the already UV renormalized virtual cross section

contribution to the real emission part to get rid of some IR divergences. With the

method of dimensional regularization (DR) [2, 5, 10] and phase space slicing the partonic

cross sections read [9]

dσr

dQ2
= σB

αs
π
CFD(ε)

[
2

ε2
δ(1− z)− 2

ε

(
(1 + z)2

(1− z)2

)
+

+

(
ln (1− z)

1− z

)
+

− 2
1 + z2

1− z ln z

]
+O(ε) , (2.56)

dσv

dQ2
= σB

αs
π
CFD(ε)

[
− 2

ε2
− 3

ε
− 10 +

2π2

3

]
δ(1− z) +O(ε) , (2.57)

where z is the momentum fraction of the quark after emitting a gluon, CF is a color

factor and F+ is a distribution similar to the δ-distribution which gives a finite result

after an integration. The expression D(ε) is the usually appearing expansion term by

solving the integrals with DR.

D(ε) ≈ 1 + ε(ln 4π − γE + ln
µ2
f

Q2
) (2.58)

If we add Eqs. (2.56) and (2.57) the double poles 1/ε2 cancel but we are still left with

divergences. How do we get rid of them? Of course we cannot look at the hard process

alone due to the confinement. We need to look at the whole hadronic process. Like in
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the “naive” parton model it can be shown that the hard (finite) and the long distance

(singular) part factorize to

dσab =

∫
dz1dz2φac(z1)dσ̄cd (z1z2s)φbd(z2) , (2.59)

where φac (φbd) is similar to the PDF and is called transition function or parton-in-parton

distribution function. It describes the probability of finding a quark inside a quark after

a gluon emission. Afterward the quark has the momentum fraction z. The bare cross

section is dσ and the renormalized (finite) cross section is dσ̄. The parton-in-parton

distribution functions absorb the last divergences. We can now define a renormalized

PDF:

f̄(η) :=

1∫
0

1∫
0

dxdzf(x)φ(z)δ(η − xz) =

1∫
η

dz

z
f
(η
z

)
φ(z) (2.60)

:= f(η)⊗ φ(z) . (2.61)

Therewith we can write the cross section in Eq. (2.53) in another way

dσHAB (S) =

∫
dηadηbf̄c/A (ηa) dσ̄cdf̄d/B (ηb) (2.62)

which is equivalent. Here, ηa, ηb ∈ [0,1] are defined as ηa = xaza and ηb = xbzb. With

this approach we are now able to compute all order corrections to hadronic processes.

But what does the parton-in-parton distribution function look like in our example? Or

similarly, what is the correction of the partonic subprocess to the PDFs? Therefore let

us look at the perturbative expansion series of the quantities dσ, dσ̄ and φ:

dσ̄(s) =
∞∑
n=0

(αs
2π

)n
dσ̄(n)(s) , (2.63)

dσ(s) =

∞∑
n=0

(αs
2π

)n
dσ(n)(s) , (2.64)

φik(z) = δikδ(1− z) +
∞∑
n=1

(αs
2π

)n
φ

(n)
ik (z) . (2.65)

The δ-distribution takes into account that at LO no gluon is emitted by the quarks. Now

we can write the expansion of the partonic cross section up to first order of perturbation



22 Theoretical background

theory as

dσ0
ab(s) +

αs
2π

dσ(1)(s) =

dσ̄0
ab(s) +

αs
2π

dσ̄
(1)
ab +

1∫
0

dz1φ
(1)
ac (z1)dσ̄

(0)
cb (z1s) +

1∫
0

dz2dσ̄(0)
ac (z2s)φ

(1)
cb (z2)

 . (2.66)

We can see that the unrenormalized LO cross section is the same as the renormalized

one, so our LO result is still valid. Let us collect the first order terms in Eq.(2.66) and

solve for the renormalized finite NLO cross section.

dσ̄
(1)
ab (s) = dσ

(1)
ab −

1∫
0

dz1φ
(1)
ac (z1)dσ̄

(0)
cb (z1s)−

1∫
0

dz2dσ
(0)(z2s)φ

(1)
ac (z2) (2.67)

To get the expression for the parton-in-parton distribution function we need the appear-

ance of the divergences which are left in the sum of the real and virtual emission cross

sections:

dσ(1)

dQ2
=

dσr

dQ2
+

dσv

dQ2
= σBD(ε)

(
−2

ε
Pqq(z) +R(z)

)
, (2.68)

where

Pqq = CF

[(
(1 + z)2

(1− z)

)
+

+
3

2
δ(1− z)

]
(2.69)

is one of the Altarelli-Parisi (AP) splitting functions which describe the breaking up of

a quark into a gluon and a quark with the momentum fraction z and

R(z) = CF

[
δ(1− z)

(
2π2

3
− 8

)
+ 4

(
1 + z2

)( ln (1− z)
1− z

)
+

− 2

(
1 + z2

1− z

)
ln z

]
.

(2.70)

Both functions Pqq and R(z) are completely finite. Only the AP splitting function is

multiplied by a pole ∼ 1/ε. Hence it is obvious what the parton-in-parton distribution

function can look like:

φ(1)(z) = −1

ε
D(ε)Pqq(z) . (2.71)



2.2 QCD at the LHC 23

The function in Eq. (2.71) is scale and scheme dependent and so are the PDFs, because

we can add some arbitrary constant terms which we can absorb. Therefore we need

to take the same scheme for the experiments as for the theoretical predictions. E.g.

we choose a parton-in-parton distribution function in a specific scheme and therewith

we “measure” the PDFs with DIS. To make valid predictions we need to use the same

parton-in-parton distribution function with the same scheme. This scale dependence

leads to similar equations as the RGE, the DGLAP equations.

It is now easy to show that with those results our renormalized PDFs are depen-

dent on an arbitrary scale µf . If we plug the parton-in-parton distribution function

expansion stated in Eq. (2.65) into the definition of the renormalized PDF (2.61) we get

f̄(η) = f0(η) +
αs
2π

1∫
η

dz

z
f(
η

z
)(−1

ε
− ln 4π + γE − ln

µ2
f

Q2
)Pqq(z) + . . . (2.72)

:= f0(η) +
αs
2π

1∫
η

dz

z
f̄(
η

z
)(ln

µ2
f

Q2
)Pqq(z) + . . . . (2.73)

Here we have absorbed the divergent part and some constant quantities directly into

the bare, not measurable distribution f . The scheme we have used is the common

MS-scheme. If we take the derivative with respect to the arbitrary scale µ would get a

part of the DGLAP equations.

Again we encounter a somehow arbitrary artificial parameter µ which has a rather

similar origin as the renormalization scale µr. During the rest of the thesis we will

set this scale to µf = µr = µ and we will only use renormalized quantities without a

bar, unless we will mention otherwise. It is important that the PDFs are completely

universal and independent of the hard process. They just get contributions from the

general parton-in-parton distribution function.

DGLAP equations

If we had added the real quark emission process we would also get an evolution equation

for the gluon PDF. All in all we get a (2nf + 1) dimensional matrix equation in the
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space of the quarks, gluons and antiquarks.

∂

∂ lnµ2

(
qi(x,µ)

g(x,µ)

)
=
αs(µ)

2π

1∫
x

dz

z

∑
qj ,q̄j

(
Pqi,qj (

x
z ,αs(µ)) Pqi,g(

x
z ,αs(µ))

Pg,qj (
x
z ,αs(µ)) Pg,g(

x
z ,αs(µ))

)(
qj(x,µ)

g(x,µ)

)
.

(2.74)

The αs dependence of the AP splitting functions is due to the fact that they are again

calculable as a series expansion in αs, similar as for the parton-in-parton distribution

function, where trivially the lowest order is independent.

It is relatively easy to derive the DGLAP equation. This is done in a similar fashion as

for the RGE. One demands that the physical hadronic Drell-Yan cross section does not

depend on an arbitrary scale. Although the partonic cross section and the PDFs will be

scale dependent, these dependencies compensate each other. But up to a certain fixed

order of perturbation theory the Drell-Yan cross section is indeed scale dependent.

The LO AP splitting functions P
(0)
ab (x) have an interpretation as the probabilities of

finding a type a parton in a parton of type b with the longitudinal momentum fraction

x of the mother parton. In LO we have seen that it is exactly the same as the parton-

in-parton distribution function except the absorbed pole. The transverse momentum it

gains is much less than µ2 [7]. For resummation and for the whole perturbative QCD

the DGLAP is essential. Therewith we can evolve the PDF to a different scale for our

processes after it has been measured at a certain scale. It assures the predictive power

of the theory. The necessary lowest order independent AP splitting functions are [13]:

P (0)
qiqj (z) = δij

8

3

[(
1 + z2

(1− z)

)
+

+
3

2
δ(1− z)

]
, (2.75)

P (0)
qg (z) =

1

2
(z2 + (1− z)2) , (2.76)

P (0)
gq (z) =

8

3

[
1 + (1− z2)

z

]
, (2.77)

P (0)
gg (z) = 12

[(
z

(1− z)

)
+

+
1− z
z

+ z(1− z)
]

+ δ(1− z)
(

44

9
− 2

3
Nf

)
. (2.78)

Here Nf is the number of different flavors. Beyond LO, the functions are completely

non-trivial and have a complicated flavor structure.

Now we know all the tools to compute higher order corrections to hadronic processes

and how to get rid of all the divergences. For a full NLO Drell-Yan computation we

also have to take the real quark emissions into account. Then the parton-in-parton
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distribution function, respectively the PDF evolution, will change to absorb also those

divergences. To get the results for the real correction to the DY process the method of

Phase Space Slicing is widely used for analytical results and has also been used to gain

our results. For a numerical approach it is more practical to use another approach to

get finite results. This is the so called dipole subtraction method. We will explain the

method briefly in the chapter about slepton pair production.

In Fig. 2.5 we can see a measurement of a PDF at NLO with the parton-in-parton

distribution functions defined in the MS-scheme. We will use the same PDFs in the

numerical analysis part to make predictions for slepton pair production at the LHC.

Figure 2.5: Parton Distribution Function (PDF) for a proton at two different energy
scales obtained by the MSTW collaboration in 2008 at NLO accuracy with
a confidence level CL = 68 %. From Ref. [14].

It can be seen that the distributions are indeed scale dependent. For larger momentum

transfers we can resolve more constituents of the hadron and the particle number

distribution for small x is larger.

Now we can proceed and write the hadronic and partonic cross sections in some more

adjusted variables for collider experiments.

2.2.3 Collider kinematics and important distributions

For collider physics it is common to introduce a useful set of variables which transforms

properly under longitudinal boosts. Therefore we choose the ~ez direction to be the pp

collision axis. For the usual coordinates (E,px,py,pz) only px and py are invariant under
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a Lorentz boost along the z-axis due to the fact that they are normal to the boost axis.

In addition, we do not know the longitudinal momentum of the initial state partons

and a measurement of the final velocity along the beam axis would be useless.

Therefore it is common to use projections of the variables into the transverse plane and

additional quantities which are invariant under a boost along the z-axis or transform

easily.

The transverse momentum

The transverse momentum ~pT is a two component vector in the plane perpendicular to

the collision axis. Its absolute value and the transformation formulas are given by

px = pT cosφ , py = pT sinφ , p2
T = p2

x + p2
y . (2.79)

Trivially it is invariant under a boost along ~ez and it has another promising feature:

Since we assume the partons carry only a longitudinal fracture of the hadron momentum,

the ~pT sum of the final state partons must be zero.

N∑
i

~pT,i = ~0 (2.80)

In the rest of the thesis this variable and its properties will be crucial. E.g we can

reconstruct the pT of some undetectable particle like a neutrino, or in the supersymmetric

case neutralino and sneutrino.

The rapidity

A quantity which is not invariant under Lorentz boosts but transforms properly is the

rapidity. It depends on the scattering angle θ, which is the angle between the scattered

particle and the beam axis, and the velocity ~β = ~p/E and is defined as

y :=
1

2
ln
E + pz
E − pz

=
1

2
ln

1 + β cos θ

1− β cos θ
, (2.81)

or equivalently

β cos θ = tanh y . (2.82)

The advantage of this kinematic variable is that it changes under a Lorentz boost along

the z-axis only by an additive constant.
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For approximately massless particles it is also useful to define the pseudo-rapidity η. If

m� pT, then β → 1 and the pseudo-rapidity reads

η :=
1

2

1 + cos θ

1− cos θ
= − ln tan

(
θ

2

)
, (2.83)

With this approximation we get an advantage. Previously we needed two detector types

to determine the rapidity of a particle. One for the energy E and another one for the

momentum. In the case of pseudo rapidity we just need one detector [15].

With the relation q2 = (pa + pb)
2 = (xaPA + xbPB)2 = xaxbS, where

√
S is the hadronic

center of mass (COM) energy, we can write transformations

xa =

√
q2

S
ey and xb =

√
q2

S
e−y (2.84)

which yield for the Jacobian to change the variables

∂(q2,y)

∂(xa,xb)
= S =

q2

xaxb
. (2.85)

Therewith we can rewrite the LO hadronic cross section for the Drell Yan process (Eq.

(2.53)). This reflects more the kinematic observables than the integration over the

partonic momentum fractions.

The transverse energy

In addition, one can define the transverse energy ET as the energy in the rest frame of

the particle where its momentum in the z-direction equals zero.

E2
T := p2

x + p2
y +m2 = p2

T +m2 = E2 − p2
z (2.86)

It is again an often used quantity for collider experiments. Using Eq. (2.81) we can

rewrite the transverse energy as

E = ET cosh y . (2.87)

For approximately massless particles it is the same as pT.
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The invariant mass

Another widely used quantity, which is by definition invariant under Lorentz transfor-

mations, is the invariant mass of two final state particles. It is defined as

M2 = (p1 + p2)2 . (2.88)

In the COM frame and at LO this will yield

M2 = q2 = s = xaxb2E
2 =: xaxbS , (2.89)

where xa,b is the momentum fraction of the hadron with momentum PA,B.

For a 2→ 3 process the invariant mass of the initial and final states are not the same.

Their fraction is denoted as z = M2/s and will become important in the next chapter.

For a more detailed discussion and further definitions of other useful kinematic variables

with respect to LHC physics a good reference would be Ref. [15] or [16].
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In Ch. 2.2 we have given the real gluon emission and virtual correction part to the

Drell-Yan cross section. Except the missing real quark emission this is the full inclusive

NLO result. As we can see in Eq. (2.70) the NLO cross section has a part which is

proportional to

αs(µ
2)

[
ln(1− z)

1− z

]
+

, (3.1)

remaining after the cancellation of the IR divergences of the virtual and real corrections.

We will get the following terms at each order of the perturbative series:

αs(µ
2)n
[

lnm(1− z)
1− z

]
+

, m ≤ 2n− 1 , (3.2)

where n is the order of the computation O(αns ). The contributions become very large in

the limit z → 1 and spoil the convergence. The limit corresponds to the phase space

regions where soft and collinear partons have been emitted. The factors in Eq. (3.2)

become larger and larger at each term of the perturbative series spoiling the validity

of a fixed order computation. To assure the predictive power we have to sum these

contributions up to all orders in certain phase space regions. This is done in the context

of resummation.

In this chapter we explain the philosophy of resummation and its applications. It is

a very technical procedure, makes use of different theorems and is deeply based on

factorization [7]. It can be shown that the regions of the large logarithms completely

factorize to the LO cross section times an exponential factor, the so called Sudakov

form factor. Firstly, we will show the factorization in a simple example of an infinite

emission of soft photons. Afterward, we will discuss and explain the formulas which are

necessary to apply resummation to slepton pair production.

Since the whole theoretical background of resummation is rather complicated, the reader

is referred to special literature for a more detailed point of view. We recommend Refs.
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[17] and [18] for a more pedagogical introduction and Ref. [19] for a more detailed study

including factorization. The whole chapter is based on Ref. [1].

3.1 The basic ideas behind resummation

Before starting with the special types of resummation let us think about the general ideas

behind it and its philosophy. We have already seen that factorization is an essential

theorem to do perturbative QCD. Let us think about a general physical quantity

R(M2,m2). This quantity is IR sensitive and the scale m2 measures the distance to the

critical point. Here M2 could be e.g the transferred momentum of the reaction. In the

limit where m2 �M2 it can be shown that we can write the quantity R in a factorized

form

R(M2,m2) = H(M2/µ2)S(m2/µ2) . (3.3)

This procedure can be highly non trivial and has to be proven before using the application

of resummation. To achieve factorization we had to introduce potentially large ratios of

the scales which depend on the arbitrary value of µ. It is important to mention that the

factorization often does not hold in the original momentum space, but in a “conjugate

space”. This is well known for the common convolution which factorizes in the Mellin

space.

Since we know that a physical quantity must be independent of an arbitrary and artificial

scale parameter, we can derive evolution equations for H and S:

1

H

d lnH

d lnµ2
= − 1

S

d lnS

d lnµ2
:= γS(µ2) . (3.4)

In a similar way, using the same main condition, the RGE can be derived. Like for

the running coupling αs we get a coefficient function here denoted by γS , the so called

anomalous dimension. Solving Eq. (3.4) for the soft function S yields

S(m2/µ2) = S(1) exp

− µ2∫
m2

dq2

q2
γS(q2)

 (3.5)
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and therewith we can rewrite Eq. (3.3) as

R(M2,m2) = H(1)S(1) exp

− M2∫
m2

dq2

q2
γS(q2)

 , (3.6)

where we have set µ = M . The whole dependence on the two scales is now represented

by the exponent, the so called Sudakov form factor. The coefficient functions S and

H are now completely IR safe, finite and computable with perturbation theory. The

anomalous dimension γS can be expressed in a power series of the strong coupling αs

and can therefore be computed perturbatively.

3.2 Soft photon resummation

In this section we show a simple example of resummation used in an arbitrary emission

of soft photons which has been done e.g. by Weinberg [17] and summarized by Peskin [5].

Let us consider a process of n emitted photons by an initial fermion line before taking

part in an arbitrary hard process iM0(pi) = A0(pi)ui. After n soft photon emissions by

the particle i the corresponding matrix element is

iM = A0(pi)
i/pi +m

2(pi · k1)
(−ieγµ1)εµ1

i/pi +m

2(pi · (k1 − k2))
(−ieγµ2)εµ2

. . .
i/pi +m

2(pi · (k1 − k2 · · · − kn))
(−ieγµn)εµnui , (3.7)

where kr (r ∈ {1,2,3, . . . n}) represents the four momentum of the photons. Because of

the soft emissions we have already neglected kr in the numerator and terms of O(k2
r ) in

the denominator. We can easily show, using the Dirac algebra in Eq. (B.1) and the

Dirac equation, that the matrix element factorizes to

iM = iM0(pi)e
n pµ1i

(pi · k1)
εµ1

pµ2i
(pi · (k1 − k2))

εµ2

. . .
pµni

(pi · (k1 − k2 · · · − kn))
εµn . (3.8)

Summing over all n! different permutations of n photon emissions yields [5]

iM = iM0(pi)e
n pµ1i

(pi · k1)
εµ1

pµ2i
(pi · k2)

εµ2 . . .
pµni

(pi · kn)
εµn . (3.9)
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Since we know that only one of the processes will be realized we have to divide Eq. (3.9)

by n! leading to

iM = iM0(pi)
en

n!

l∑
i=1

n∏
r=1

ηi
pi · εr
pi · kr

, (3.10)

where we have generalized our result for different external fermion lines with a factor

ηi = ±1, taking into account if the photon is emitted by a particle or antiparticle.

Before proceeding, let us look at the differential cross section for the emission of one soft

photon. Due to the soft approximation the phase space factorizes, too. After summing

over all photon polarizations and using the completeness relation the differential cross

section is(
dσ

dΩ

)
1γ

=

(
dσ0

dΩ

) ∫
|~k|≤∆E

d3k

(2π)32E
e2

( −p2
a

pa · k
+
−p2

b

pb · k
+

2pa · pb
(pa · k)(pb · k)

)
=:

(
dσ0

dΩ

)
Y ,

(3.11)

where the photon is emitted by either particle a or b. The upper integration limit is

∆E being e.g. the detector resolution. If we consider an amount of n photon emissions

we will get n of such factors where we have to divide by all of the permutations, i.e. n!.

Finally, we get for any number of soft emitted photons(
dσ

dΩ

)
=

(
dσ0

dΩ

) ∞∑
n=0

Y n

n!
=

(
dσ0

dΩ

)
exp (Y ) . (3.12)

The exponent Y is IR divergent which can easily be seen from the integral in Eq. (3.11).

For the compensation we have to include all the virtual corrections up to all orders. In

the soft limit it has been shown that we also get a factorized structure [17]. Altogether

the differential cross section is(
dσ

dΩ

)
=

(
dσ0

dΩ

)
exp (Y + 2X) , (3.13)

where 2X represents the n loop corrections in the soft limit. The exponent represents

the finite probability for the emission of a single soft photon. The whole cross section

does not depend on an infrared cut-off scale µ due to the cancellation of the virtual

and real scale dependent contributions. The Sudakov form factor in the exponential

includes all the potentially large logarithms remaining after the IR cancellation. The

leading contribution is governed by the famous large double logarithms.
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It is worth to mention that this resummation formalism does not hold in the massless

approximation of QED due to additional collinear divergences. The generalization

for QCD is much more complicated and has been done in Ref. [18]. To get the

exponentiation one has to show that the gluon correlation cancels out order by order in

perturbation theory. The generalization for QCD has been done in Ref. [18]. In QCD

this is also referred to as the eikonal approximation and the exponential function is

called the eikonal function.

3.3 Threshold resummation

In the context of threshold resummation we sum potentially large logarithms in the

limit z := M2/s→ 1, where z is the fraction of the invariant mass of the vector boson

and the invariant mass of the two initial state partons before emitting a gluon.

The terms

αns

(
lnm (1− z)

(1− z)

)
+

(3.14)

are resummed in that formalism to get reasonable results near the threshold z → 1.

Here m ≤ 2n− 1. We have already seen such terms in Ch. 2.2 in Eq. (2.70).

Let us recall the hadronic cross section of the Drell-Yan process which we can write in a

double differential form [7]

M2 d2σAB
dM2dp2

T

(τ =
M2

S
) =

∑
ab

1∫
0

1∫
0

dxadxbxafa/A(xa,µ
2)xbfb/B(xb,µ

2)

× zσ̂ab(z,M2,M2/p2
T,M

2/µ2)δ(τ − xaxbz) , (3.15)

where
√
S is the hadronic COM energy, fa/A and fb/B are the PDFs of the two hadrons

A and B, pT the transverse momentum of the two final state uncolored particles and τ

and z are momentum ratios. As we have seen in Ch. 2.2 the partonic cross section σ̂ab

can be computed as a series expansion in αs. We can rewrite the convolution in Eq.

(3.15) using the Mellin transform

F̃ (N) :=

1∫
0

dxxN−1F (x) (3.16)
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as an ordinary product in Mellin space

M2 d2σAB
dM2dp2

T

(N − 1) =
∑
ab

fa/A(N,µ2)fb/B(N,µ2)

× σ̂ab(N,M2,M2/p2
T,M

2/µ2) , (3.17)

where we have transformed xa, xb and z into their Mellin moments. The Mellin

transformed functions are indicated only by the change of the argument to their Mellin

moments N . We already know that the partonic cross section σab can be divergent.

Therefore, we will factorize the cross section into the parton-in-parton distribution

functions and a renormalized finite cross section:

M2 d2σab
dM2dp2

T

(N − 1) =
∑
cd

φc/a(N,µ
2)φd/b(N,µ

2)

× σ̂cd(N,M2,M2/p2
T,M

2/µ2) . (3.18)

Demanding a factorization and renormalization scale independent hadronic cross section

we can derive the DGLAP evolution equation

∂φc/a(N,µ
2)

∂ lnµ2
=
∑
b

Pcb(N,αs(µ
2))φb/a(N,µ

2) (3.19)

for the parton-in-parton distribution functions. We recall that we can compute the AP

splitting functions as a perturbative series. In LO they are given by

P (1)
qq (N) = CF

[
3

2
+

1

N(N + 1)
− 2

N∑
k=1

]
, (3.20)

P (1)
qg (N) =

1

2

[
2 +N +N2

N(N + 1)(N + 2)

]
, (3.21)

P (1)
gq (N) = Cf

[
2 +N +N2

N(N2 − 1)

]
, (3.22)

P (1)
gg (N) = β0 + 2CA

[
1

N(N − 1)
+

1

(N + 1)(N + 2)
−

N∑
k=1

]
(3.23)
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in Mellin space. With the introduction of the so called QCD evolution operator

Eab(N,αs(µ
2,µ2

0)) defined by

∂Eab(N,αs(µ
2,µ2

0))

∂ lnµ2
=
∑
b

Pcb(N,αs(µ
2))Eab(N,αs(µ

2,µ2
0)) , (3.24)

we can write the solution of the AP Eq. (3.19) as

φc/a(N,µ
2) =

∑
b

Ecb(N,µ
2,µ2

0)φb/a(N,µ
2
0) . (3.25)

The evolution operator can be quite complicated depending on the order of the AP

splitting functions. In LO the operator can be written in a closed exponential form.

Our renormalized partonic cross section contains potentially large logarithms transform-

ing in Mellin space to (
lnm (1− z)

(1− z)

)
+

→ lnm+1N + . . . . (3.26)

Near the threshold (N →∞) only the LO term will be important and the off-diagonal

AP splitting functions are suppressed

P (1)
qq (N) = CF

[
3

2
− 2 ln N̄

]
+O

(
1

N

)
, (3.27)

P (1)
qg (N) ∼ 1

2N
, (3.28)

P (1)
gq (N) ∼ CF

N
, (3.29)

P (1)
gg (N) = β0 − 2CA ln N̄ +O

(
1

N

)
(3.30)

and lead to a simplified evolution equation. Here we have defined N̄ = N exp (γE), with

γE being the Euler’s constant. The double differential cross section in Eq. (3.18) can

be safely integrated over the transverse momentum which yields

M2 dσab
dM2

(N − 1) = φa/a(N,µ
2)φb/b(N,µ

2)

× σ̂ab(N,M2,M2/µ2) +O
(

1

N

)
, (3.31)

where we have neglected the parton mixing contributions, so that for the Drell-Yan

process only the quark and antiquark initial states are important. Our partonic cross
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section is completely finite but leads to large logarithms near the threshold. Therefore,

we refactorize our expression in a hard IR safe part and a soft part, which contains the

potentially large logarithms. It has been shown by Sterman et al. that we can achieve a

factorized form [7]

M2 dσab
dM2

(N − 1) = ψa/a(N,M
2)ψb/b(N,M

2)

×Hab(M
2,M2/µ2)Sab(N,M

2/µ2) +O
(

1

N

)
. (3.32)

The hard function H can be safely computed in a perturbative expansion

Hab(M
2,M2/µ2) =

∞∑
n=0

(αs(µ
2))nH

(n)
ab (M2,M2/µ2) . (3.33)

The new parton-in-parton distribution functions are now defined with respect to a

certain fraction of energy instead of a longitudinal momentum fraction. They do not

depend on the arbitrary scale µ and obey the evolution equations

∂ψa/a(N,M
2)

∂ lnM2
= γa(αs(M

2))ψa/a(N,M
2) . (3.34)

Here γa(αs) is the already mentioned anomalous dimension, which can be computed

perturbatively,

γa(αs) =
1

Za

∂Za
∂ lnµ2

=
∑
n

αns γ
(n) (3.35)

and corresponds to the N-independent virtual AP splitting functions in the axial gauge.

The function S refers to the emission of soft gluons with a large angle with respect to

the parent parton. We can solve for σ̂ab using Eqs. (3.31) and (3.32):

σ̂ab(N,M
2,M2/µ2) = Hab(M

2,M2/µ2)
ψa/a(N,M

2)ψb/b(N,M
2)

φa/a(N,µ2)φb/b(N,µ2)
Sab(N,M

2/µ2)

+O
(

1

N

)
. . . . (3.36)

We have achieved a factorization where all the divergences are absorbed in the parton-

in-parton distribution functions and the potentially large logarithms are embedded in

the soft function S.

The procedure of exponentiating S is rather complicated. First we have to solve the
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evolution equations for φa/a and ψa/a, which can be done in the region of the threshold.

In addition, we have to make use of the gauge invariance and the RGE. Afterward, we

can exponentiate the eikonal function and we get

σ̂ab(N,M
2,M2/µ2) = Hab(M

2,M2/µ2) exp (Gab(N,M
2,M2/µ2)) +O

(
1

N

)
. (3.37)

The G function contains finite parts and the large logarithms. It is defined as

Gab(N,M
2,M2/µ2) = ln ∆a(N,M

2,M2/µ2) + ln ∆b(N,M
2,M2/µ2) + ln ∆

(s)
ab (N,M2) ,

(3.38)

where

ln ∆a(N,M
2,M2/µ2) =

1∫
0

dz
nN−1 − 1

1− z

(1−z)2M2∫
µ2

dq2

q2
Aa(αs(q

2)) , (3.39)

ln ∆
(s)
ab (N,M2) =

1∫
0

dz
nN−1 − 1

1− z Dab(αs((1− z)2M2)) . (3.40)

Function A contains the collinear and soft gluon emission processes of the initial state

particles and can be computed perturbatively leading to quadratic logarithms in the

highest power. The function in Eq. (3.37) is similar to the function Y in Eq. (3.12) of

soft photon resummation. Dab contains the large-angle soft-gluon contributions leading

to a single logarithm and being computable with perturbative QCD.

After the integration of the logarithmic functions and a redefinition of the hard function

H, we can write the final solution for the threshold resummation as

σ̂ab(N,M
2,M2/µ2) = Hab(M2,M2/µ2) exp (Gab(N,M2,M2/µ2)) +O

(
1

N

)
. (3.41)

Now the hard function contains all the finite pieces and, because of the redefinition, we

have absorbed the non logarithmic terms.

H(0)
ab (M2,M2/µ2) = H

(0)
ab (M2,M2/µ2) (3.42)

H(1)
ab (M2,M2/µ2) = H

(1)
ab (M2,M2/µ2) +

π2

6
(A(1)

a +A
(1)
b )H

(0)
ab (M2) (3.43)



38 Resummation

The function in the exponent contains only the potentially large logarithmic terms and

takes the form

Gab = Lg
(1)
ab (λ) + g

(2)
ab (λ,M2/µ2) + αsg

(3)
ab (λ,M2/µ2) + . . . , (3.44)

where λ = αsβ0L and L = ln N̄ . The first order term collects the leading logarithms

(LL) and depends only on A
(1)
a , the second term is the next-to-leading logarithm

(NLL) contribution and contains the three functions A
(1)
a , A

(2)
a and D

(1)
ab . Higher order

logarithmic terms are governed by g(i).

To use this formula up to NLL accuracy we have to specify our functions A and D:

2λβ0g
(1)
ab (λ) = (A(1)

a +A
(1)
b )[2λ+ (1− 2λ) ln (1− 2λ)] , (3.45)

2λβ0g
(2)
ab (λ,M2/µ2) = (A(1)

a +A
(1)
b ) ln (1− 2λ) ln

M2

µ2

+ (A(1)
a +A

(1)
b )

β1

β2
0

[2λ+ ln (1− 2λ) +
1

2
ln2 (1− 2λ)]

− (A(2)
a +A

(2)
b )

1

β0
[2λ+ ln (1− 2λ)]

+ (B(1)
a +B

(1)
b +D

(1)
ab ) ln (1− 2λ) . (3.46)

The coefficients are

A(1)
a = 2Ca ,

A(2)
a = 2Ca

[(
67

18
− π2

6

)
CA −

5

9
nf

]
,

D
(1)
ab = 0 , (3.47)

where Ca is Cq = CF and Cg = CA representing the common color factors.

Comparing our partonic cross section with the hard function Hab we get the relations

H(0)
ab (M2,M2/µ2) = σ̂

(0)
ab (M2,M2/µ2) , (3.48)

H(1)
ab (M2,M2/µ2) = σ̂

(0)
ab (M2,M2/µ2)

×
[
A0 + (δP (1)

aa + δP
(1)
bb ) ln

M2

µ2
+
π2

6
(A(1)

a +A
(1)
b )

]
. (3.49)
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The coefficient A0 represents the IR finite part of the renormalized virtual cross section

M(1)M(0)∗ + c.c. = αs

(
4πµ2

M2

)ε
Γ(1− ε)
Γ(1− 2ε)

(A−2

ε2
+
A−1

ε
+A0

)
|M(0)|2 +O(ε) .

(3.50)

The one-loop amplitude of the 2→ 2 process is denoted as M(1) and M(0) is the Born

matrix element. To get the renormalized cross section the MS-scheme has been used.

The term δP
(1)
aa is the coefficient of the δ(1− x) part in the AP splitting function P

(1)
aa .

These formulas can easily be implemented in a program code but before we have to

match the resummed cross section, which is only valid in the soft limit, with our fixed

order computations only being valid far from the threshold. This is accounted by

σ̂ab = σ̂
(res)
ab + σ̂

(f.o)
ab − σ̂(exp)

ab , (3.51)

where σ̂
(exp)
ab represents the overlap of the two contributions. We can obtain the overlap

by expanding the resummed cross section up to the same order as the perturbative

result:

σ̂(exp)(N,M2,M2/µ2) = H̃
(0)
ab (M2,M2/µ2) + αsH̃

(1)
ab − αs

(
2L− ln

M2

µ2

)
∑
c

[
H̃(0)
ac (M2,M2/µ2)P

(1)
cb (N) + H̃

(0)
cb (M2,M2/µ2)P (1)

ca (N)
]

− αsH̃(0)
ab (M2,M2/µ2)

[
L2(A(1)

a +A
(1)
b ) + L(B(1)

a +B
(1)
b )
]

.

(3.52)

To get the result in the ordinary space we have to do the inverse Mellin transform

potentially leading to some complications. For further reading we recommend Refs. [1]

and [20].

3.4 Transverse momentum resummation

If we compute the differential transverse momentum distribution, we will encounter

terms being proportional to

αns

(
1

p2
T

lnm (
M2

p2
T

)

)
+

(3.53)
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and leading to large logarithmic contributions in the limit p2
T → 0. To organize and

resum these terms we follow the approach of Collins, Soper and Sterman in Ref. [7].

For a refactorization it is common to work with the Fourier transform of the partonic

cross section:

M2 dσab
dM2dp2

T

(N) =

∫
d2~b

4π
exp (i~b · ~pT )Wab(N + 1,M2,M2b̄2,M2/µ2) (3.54)

=

∞∫
0

db
b

2
J0(bpT )Wab(N + 1,M2,M2b̄2,M2/µ2) , (3.55)

where b is the impact parameter, b̄ = beγE/2 and J0 is the Bessel function arising

after the integration over the angular distribution. In impact-parameter space we get

singularities for Mb̄→∞:(
1

p2
T

lnm (
M2

p2
T

)

)
+

−→ lnm+1 (M2b̄2) + . . . . (3.56)

In the CSS formalism the cross section can be refactorized and the divergences absorbed

in the parton-in-parton distribution functions Pc/a(x,kT,M
2/k2

T) at fixed transverse

momentum kT. The Fourier transformed cross section can be written as

Wab(N,M
2,M2b̄2,M2/µ2) =

∑
cd

Hcd(M
2,M2/µ2)

× Pc/a(N,b2,M2b̄2)Pd/b(N,b2,M2b̄2)Scd(N,M
2b̄2)

+O
(

1

M2b̄2

)
. (3.57)

The Scd is again the eikonal function containing the soft gluon emission parts at fixed

transverse momentum. The hard function, absorbing the finite terms of the short

distance physics, contains no longer singular terms since it is independent of b. It can

be expressed as usual in a power series of αs:

Hcd(M
2,M2/µ2) =

∞∑
n=0

αnsH
(n)
cd (M2,M2/µ2) . (3.58)
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After solving the evolution equations for P and making use of the exponentiation of the

eikonal Scd we can write

Wab(N,M
2,M2b̄2,M2/µ2) =

∑
cd

Hcd(M
2,M2/µ2)

× Pc/a(N,b2,1)Pd/b(N,b2,1) exp [Gcd(M
2,M2b̄2,M2/µ2)] .

(3.59)

Here Gcd is the Sudakov form factor

Gcd(M
2,M2b̄2,M2/µ2) = −1

2

M2∫
1/b̄2

dq2

q2

[
Ac(αs(q

2)) ln
M2

q2
+Bc(αs(q

2))

]
+ (c↔ d)

(3.60)

We can express the Pb/a functions related to the usual kT integrated parton-in-parton

distribution functions

Pb/a(N,b2,1) =
∑
c

Cbc(N,αs(1/b̄
2))φc/a(N,1/b̄

2) . (3.61)

We can now use the evolution operator in Eq. (3.24) to evolve the parton-in-parton

distribution functions φc/a from the factorization scale to the physical and natural scale

of the process 1/b̄. After applying the inverse Fourier transform we get the partonic

cross section

σ̂(N,M2,M2/p2
T,N

2/µ2) =
∞∫

0

db
b

2
J0(bpT)

∑
cdef

Hcd(M
2,M2/µ2) exp [Gcd(M

2,M2b̄2,M2/µ2)]

× Cce(N,αs(1/b̄2))Cdf (N,αs(1/b̄
2))Eea(N,1/b̄

2,µ2)Efb(N,1/b̄
2,µ2) . (3.62)

The functions A, B in the Sudakov form factor and the coefficient function Cab can be

computed as a power series

Aa(αs) =

∞∑
n=1

αnsA
(n)
a , Ba(αs) =

∞∑
n=1

αnsB
(n)
a ,

Cab(N,αs) = δab +
∞∑
n=1

αnsC
(n)
ab (N) . (3.63)
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The different accuracies for resummation are completely related to a certain order

expansion of the four functions Hab, Aa, Ba and Cab, where for the LL contributions we

need only H
(0)
ab and A

(1)
a . For the NLL terms we need H

(0)
ab , A

(1)
a and C

(1)
ab and so forth.

We can write the Sudakov form factor after solving the integrals in Eq. (3.60) as

Gab(M
2,M2b̄2,M2/µ2 = Lg

(1)
ab (λ) + g

(2)
ab (λ,M2/µ2) + . . . , (3.64)

where λ = αsβ0L and L = lnM2b̄2. The first and the second term describe the LL and

NLL accuracy, respectively. They can be expressed as follows

2λβ0g
(1)
ab (λ) = (A(1)

a +A
(1)
b )[λ+ ln(1− λ)] , (3.65)

2λβ0g
(2)
ab (λ,M2/µ2) = (A(1)

a +A
(1)
b )

[
λ

1− λ + ln(1− λ)

]
ln
M2

µ2

+ (A(1)
a +A

(1)
b )

β1

β2
0

[
λ+ ln (1− λ)

1− λ +
1

2
ln2(1− λ)

]
− (A(2)

a +A
(2)
b )

1

β0

[
λ

1− λ + ln(1− λ)

]
+ (B(1)

a +B
(1)
b ) ln (1− λ) . (3.66)

The A and B functions coincide with the expressions in the threshold resummation Sec.

3.3 in Eq. (3.47). There is a freedom in the definition of the functions H
(1)
ab , C

(1)
ab , and

B
(2)
ab . We follow the CSS formalis where the functions Hab is expressed as

Hab(M
2,M2/µ2) = σ̂

(0)
ab (M2,M2/µ2) (3.67)

and the specific choices of the coefficient functions are [7]

C
(1)
ab (N) = δab

[
Ca
π2

6
+

1

2
A0

]
− P (1),ε

ab (N) , (3.68)

B(2)
a = −2δP (2)

aa + β0

[
2π2

3
Ca +A0

]
. (3.69)

where, similar to the treshold formalism P
(1),ε
ab is the O(ε) term in the AP splitting

kernel expansion and δP
(2)
aa is the two-loop AP splitting function coefficient in front of

δ(1− x).

For the final resummation formula we have to do the inverse transform to switch back to

the physical space and the matching, which works in an analogous way as for threshold
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resummation:

σ̂ab = σ̂
(res)
ab + σ̂

(f.o)
ab + σ̂

(exp)
ab , (3.70)

where the expansion is

σ̂
(exp)
ab (N,M2,M2/p2

T,M
2/µ2) = H

(0)
ab (M2,M2/µ2) + αsH

(1)
ab (M2,M2/µ2)

− αs
(
J − ln

M2

µ2

)∑
c

[
H(0)
ac (M2,M2/µ2)P

(1)
cb (N) + P (1)

ca (N)H
(0)
cb (M2,M2/µ2)

]
+ αs

∑
c

[
H(0)
ac (M2,M2/µ2)C

(1)
cb (N) + C(1)

ca (N)H
(0)
cb (M2,M2/µ2)

]
− αsH(1)

ab (M2,M2/µ2)

[J 2

4
(A(1)

a +A
(1)
b ) +

J 2

2
(B(1)

a +B
(1)
b )

]
, (3.71)

with

J =

∞∫
0

db
b

2
J0(bpT) ln (M2b̄2) (3.72)

containing the pT dependence.



4 Slepton pair production

After studying the basics of SUSY, QCD and resummation we can focus on the slepton

pair production at the LHC. We divide the chapter in three parts. The first one deals

with the computations of the fixed order differential cross sections. In the second one

we discuss the chosen benchmark points (BPs) in the SUSY parameter space and show

the numerical results for total cross sections, invariant mass and transverse momentum

distributions up to NLL accuracy. The third part deals with implications for DM.

A previous study for slepton pair production at hadron colliders has been done in Ref.

[20].

4.1 Analytical results

In this section we present all the necessary fixed order computations to make predictions

for the cross section of slepton pairs at the LHC.

The process pp → l̃l̃∗ can only occur with the annihilation of an incoming quark

and antiquark. For this reason there will be only s-channel diagrams, with different

mediators and their interference terms, contributing to the cross section at LO. Due to

very small Yukawa couplings compared with the gauge couplings we neglect the Higgs

mediated processes and consider only the electroweak gauge bosons γ, Z, and W± in

the propagator. We have to compute the partonic subprocesses

qq̄ → γ, Z → l̃l̃∗ , (4.1)

qq̄′ →W−, W+ → l̃ν̃∗, l̃∗ν̃ (4.2)

for a neutral or a charged final state generally depicted as the Feynman diagram in Fig.

4.1.
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pa

pb

q

p1

p2

Γ2 Γ1

Figure 4.1: Generic Feynman diagram for slepton pair production at LO with a vector
boson V ∈ {γ, Z, W±} as the mediator. The variables pa,b, q and p1,2

describe the four momentum of the incoming quark and antiquark, the
virtual boson and the final state sleptons, respectively.

The computation and result for the general LO squared matrix element of the generic

process can be found in App. B in Eq. (B.18), where we have averaged (summed) over

the incoming (outgoing) spin, polarization and color states.

|MB|2 =
1

12

1

(q2 −m2
V1

)

1

(q2 −m2
V2

)
(C1R2C

∗
3R
∗
4 + C1L2C

∗
3L
∗
4)
[
tu−m2

1m
2
2

]
(4.3)

To compute a certain process we have to exchange the generic coupling constants L and

R with

[
Lqq′γ , Rqq′γ

]
= −efδqq′ , (4.4)[

Lqq′Z , Rqq′Z
]

= (2T 3
f − 2efxW )δqq′ , (4.5)

[Lνν′Z , Rνν′Z ] =

[ −e
2sW cW

, 0

]
δνν′ , (4.6)

[
Lqq′W , Rqq′W

]
=

[ −ef√
2sW

Vqq′ , 0

]
, (4.7)[

Ll̃l̃′γ , Rl̃l̃′γ

]
=: C = −eδl̃l̃′ , (4.8)[

Ll̃l̃′Z , Rl̃l̃′Z
]

=: C =
−e

cW sW
δl̃l̃′

×
[
2xWU

∗
1,2U1,2 − U∗1,1U1,1(1− xW ), 2xWU

∗
2,2U2,2 − U∗2,1U2,1(1− xW )

]
, (4.9)[

Ll̃ν̃′W− , Rl̃ν̃′W−
]

=: C =
−e√
2sW

δl̃l̃′Ui,1 , (4.10)[
Ll̃ν̃′W+ , Rl̃ν̃′W+

]
=: C =

−e√
2sW

δl̃l̃′U
∗
i,1 , (4.11)

where we have used the abbreviations sW := sin θW , cW := cos θW and x2
W := sW for

the electroweak mixing. The CKM and LR-type mixing matrices are represented by Vqq′
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and Uij , ef represents the fractional part of the electrical coupling constant e and T 3
f the

third isospin component of the certain flavour. Afterward, we sum the squared matrix

elements over all the different initial state partons and possible interference diagrams.

Therewith, with the flux of the initial and the phase space of the final state particles we

can write the differential partonic cross section for the individual processes as

dσB =
1

2s
|MB|2dPS(2) , (4.12)

where

dPS(2) =
1

(2π)n−2

dD−1p1

2E1

dD−1p2

2E2
δn(pa + pb − p1 − p2) (4.13)

is the D-dimensional phase space factor which yields

dPS(2) =
1

8πs

(
4π

Q2

)ε Γ(1− ε)
2− ε δ

(
1− Q2

s

)
dQ2 (4.14)

after integrating over D-dimensional spherical coordinates [9]. Since the LO cross

section does not suffer any divergences, we can express the phase space factor in D = 4

dimensions without any concern which yields for the differential cross section

dσB
dt

=
1

16s2
|MB|2 . (4.15)

For the hadronic LO cross section we can now embed Eq. (4.15) in the convolution with

the PDFs in Eq. (2.53), substitute the kinematic variables with the desired ones and inte-

grate them partially for differential distributions or completely for the total cross section.

The NLO corrections of O(αs) are caused by virtual loop diagrams interfered with the

LO diagrams and by real quark and gluon emission. For the virtual corrections we can

use the same formula as in Eq. (4.15) by only exchanging the LO order matrix elements

with the virtual contributions depicted in Fig. 4.2. The four diagrams arise because

of the QCD self energies and vertex correction and their supersymmetric counterparts.

All the computations up to the UV finite1 virtual squared matrix elements have been

presented in App. B.2. The remaining IR divergences will be handled, together with

the real corrections, with the common approach called dipole subtraction later in this

section.

1The physical quantities have been renormalized by using the MS-scheme, where we absorb the
divergent part and some finite contributions proportional to ∆ = 1

ε
− ln 4π + γE .
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To get numerical results we have to exchange the new arising couplings with the

expressions stated in Eqs. (4.16) and (4.17) for QCD and SUSY-QCD:

[
Lqq′g, Rqq′g

]
= −g3T

aδqq′ , (4.16)

[Lq̃iqI g̃, Rq̃iqI g̃] = −g3

√
2T a

[
−ZIi∗, Z(I+3)i∗

]
. (4.17)

Here I and i are flavour indices, a represents a color index and Z mixing matrices. All

the Feynman rules for the MSSM can be found in Ref. [21].
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Γ2 Γ1
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Γ̃2
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k

Γ2 Γ1

Γ̃1

Γ̃2

(b)

q
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p2

pa

pb

pa + k
Γ2 Γ1

Γ̃2

Γ̃1

(c)

q

p1

p2

pa

pb

pa + k
Γ2 Γ1

Γ̃2

Γ̃1

(d)

Figure 4.2: Feynman diagrams for the virtual self energy of quarks in SM-QCD (a) and
SUSY-QCD (b) and for the vertex corrections due to gluon (c) or gluino (d)
exchange. To get the virtual NLO contributions the diagrams have to be
multiplied with the Born diagram depicted in Fig. 4.1.

Examples for the real corrections are shown in Fig. 4.3. The corresponding squared

matrix elements can be found in App. B.3.
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Figure 4.3: Feynman diagrams contributing to the real corrections corresponding to
real gluon emission (a) and real quark emission (b). In addition, one has
to consider real antiquark emission and the arising u- and t-channels which
can be generated by crossing.

The main difference, with respect to the former computation parts, is the larger phase

space factor due to the additional final state parton:

dσr =
1

2s
|Mr|2dPS(3) . (4.18)

According to the Drell-Yan process, discussed in Ch. 2.2, we have to deal with arising IR

divergences. It can be shown that the differential cross section in Eq. (4.18) factorizes

in a soft, collinear and hard real emission part.

dσr = dσ(soft)
r + dσ(coll)

r + dσ(hard)
r (4.19)

Since we have to sum over all degenerated initial and final states, we take into account the

soft and collinear parts to compute the full inclusive NLO slepton pair production cross

section. If we add the hard emission part we get the NLO slepton pair production result

including a hard jet allowing the slepton pair to get a nonzero transverse momentum.

Similar to the virtual contribution of the QCD vertex correction, the former parts are

IR divergent.

The dipole subtraction method

We can get rid of the remaining IR divergences, either with the approach of Phase

Space Slicing or the dipole subtraction method, which is more convenient for a numerical

approach. Additionally, because of the convolution of the partonic cross section and the

PDFs, a numerical approach for the computation of the hadronic cross section is even

indispensable and the analytical integrations in the partonic subprocesses can be very
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painful.

In this subsection we briefly present the basic ideas of the dipole subtraction method

based on Catani and Seymour [22].

We can write the full NLO finite cross section for the production of a slepton pair and

an additional jet as

σNLOab (pa,pb,µ
2) =

∫
m+1

(
dσRab(pa,pb)− dσAab(pa,pb)

)

+

 ∫
m+1

dσAab(pa,pb) +

∫
m

dσVab(pa,pb) +

∫
m

dσCab(pa,pb,µ)

 , (4.20)

where we have introduced a local counterterm dσAab which assures the IR finiteness. The

term dσCab acts like a collinear counterterm. The latter is factorization scale dependent

and has to be chosen with respect to the renormalization scheme used for the PDFs.

For slepton pair production m = 2. The NLO correction terms have to be computed in

D-dimensions for the virtual part and in 4-dimensions for the real emission part. It can

be shown that the counterterm dσA can be written as a color and spin projection of the

Born cross section

dσA =
∑

dipoles

dσB ⊗
(

dVdipole + dV
′

dipole

)
(4.21)

and similar for the collinear contribution. The dipole factors are universal and the

collinear part exhibits the already shown AP splitting functions. To take all diagrams

into account we have to sum over all (m + 1) configurations leading to the given

m− parton state.

Since it is cumbersome to state all the necessary formulas we refer to Ref. [22], where

we can look up the needed dipole terms.

4.2 Numerical results

To get numerical results we have extended a program which was originally written for

gaugino pair production in pp̄- and pp-collisions with NLL accuracy by Jonathan Debove

[1]. We have considered different BPs with respect to the current limits for SUSY

particles. Before we will present the final results, we briefly describe the experimental

constraints leading to our chosen benchmark scenarios.
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4.2.1 Experimental constraints

For charged sleptons the cleanest searches originate from LEP. The mass limits are

mostly quoted for the R-type charged sleptons since they are lighter. The µ̃ pair

production takes place only in the s-channel via γ/Z-exchange. The limits, which are

calculated with the assumption of mass unification, depend on the difference between

the slepton and the lightest neutralino mass, since its dominant decay is µ̃R → µχ̃0
1.

Therefore a mass below 94 GeV is excluded. For the selectron there is in addition

a t-channel neutralino exchange. With a neutralino mass below 85 GeV the R-type

selectron must be heavier than 100 GeV. Independent of the neutralino mass both types

of the selectron have a lower mass limit of 73GeV . Depending on the neutralino mass,

the limit ranges for the lighter τ̃1 between 87 and 93 GeV.

The limits for the neutral sleptons, the sneutrinos, arise mostly from the invisible

Z-width. Therewith we get a lower bound of 45 GeV. Together with the mass unification

it is approximately 94 GeV. All the mentioned results are presented in Ref. [16] with

the corresponding references to the experimental works.

With the end of the 7 and 8 TeV runs of the LHC we can also derive lower mass limits

for the MSSM particles, especially for colored supersymmetric particles. The newest

results have been published by the ATLAS collaboration 2. They have shown, for

scenarios where a R-type slepton directly decays into a charged lepton and a neutralino,

that masses between 90 and 185 GeV are excluded for a neutralino with mχ̃0
1
≈ 20 GeV.

Furthermore, they state that the colored sparticles, the gluinos and squarks, are excluded

for masses smaller than 1 TeV. It is worth to mention that most of the constraints arise

from the assumptions of constrained models like mSUGRA. For less constrained models

the limits are weaker.

The eventual discovery of the Higgs particle and its stated mass of roughly 125 GeV

set further limits for the mSUGRA parameter space and the resulting sparticle mass

spectrum. This is different to the SM where the Higgs mass is considered as a free

parameter. It has been shown by Bayesian analysis and using likelihood analysis methods

that e.g mq̃ > 1.5 TeV and ml̃ > 590 GeV is excluded for the low mass region [23]. This

is not really a problem, but unlikely, because of the large discrepancy of the slepton

and lepton masses which evokes again the fine-tuning problem.

2The public results can be found on the homepage https://twiki.cern.ch/twiki/bin/view/

AtlasPublic/SupersymmetryPublicResults.

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults


4.2 Numerical results 51

4.2.2 Benchmark scenarios

Under consideration of the previously presented current constraints we have chosen

specific BPs. Motivated by the measurements of the anomalous momentum of the

muon (2 − g)µ only BPs with a positive off-diagonal Higgs mixing parameter µ > 0

and tanβ = 10, A0 = 0 GeV or tanβ = 40, A0 = −500 GeV have been used. We have

chosen three BPs lying on the two model lines 10.1, 10.3 and 40.1 [24] depicted in Fig.

4.4. These are widely used for analysis by the SUSY working groups of ATLAS and

CMS experimentalists and have been discussed with the LHC Physics Center at CERN

(LPCC).
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Figure 4.4: The cMSSM planes for (m0, m1/2) for tanβ = 10, µ > 0 and A0 = 0 in (a)
and tan β = 40, µ > 0 and A0 = −500. The brown shaded region represents
benchmark points where the lightest stable particle (LSP) is charged, in the
pink region there is no consistent electroweak vacuum, the green regions are
excluded because of large flavor violation in b → sγ and the gray shaded
regions are favored for the reason of the magnetic moment of the muon
(g−2)µ. There are exclusion lines for charginos (near-horizontal black dashed
lines), for Higgs boson (near-horizontal red dot-dashed lines) (both LEP)
and LHC excluded areas below the purple lines. Our chosen benchmark
points are some of the black points on the black solid lines which are spaced
regularly along these lines. For the cold dark matter density we get correct
results at the dark blue strips in the cMSSM. From Ref. [24].

According to the LPCC numbering scheme, we have chosen the BPs in Tab. 4.1.
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The BP 1 exhibits the lightest supersymmetric particle mass spectrum due to the low

unification masses m0 and m1/2. The squark and gluino masses are slightly lighter than

1 TeV and are therefore close to the exclusion limits. The lightest slepton is τ̃1 with

m ≈ 176 GeV and the LSP is the χ̃0
1 with a mass of roughly 162 GeV. The point lies on

the model line 10.1 with tanβ = 10, A0 = 0 and m0 = 0.25×m1/2.

Table 4.1: Selection of benchmark points on the cMSSM model. We show the mSUGRA
parameters and the resulting averaged slepton, gluino and averaged squark
masses rounded to 5 GeV accuracy.

Point (m1/2,m0) (GeV) A0 (GeV) tanβ 〈ml̃〉 (GeV) 〈mq̃〉 〈mg̃〉 (GeV)

1 (400, 100) 0 10 250 840 935
18 (600, 400) 0 10 525 1275 1370
31 (600, 400) -500 40 500 1275 1365

The second BP 18, lying on the model line 10.3 defined by m0 = 1.5×m1/2, differs

only in the larger unification masses compared to BP 1. In this scenario the lightest

slepton is again the τ̃1 and with its mass of m ≈ 451 GeV, close to the averaged mass

〈ml̃〉 of the sleptons. The gluinos and squarks now weigh more than 1.2 TeV.

For a good comparison the last BP 31 agrees in the unification masses with BP 18, but

differs in the trilinear coupling A0 and tanβ shown in Tab. 4.1. The averaged masses

are approximately the same, but the large A0 and tanβ induce an important mixing

among the third generation sleptons and squarks. Still being the lightest slepton, the

mass of the τ̃1 now differs in more than 200 GeV with respect to the averaged slepton

mass. As in all the chosen BPs the neutralino χ̃0
1 is the LSP. The BP 31 lies on the

model line 40.1 defined by 0.5×m1/2 + 100 GeV shown in Fig. 4.4.

During the rest of this chapter we analyze the total cross sections for the model lines

and use the three presented BPs for the demonstration of resummation effects in the

invariant mass and transverse momentum distributions. The same BPs have been chosen

in Ref. [25] to study the production of gaugino pairs at the LHC.

4.2.3 Total cross sections

For all the presented results we have used the MSTW 2008 LO and NLO set for the

PDFs [14], except for the numerical cross checks with PROSPINO v. 2.1 [26] where we

have used the PDF sets CTEQ 6.1 from the CTEQ collaboration [27], taking into

account the five light flavors and the gluon. We have not used a Gaussian distribution

to simulate small initial transverse momentum of the partons. The top quark mass has
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been set to 173.1 GeV and the masses of the electroweak bosons to mZ = 91.1876 GeV

and mW = 80.403 GeV [16]. The CKM matrix has been set to the identity in flavor

space and we have considered only an LR-type mixing of the heavy third sfermion

generations. The supersymmetric spectra have been created with the software SUSPECT

v. 2.41 [28] which evolves the universal parameters of e.g. mSUGRA at the GUT scale to

the low-energy supersymmetric masses and parameters through renormalization group

running at two-loop level. Additionally we have used the zero-width approximation.

In all computations we have used the same fixed value for the renormalization and

factorization scale µ. We have set it to the average of the final state particle mass,

which we call the central scale, and varied it by a factor of 0.5 and 2 to get a reasonable

scale uncertainty.

Before we have made new predictions for cross sections, we checked the program by

comparing with PROSPINO v. 2.1 up to NLO accuracy. In Tab. 4.2 we present some

numerical cross checks for the total cross sections computed with the program PROSPINO

v. 2.1.

Table 4.2: Numerical comparison with the program PROSPINO v. 2.1 for total cross
sections up to NLO accuracy. The coupling constants have been computed
with the universal value of Gf , the squark mixing has been set to zero and
the scale to the averaged mass of the final state sleptons. All the total cross
sections are shown in fb and have been computed for BP 1 using the PDF
set CTEQ 6.1 [27] of the CTEQ collaboration.

Process LO LOprosp LOdev NLO NLOprosp NLOdev

pp→ ẽLẽ
∗
L 1.508 1.500 0.53% 1.755 1.759 0.57%

pp→ ẽLν̃
∗
L 4.431 4.407 0.45% 5.054 5.058 0.20%

pp→ τ̃1τ̃
∗
2 0.1081 0.1073 0.93% 0.1278 0.1280 0.78%

pp→ τ̃1τ̃
∗
1 11.52 11.58 0.52% 13.95 14.00 0.71%

The squark mixing has been set to zero. We have made sure that we use the same

parameters in the two programs, but there could still be a difference leading to a

harmless discrepancy. The coupling constants have been computed with the universal

value of Gf with respect to PROSPINO v. 2.1. All the results for the total cross sections,

computed at the central scale, differ only in an amount of less than one percent, which

assures correct predictions for our further computations.

We will present all of our total cross section results with two uncertainties. The first

one, already mentioned, is the scale uncertainty due to the varied scale factor and for

the second one we will use a definition made by the MSTW collaboration to take into
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account the different fits for the NLO PDF sets. The PDF error is obtained by the

expressions

(∆σup)2 =

n∑
k=1

{max
(
σ+
k − σ0, σ

−
k − σ0, 0

)
}2 , (4.22)

(∆σdown)2 =

n∑
k=1

{max
(
σ0 − σ+

k , σ0 − σ−k , 0
)
}2 , (4.23)

where σ0 is the cross section using the central PDF set and σ±k are the values resulting

from the ±σ variation along the k-eigenvector of the covariance matrix of the PDF set

[14].

Total cross sections for BP 1, 18 and 31

In Tabs. 4.3 - 4.6 we present the LO, NLO and NLL results for the total cross sections

for the three different BPs and four elected reference processes. All the results are

computed with a hadronic COM energy of
√
S = 8 TeV. In the first, second and third

column we state the BP and the masses of the produced slepton particles. The first

error reflects the scale uncertainty and the second one the PDF error, which is of course

not present in the LO predictions.

Table 4.3: The total cross sections for ẽL pair production at the LHC with a COM
energy of

√
S = 8 TeV in a proton-proton collision. In the columns we present

the BPs, the corresponding slepton masses, the LO cross sections with scale
uncertainty and the NLO and (NLO+NLL) matched resummation results
with additional PDF uncertainty computed with the MSTW 2008 PDF sets
[14].

BP mẽL (GeV) mẽL (GeV) σLO (ab) σNLO (ab) σres (ab)

1 288.1 288.1 1416.7+7.1%
−6.4% 1795.9+2.6% +1.8%

−2.6%−1.1% 1808.9+0.2% +3.2%
−0.4%−1.1%

18 563.4 563.4 43.2+11.3%
−9.7% 52.8+3.6% +3.8%

−3.9%−1.1% 54.1+0.2% +3.6%
−0.6%−1.7%

31 564.0 564.0 48.4+10.0%
−8.4% 52.4+3.6% +3.8%

−3.8%−1.5% 53.7+0.2% +3.9%
−0.6%−1.5%
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Table 4.4: Same as in Tab. 4.3 for selectron-sneutrino pair production.

BP mẽL (GeV) mν̃L (GeV) σLO (ab) σNLO (ab) σres (ab)

1 288.1 277.4 3953.1+7.1%
−6.3% 4949.1+2.6% +2.0%

−2.6%−1.2% 4983.1+0.4% +2.0%
−0.5%−1.2%

18 563.4 558.1 119.7+11.7%
−10.0% 142.4+3.8% +2.5%

−4.1%−1.5% 147.6+0.2% +2.5%
−1.2%−1.6%

31 564.0 558.6 118.8+11.8%
−10.1% 141.2+5.4% +3.6%

−5.8%−2.2% 146.4+0.2% +2.5%
−0.7%−1.5%

Table 4.5: Same as in Tab. 4.3 for τ̃1τ̃
∗
2 pair production.

BP mτ̃1 (GeV) mτ̃2 (GeV) σLO (ab) σNLO (ab) σres (ab)

1 175.7 290.3 100.5+6.0%
−5.4% 129.0+2.4% +1.6%

−2.3%−1.1% 129.5+0.3% +1.7%
−0.5%−1.1%

18 451.4 562.9 0.9811.2%
−9.2% 1.21+3.3% +3.3%

−4.1%−1.7% 1.24+0.8% +3.2%
−0.8%−1.6%

31 296.2 536.9 17.6+9.7%
−8.5% 22.0+3.2% +2.3

−3.2%−1.4% 22.3+0.4% +2.4%
−0.4%−1.3%

Table 4.6: Same as in Tab. 4.3 for τ̃1τ̃
∗
1 pair production except that the total cross

sections are presented in fb.

BP mτ̃1 (GeV) mτ̃1 (GeV) σLO (fb) σNLO (fb) σres (fb)

1 175.7 175.5 10.98+4.0%
−3.9% 14.18+2.1% +1.4%

−1.9%−1.0% 14.19+0.5% +1.5%
−0.7%−1.0%

18 451.4 451.4 0.15010.1%
−8.7% 0.185+3.3% +2.7%

−3.4%−1.3% 0.188+0.0% +2.7%
−0.1%−2.3%

31 296.2 296.2 1.065+7.3%
−6.5% 1.346+2.6% +1.8

−2.7%−1.1% 1.357+0.2% +1.8%
−0.4%−1.1%

We can see, e.g. in Tab. 4.3, that the NLO corrections to the LO cross section mean a

roughly 30% contribution with respect to the LO result. The scale uncertainty is smaller,

since we add one more order in perturbation theory with respect to αS depending on

the renormalization and factorization scale. It has been reduced by roughly a factor of

2-3. The NLL results matched to the NLO cross section mean a change by an amount

of less than 3%. Due to the fact that we sum the series up to all orders in a certain

phase space region the scale error has been reduced tremendously. For resummation, the

error is dominated by the PDF uncertainty and is of similar size or slightly larger than

in the NLO prediction arising from the Mellin transform in the approach of threshold

resummation.

For the selectron and the sneutrino pair production, the cross section decreases by going

from BP 1 to 18, while it is rather the same as in BP 31 due to the roughly identical

averaged sparticle masses. We can see that the cross section decreases by one order of
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magnitude while increasing the mass by a factor of 2. If we consider processes where

slepton mixing effects are taken into account we will see a large difference between BP

18 and 31. We get an increased cross section in Tabs. 4.5 and 4.6 due to the lighter

mass of τ̃1 for BP 31.

Since the τ̃1 is the lightest slepton we will get the largest cross section. The lowest

cross section corresponds to the τ̃1τ̃2 pair production. It can be produced only with the

decay of the neutral Z boson instead of the additional photon channel for the other

neutral final state slepton pairs. The cross section is roughly lowered by a factor of 100

with respect to the τ̃1 pair production. The cross section for selectron sneutrino pair

production is also quite large due to the positive charge in the final state which is easier

to produce in a proton-proton collision.

Total cross sections for model lines 10.1, 10.3 and 40.1

In order to get a larger overview for slepton pair production with respect to the large

parameter space we present the cross sections for the τ̃1 pair production for some points

defined by LPCC numbering scheme lying on the three model lines 10.1, 10.3 and 40.1.

For the computations we have used the same parameters as in the previous section. The

results for the different model lines are presented in Figs. 4.5 - 4.7.

In Fig. 4.5 see that for the lightest mass, which corresponds to our BP 1, we get the

largest cross section. There is an exponential dependence on the mass which shows

the linear behavior. The mass mτ̃ increases from 180 to 330 GeV while decreasing the

cross section by almost two orders of magnitude. In addition, the impact of the NLO

corrections to the LO cross section is clearly visible. The NLO line is very close to

the NLL line and lies in the PDF uncertainty band of the NLL cross section. The

main advantage of the resummed cross section is its reduced scale dependence to make

more precise predictions with respect to the artificial and arbitrary renormalization and

factorization scales. In Figs. 4.6 and 4.7 we see exactly the same behavior.
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Figure 4.5: The total cross section at LO (dotted), NLO (dashed) and NLO+NLL (full)
with its scale (green) and PDF (yellow) uncertainty for the production of
a τ̃∗1 τ̃1 pair at the LHC as a function of their degenerate mass mτ̃1 with√
S = 8 TeV for BPs 1-7 of the LPCC numbering scheme lying on model

line 10.1.
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Figure 4.6: Same as in Fig. 4.5 for BPs 15-20.
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Figure 4.7: Same as in Fig. 4.5 for BPs 27-33.

4.2.4 Invariant mass distributions

In this section we present our results for the invariant mass distributions which are

widely used by experimentalists to determine the properties of new particles. We have

used the same PDF sets and parameters as in the total cross section part. The invariant

mass distributions for a L-type selectron pair is shown in Fig. 4.8 for BP 1 and in 4.9

for BP 31. We have included the distributions for LO, NLO and resummation, where

we have computed the latter with the threshold formalism and matched to the NLO.

For the first BP in Fig. 4.8 we see that the invariant mass distributions start at the

threshold of the partonic COM energy
√
s = 2mẽL and rise very rapidly up to a peak at

roughly 750 GeV. Afterward, they fall very steeply due to the s-channel propagator and

less parton luminosity with higher momenta. In the region close to the peak we see large

contributions (up to 30 %) arising from the NLO corrections to the Born approximation.

The resummed correction with respect to NLO is smaller than 5 %. Much closer to the

production threshold, resummation corrections are less contributing and limited up to 1

% due to the less emitted soft gluons in that region. At higher invariant masses the

distribution goes asymptotically to zero due to the restricted momentum of the initial

state partons. In addition, we show the uncertainties arising from the scale variation

and the different PDF fits. We can see that the scale uncertainty becomes smaller in

the large-M region, where threshold resummation contributions are more effective. The
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distributions in Fig 4.9 for BP 31 show up a similar behavior as the previous one except

a shifted production threshold and a lowered maximum due to the larger masses. This

effects also slightly larger corrections arising from resummation since we come closer to

the hadronic threshold.
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Figure 4.8: The invariant mass distributions at LO (dotted), NLO (dashed) and
NLO+NLL (full) with its scale (green) and PDF (yellow) uncertainty for
the production of a ẽ∗ẽL pair at the LHC with

√
S = 8 TeV and using BP 1.
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Figure 4.9: Same as in Fig. 4.8 for BP 31.
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Figure 4.10: The invariant mass distributions at LO (dotted), NLO (dashed) and
NLO+NLL (full) for the production of a τ̃∗1 τ̃

∗
1 pair at the LHC with√
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Figure 4.11: The K-factors as defined in Eq. (4.24) for the invariant mass distribution
presented in Fig. 4.10. We show the relevance of the NLO-QCD, NLO
including SUSY QCD and resummation (NLL + NLO) corrections.

To study the NLO and resummation effects contributing to the invariant mass

distributions we show the K-factor distribution in Fig. 4.11 defined as

Ki =
dσi/dM

dσLO/dM
(4.24)

for τ̃1 pair production shown in Fig. 4.10. In Eq. (4.24) i labels the NLO-QCD, NLO

and threshold resummation results, where NLO includes also the SUSY-QCD induced

effects. We see that the threshold resummation effects are less important in the small-M

region since it is far from the hadronic threshold energy. Close to the threshold, for

large invariant masses, the impact of resummation on the K-factor is quite large, as

expected. In the small-M region the NLO K-factor is dominated by the QCD part,

whereby the contributions due to SUSY QCD are more important in the intermediate-M

region arising from the gluino vertex correction and in the large-M region starting from

the production threshold for squark pairs. Similar results can be found in Ref. [20] for√
S = 14 TeV.
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4.2.5 Transverse momentum distributions

Finally, we present the transverse momentum distributions which show the tremendous

impact and the necessity for transverse momentum resummation close to the zero trans-

verse momentum limit. If we write the expression for the NLO transverse momentum

distribution we would see that it diverges for pT → 0 and leads in addition to large

logarithmic contributions shown in the transverse momentum resummation section.

Therefore it is indispensable that we organize and sum the logarithmic contributions

restoring the convergence properties of the perturbative series and leading to reliable

results in the low-pT region.

In Figs. 4.12 - 4.14 we show the transverse momentum distributions for the production

of a τ̃∗1 τ̃1, τ̃∗1 τ̃2 and ẽ∗Lν̃L pairs, respectively. It is worth to mention that for LO the

result would lead to a δ-distribution due to trivial momentum conservation conditions.

The NLO and resummation predictions fall steeply in the intermediate pT-region and

go to zero for pT due to the restricted energy of the initial state particles. In the low-pT

region we see the expected results of the divergent NLO and convergent resummation

predictions with a finite peak.
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Figure 4.12: The transverse momentum distribution for NLO (dashed) and NLO+NLL
(full) with its scale uncertainties (green and yellow) for the production of a
τ̃∗1 τ̃1 pair at the LHC with
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S = 8 TeV and BP 31.



4.2 Numerical results 63

0.0e+00

5.0e-06

1.0e-05

1.5e-05

2.0e-05

2.5e-05

3.0e-05

3.5e-05

4.0e-05

 0  20  40  60  80  100  120

d
σ

/d
p

T
 (

fb
/G

e
V

)

pT (GeV)

Scale unc. (NLO)
Scale unc. (NLO + NLL)

NLL + NLO
NLO

Figure 4.13: Same as in Fig. 4.12 for the production of a τ̃∗1 τ̃2 pair.

0.0e+00

1.0e-03

2.0e-03

3.0e-03

4.0e-03

5.0e-03

 0  20  40  60  80  100  120

d
σ

/d
p

T
 (

fb
/G

e
V

)

pT (GeV)

Scale unc. (NLO)
Scale unc. (NLO + NLL)

NLL + NLO
NLO

Figure 4.14: Same as in Fig. 4.12 for the production of a ẽ∗Lν̃L pair.

The reason for the low scale dependence of the resummation predictions are basically

the same as in the previous parts. They are especially reduced in the kinematic region

pT → 0, where we sum all the large logarithms in the transverse momentum resummation

formalism. In the large-pT region resummation becomes less important and the scale
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uncertainty gets close to the NLO one. The PDF uncertainties have been neglected.

They lead to an approximately fixed uncertainty of 5% for NLO and resummation

predictions.
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4.3 Implications for dark matter

In modern astrophysics and particle physics DM has become a paradigm. Its existence

is widely accepted and some of its properties are well known. We know that the identity

of DM is not completely unconstrained. It must be massive, act via gravitational force

and therefore give an explanation for the trajectories of the objects in the universe. Of

course it must be “dark”, which means that it must be electrically neutral and should

have less or no interaction to ordinary matter. Due to the anisotropy of the cosmic

microwave background we know that it must be non-baryonic. In addition it must be

cold in order to give correct structure formation. Finally every possible DM candidate

must be stable or at least long lived to give an explanation for the relic abundance of

ΩDM = 0.23. [29]

The only stable “massive” neutral particle in the SM is the neutrino. Since the discovery

of neutrino oscillation, it also has a small rest mass, but it is too small to be slowed

down by gravitation so that it cannot form cold dark matter. Thus the neutrino can

only be a constituent of hot DM. Several models BSM have been proposed, e.g forth

generation neutrinos, axions or new weakly interacting massive particles (WIMPS).

The latter can be found in SUSY fulfilling all the mentioned constraints for DM. In

the constrained MSSM (cMSSM), or mSUGRA, the only still allowed possibility is

the neutralino as the LSP, which gives a promising DM candidate. Nevertheless, with

the inclusion of neutrino masses in models also beyond the MSSM its supersymmetric

partner, the sneutrino, can be the LSP and gives a reasonable DM candidate with all

its properties.

In this section we investigate the sneutrino as a possible DM candidate with models

beyond the cMSSM through the inclusion of R-type sneutrinos. First, we will briefly

study the possibility for sneutrinos being the LSP. Then we will state the results for

recent constraints of its properties through the approach of direct and indirect detection.

Afterward, we will focus on an analysis type, called the monojet analysis, which is

widely used to constrain parameters for models BSM at hadron colliders, especially for

DM candidates.

4.3.1 Sneutrino as a dark matter candidate

The sneutrino as the LSP and therefore being a possible explanation for DM has been

investigated in the past in many different works [30]. First of all it is not a priori

clear which particle will be the LSP in the cMSSM. It has been shown, using recent

experimental constraints, that the sneutrino cannot be the LSP in the cMSSM. The
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mass limits are set by searches for SUSY at colliders and for sneutrinos lighter than

mZ/2 by the invisible Z-width [31]

∆ΓZ =
Γν
2

[
1−

(
2mν̃

mZ

)2
]3/2

θ(MZ − 2mν̃) < 2 MeV , (4.25)

where Γν = 167 MeV is the invisible Z-boson width for the decay into one neutrino

species. This leads to a lower mass limit for the MSSM sneutrino of 43.7 GeV for one or

44.7 GeV for three sneutrinos degenerate in mass.

The upper mass bounds usually arise from collider experiments through non-observation

of their corresponding charged sleptons. Being the LSP, it must fulfill

mν̃ < mẽR and mν̃ < mχ̃1
0

. (4.26)

With the knowledge of the current mass constraints for the charged sleptons and the

neutralino, the allowed mSUGRA parameter space, that has been computed, yielded to

the upper limit of

mLSP
ν̃ < 44.2 GeV . (4.27)

This result from Ref. [32] is inconsistent with three degenerate sneutrinos and leaves

a rather small parameter space for the sneutrino as the LSP. In addition it has been

shown that in this small parameter space the amount of the relic density cannot be

explained [30].

With the extension of the MSSM, including right handed neutrinos and therewith their

R-type superpartners, we enlarge the parameter space which opens new possibilities

for the sneutrino being the LSP and a good DM candidate. Many recent searches,

with models like NMSSM, SUSY-LR, seesaw and inverse seesaw mechanism and special

breaking models with the inclusion of Dirac mass terms, have been made, all leading to

reasonable values for sneutrino DM. Let us focus on a class of models with an extended

superpotential by right handed superfields N̂ I , containing sterile R-type sneutrinos, one

for each family I. It follows

W = εij

(
µĤ1

i Ĥ
2
i − Y IJ

l Ĥ1
i L̂

I
j R̂

J + Y IJ
ν Ĥ2

i L̂
I
j N̂

J
)

, (4.28)

where Y IJν,l are Yukawa coupling matrices in flavor space chosen to be real and diagonal.

Y II
ν determines the Dirac type neutrino masses mI

D = v2Y
II
ν , where v2 is the vev of
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Ĥ2
i . Of course the SUSY-breaking potential, including additional mass terms for the

superpartners, changes as well to

Vsoft =
(
M2
L

)IJ
L̃I∗i L̃

J
i +

(
M2
N

)IJ
Ñ I∗ÑJ

−
[
εij

(
ΛIJl H

1
i L̃

J
i R̃

J + ΛIJν H
2
i L̃

J
i Ñ

J
)

+ h.c.
]

. (4.29)

With Eqs. (4.28) and (4.29) we get the sneutrino mass potential, which can be written

in a compact form, using the definition of the vector Φ† = (ν̃L, Ñ
∗):

Vmass =
1

2
Φ†LRM

2
LRΦLR . (4.30)

By neglecting the small Dirac masses mD we get for the squared mass matrix

M2
LR =

(
m2
L + 1

2m
2
Z cos 2β F 2

F 2 m2
N

)
, (4.31)

where

F 2 = vΛν sinβ (4.32)

and v2 = v2
1 + v2

2 = 246 GeV, tanβ = v1/v2 and Λν =: 1/
√

2Aν̃ is a trilinear coupling.

After diagonalizing and redefining the fields we will get the masses for the two sneutrino

mass eigenstates

m2
ν̃1,2 =

1

2

(
m2

+ ±
√
m4
− + 2A2

ν̃v
2 sin2 β

)
, (4.33)

where m2
± := m2

L̃
±m2

Ñ
+ m2

Z/2. By convention it has been chosen that mν̃1 < mν̃2 .

Since mÑ is a new free parameter, independent of the trilinear coupling or other mass

parameters, we are allowed to vary it freely. Therefore, we can achieve a large mixing

and a reduction of the lighter sneutrino mass just by changing the parameter mÑ and

without varying the trilinear coupling. For mÑ � mL̃ we can avoid the collider limits

and the only constraints arise from the invisible Z-width. The eigenstates can be written

in a similar way as for the third generation charged sleptons with the introduction of a

mixing angle.(
ν̃1

ν̃2

)
=

(
cos θν̃ − sin θν̃

sin θν̃ cos θν̃

) (
ν̃R

ν̃L

)
, sin2 θν̃ =

√
2Aν̃v sinβ

mν̃1 −mν̃2

. (4.34)
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The R-type sneutrino is sterile, which means that it only interacts with the Higgs field.

The L-type field is multiplied by a factor sin θ and leads to a variation of the interaction

Lagrangian

Lν̃1ν̃1Z → sin2 θν̃Lν̃Lν̃LZ (4.35)

followed by a modified contribution to the invisible Z-width

∆ΓZ = sin4 θν̃
Γν
2

[
1−

(
2mν̃

mZ

)2
]3/2

θ(MZ − 2mν̃) < 2 MeV . (4.36)

Therewith, sneutrino masses of O(1 GeV) are possible, whereby the mixing angle must

be small, which means the sneutrino is mostly R-type and possesses only a small fraction

of the active component. In Ref. [33] a full analysis of the physical parameter space, i.e.

the sneutrino mass mν̃1 and the mixing angle θν̃1 , has been done with respect to the

invisible Z-width constraints, recent Higgs and SUSY mass limits, DM constraints from

the relic abundance as well as from direct and indirect detection experiments. It has

been found that the sneutrino, as a DM candidate fulfilling all the limits, is viable in

the parameter regions

1 GeV ≤ mν̃1 ≤ 8 GeV and 0.1 ≤ sin θν̃ ≤ 0.4 . (4.37)

In addition the cascade decay of the squarks and gluinos, decaying into neutralinos Ñ1,2

and then invisibly into a ν̃1ν pair has been studied [34]. They have also investigated

the dominant decay of a chargino into a charged lepton and the sneutrino with recent

LHC results, supporting the possibility of light sneutrino DM below 10 GeV.

An analysis method which has not been made so far in this context is the monojet

analysis.

4.3.2 The monojet analysis

There are many different ways to constrain the parameter space for DM candidates in

different models. In Fig. 4.15 we have sketched the different possibilities to look for DM.

The up going arrow indicates the direct search via WIMP-Nucleon scattering which is

done, e.g. by the XENON experiment [35]. In backward direction we have the indirect

DM search investigating DM annihilation, e.g. with the PAMELA satellite. Collider

searches are done in forward direction, where we try to generate DM particles through

the collision of SM particles.
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Nevertheless, we get a problem with this kind of detection form since we know that the

DM particle is electrically neutral and only weakly interacting. We cannot measure it

with our detectors. What we need is an additional electrically interacting particle, like

a photon (monophoton) or an emitted parton transforming to a jet via hadronization

(monojet). We concentrate on the latter, where we measure a jet with some transverse

momentum recoiling against “nothing”, potentially DM.

SM

SM

X

X

Direct search

Indirect search

Collider search

Figure 4.15: Sketch of different detection methods for dark matter. The time direction
is indicated by the outer arrows.

The main idea is rather simple. First we have to estimate the SM background leading

to monojet events, basically provided by the decay of the Z-boson into two neutrinos

or the decay of a W-boson into an undetected charged lepton and neutrino. After

computing the SM predictions we compare the results with the experimental data for

monojet events. The discrepancy is an open slot for new weakly interacting particles

and perhaps a DM candidate. Therewith we can get an upper bound for DM creation

cross section at the LHC, leading to limits for our parameterspace. Practically it is not

that simple.

For our analysis we will focus on the results for a monojet analysis made by CMS

[36] with an integrated luminosity of L = 5.0 fb−1 and a hadronic COM energy of√
S = 7 TeV. The data has been recorded by using a trigger, which requires an event

including a jet with a certain transverse momentum and missing energy. Using Monte

Carlo event generators they have produced DM signal samples with different contact

interactions and found some good values for the triggers. The missing energy was

set to /ET > 350 GeV and the jet with the highest transverse momentum requiring

pT > 110 GeV and η(j1) < 2.4. Events with more than two jets, where pT(j2) > 30GeV

have been discarded. If the azimuth angle between the highest and the second highest

pT jet is ∆φ(j1,j2) < 2.5, a second jet will be allowed. For reducing background events
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originated by Z and W production and top quark decays with isolated muons or electrons

with pT > 10 GeV are rejected. In addition, they made an analysis with /ET > 250, 300

and 400 GeV. The background samples are also generated by Monte Carlo programs.

Here they have used MADGRAPH v. 5 [37] interfaced to PYTHIA [38] for generating parton

showers. For a more detailed view we recommend Ref. [36]. The summarized results

for the upper limit in the non-SM cross sections are shown in Tab. 4.7.

Table 4.7: Summarized results from Ref. [36] showing the estimated SM background
events, the observed data and the observed upper limits for non-SM events
corresponding to an integrated luminosity of 5.0 fb−1 and a COM energy of
7 TeV. The uncertainties include statistical and systematical terms. In the
last row the limit is determined with a confidence level of 95 %. The method
which has been used for the errors is the so called CLS-method.

/ET (GeV) ≥ 250 ≥ 300 ≥ 350 ≥ 400

Events in SM 7842± 367 2757± 167 1225± 101 573± 65
Events in data 7584 2774 1142 522
Observed upper limits 600 368 158 95
Observed upper σtot (fb) 120 73.6 31.6 19

For our analysis we have computed the cross section for the production of one hard

jet combined with two light sneutrinos. Due to our assumption of massless partons we

get /ET ≈ /pT
. We have set the lower limit of the pT integration to the values of /ET

stated in Tab. 4.7. Instead of using the zero-width approximation we have implemented

the width of the Z-boson ΓZ = 2.4952 GeV [16]. The central scale value has been used.

All the other parameters are the same as in the previous sections. In Figs. 4.16 - 4.19

we show different contour plots for the physical parameter space mν̃1 and sin θν̃ leading

to different total cross sections.
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Figure 4.16: Contour plot for the 2-dimensional parameter space (mν̃1 , sin θ). The color
represents the total cross section value in fb. We have used the central
scale value, a COM energy of 7 TeV and the MSTW@NLO 2008 PDF set.
For the transverse momentum we require pT > 350 GeV.
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Figure 4.17: Close-up of Fig. 4.16 showing the allowed parameter space for cold sneutrino
DM.
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Figure 4.18: Same parameters as in Fig. 4.16, except pT > 250 GeV.
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Figure 4.19: Close-up of Fig. 4.18 showing the allowed parameter space for cold sneutrino
DM.

In Fig. 4.17 we see the relevant paramter space for cold sneutrino DM. As expected

the cross section increases with the mass decreasing. The cross section strongly depends
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on the mixing angle since it goes with the fourth power due to the modified interaction

Lagrangian. With the largest allowed value for the mixing angle and a mass of roughly

1 GeV we get a cross section in the region of 0.3 fb. Comparing this with the upper

bound of 31.6 fb stated in Tab. 4.7, the difference is given by a factor of 100. Even with

the already excluded regions in the parameter space, the cross sections shown in Fig.

4.16 are still three times too large. Different pT-cuts show similar results, as can be

seen in Figs. 4.18 and 4.19. If we increase the cut by a factor of 1.4, the cross section

will decrease by a factor of 0.3. This seems to be reasonable with respect to the steep

increasing and after the maximum exponentially decreasing pT-distributions.

For the whole parameter space the cross section is smaller than the given upper limit.

Nowadays, it is impossible to constrain the parameters. Nevertheless, we are looking

forward to new monojet data of the finished 8 TeV and the following 14 TeV runs of the

LHC. Until now ATLAS has achieved an integrated luminosity of roughly 20 fb−1 3. For

the 14 TeV run we expect an integrated luminosity of O(100 fb−1). This will lead to a

reduced statistical error and therefore a smaller open “slot” for non-SM events. We are

confident that we will be able to set constraints to the sneutrino DM parameter space

soon.

3The current results can be found on https://twiki.cern.ch/twiki/bin/view/AtlasPublic/

LuminosityPublicResults#2012_pp_Collisions

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults#2012_pp_Collisions
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults#2012_pp_Collisions


5 Conclusion and outlook

In this work we have presented slepton pair production at the LHC including resumma-

tion techniques apart from the usual fixed order computations. In addition, we have

investigated the sneutrino as a possible candidate for DM.

Firstly, we have discussed the important basics of SUSY, secondly we have studied the

theoretical background to apply perturbative QCD techniques to slepton pair production

in proton-proton collisions. This has been followed by the presentation of the threshold

and transverse momentum formalism for summing potentially large logarithms arising

in the NLO real corrections.

Before we have made predictions for cross sections, invariant mass and transverse mo-

mentum distributions, we have discussed the experimental constraints setting exclusion

limits for supersymmetric particles. We have seen that until now charged sleptons

with a mass of O(100 GeV) are still compatible with the experimental data of the

LHC. The crucial factor for the choice of our used BPs has been given by the mass

limits on squarks and gluinos which must be roughly of the order O(1 TeV). With the

eventual discovery of the Higgs there are even stronger constraints, especially for the

mass spectrum constrained MSSM.

The largest cross section has arisen from the τ̃1-pair production since it is the lightest

in the considered benchmark scenarios. Due to the resummation approach the scale

uncertainty has been reduced by at least a factor of 4 up to roughly a factor of 8. In

the invariant mass distributions it has been shown that resummation becomes more

important in the high invariant mass region, as expected. For the transverse momentum

distribution the resummation formalism assures the convergence in the low-pT region.

Due to the experimental constraints, given by LHC and the invisible Z-width, it is

no longer possible for the sneutrino to be the LSP in mSUGRA models. We have

investigated the sneutrino as a DM candidate by adding a sterile R-type sneutrino field.

Former searches have shown that a scenario with sneutrino DM is possible in the param-

eter space 1 GeV ≤ mν̃1 ≤ 8 GeV and 0.1 ≤ sin θν̃ ≤ 0.4. Applying monojet results of

the LHC for a luminosity of 5 fb and a COM energy of 7 TeV it was not possible to set
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further limits on the two-dimensional, of the other parameters of mSUGRA independent,

parameter space. We are still a factor of roughly 100 away from constraints with a

monojet analysis apart from the limits due to direct detection, the relic abundance and

cascade decay. Nevertheless, we look forward to the next results of the recently finished

8 TeV run and we are very confident that we can set new boundaries on the parameters

at least after the 14 TeV because of the larger luminosity.

To enlarge the underlying symmetry and to do further phenomenology with additional

models the part of gaugino pair production made by Jonathan Debove and the slepton

pair production will be combined with the recently finished work of David R. Lamprea

presented in Ref. [39] who has investigated resummation predictions for new electroweak

gauge bosons. This opens the field of SUSY-LR models which obey a large symmetry

and could be very successful, e.g. for further sneutrino DM phenomenology. Finally the

program code will be published to get additional advises and to allow particle physicists

to use further tools for comparison with experimental data.



A Feynman rules

During the computations we will use the following Feynman rules:

ǫa∗µ (k, λ) outgoing gluon

ǫaµ(k, λ) incoming gluon

v(p, s, c) outgoing antiquark

ū(p, s, c) outgoing quark

v̄(p, s, c) incoming antiquark

u(p, s, c) incoming quark

i
k2−m2

q̃

δcacb squark propagator

−i /k
k2−m2

g̃

δab gluino propagator

−i g
µν

k2 δab gluon propagator

−i gµν

q2−m2
V

generic vector boson propagator

i /p

p2 δcacb
massless quark propagator

generic sfermion-sfermion-vector coupling:

pb

µ

pa

iC (pa − pb)µ

generic fermion-fermion-vector coupling:

v̄cb

µ

uca

iγµ (LPL +RPR) δcacb

fermion-fermion-gluon coupling:

v̄cb

µ, a

uca

−igsγµ
λa

2

generic quark-squark-gluino coupling:

q̃cb

a

uca

i (LPL +RPR)
λa

2

Figure A.1: Feynman rules for LO and NLO slepton pair production.



B Feynman amplitudes

In this chapter we will present the necessary LO and NLO unpolarized Feynman

amplitudes for slepton pair production at hadron colliders. During all the computations

the initial state particles are considered as massless. To evaluate the arising traces the

computer program FORM has been used.

The following relations are useful for simplifications:

{γµ, γν} = 2gµ,ν , (B.1)

gµµ = D , (B.2)

γµγµ = D , (B.3)

γµ/aγ
µ = (2−D)/a , (B.4)

γµ/a/bγ
µ = 4a · b+ (D − 4)/a/b , (B.5)

γµ/a/b/cγ
µ = −2/c/b/a− (D − 4)/a/b/c , (B.6)

/aγµ/a = 2aµ/a− γµa2 , (B.7)

/aγµ/b = −/bγµ/a+ 2aµ/b + 2bµ/a− 2a · bγµ , (B.8)

/pu = ū/p = 0 , (B.9)

/pv = v̄/p = 0 . (B.10)

To get shorter expressions we make redefinitions of the generic couplings

Γvqq
µ = γµ (LPL +RPR) =: γµΓ , (B.11)

Γvslsl
µ = C(p1 − p2)µ =: (p1 − p2)µΓ (B.12)

and for the hermitean conjugate couplings

(Γvqq
µ )† = (RPL + LPR) γµ =: Γ̄γµ , (B.13)

(Γvslsl
µ )† = C∗(p1 − p2)µ =: (p1 − p2)µΓ̄ . (B.14)
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Disregarding the different coupling constants and mediator masses we can compute all

the diagrams with a general mediator V and its mass mV .

B.1 Leading-order process

The only contributing diagram to the Born cross section is depicted in Fig. B.1.

pa

pb

q

p1

p2

Γ2 Γ1

Figure B.1: Generic Feynman diagram for slepton pair production at LO.

With respect to the Feynman rules of App. A the matrix element can be written as

iMB =
−igµν

q2 −m2
V1

iC1(p1 − p2)µ [v̄biγν (L2PL +R2PR)ua] δcacb . (B.15)

For the unpolarized averaged Feynman amplitude we get

|MB|2 =MBM∗B =
|fc|2
4 · 9

1

(q2 −m2
V1

)

1

(q2 −m2
V2

)
(B.16)

Γ1Γ̄3(p1 − p2)µ(p1 − p2)ν Tr
[
/pbγµΓ2Γ̄4/paγν

]
,

where |fc|2 represents the color factor

|fc|2 =
∑
ca,cb

δcacb = 3 . (B.17)

The factors 4 and 9 in the denominator arise due to the spin and color averaging,

respectively.

After evaluating the trace and using the common Mandelstam variables our result finally

is

|MB|2 =
1

12

1

(q2 −m2
V1

)

1

(q2 −m2
V2

)
(C1R2C

∗
3R
∗
4 + C1L2C

∗
3L
∗
4)
[
tu−m2

1m
2
2

]
. (B.18)
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B.2 Virtual corrections

In this section we compute corrections of the order O(αsα) to the Born cross section.

Therefore, we have to take into account contributions of the SM-QCD diagrams for

the virtual self energy of the quark and antiquark and the vertex corrections with an

internal gluon. In addition, we have to compute the MSSM-QCD corrections which

correspond here to the squark self enery and the vertex correction with an internal

gluino. The diagrams will be interfered with the Born matrix element M∗B.

B.2.1 The quark self energy

We compute the Feynman diagram in Fig. B.2 using the approach of dimensional regu-

larization (DR). To preserve a dimensionless coupling we introduce the renormalization

scale µr. To get a common expression for the tensor integrals, we use the reduction

formalism discussed in Ref. [41].

pb

q

p1

p2

pa
k

Γ2 Γ1

Γ̃1

Γ̃2

Figure B.2: Feynman diagram for the self energy of an external quark. In addition one
has to take into account the self energy of the antiquark b leading to a
similar Feynman amplitude.

The matrix element can be written as

iM = µ4−D
r g2

s

gµν
q2 −m2

V1

Γ1(p1 − p2)µ
1

p2
a

δcacbCf

∫
dDk

(2π)D

[
v̄bγνΓ2/paγρ

(
/k + /pa

)
γρua

]
k2 (pa + k)2 (B.19)

=: µ4−Dg2
s

gµν
q2 −m2

V1

Γ1(p1 − p2)µ
1

p2
a

δcacbCf

[
v̄bγνΓ2/paΣ(pa)ua

]
. (B.20)

Σ(pa) contains the divergent tensor integral and can be expressed in terms of scalar
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integrals:

Σ(pa) := µ4−D
r g2

s

∫
dDk

(2π)D
γρ

/k + /pa
k2 (pa + k)2γ

ρ (B.21)

(B.4)
= −i

D − 2

(4π)2

(
γµB

µ + /paB0

)
(B.22)

= −i
D − 2

(4π)2 /pa
(
B1(p2

a,0,0) +B0(p2
a,0,0)

)
(B.23)

= −i
D − 2

(4π)2 /pa
1

2
B0(p2

a,0,0) . (B.24)

Now we can rewrite the squared matrix element in terms of the LO Feynman amplitude

MM∗B =
1

(4π)2
|MB|2Cfg2

s

D − 2

2
B0(p2

a,0,0) . (B.25)

Since p2
a = m2

a = 0 all the arguments of the scalar B function are zero. It has been

shown that this integral does not contribute [40].

B.2.2 SUSY self energy for quarks

For the SUSY quark self energy diagrams, one of them is shown in Fig. B.3, the

computation is similar to the previous one for the squark self energy.

pb

q

p1

p2

pa
k

Γ2 Γ1

Γ̃1

Γ̃2

Figure B.3: Feynman diagram for the SUSY quark self energy.

With our Feynman rules we can write the matrix element as

iM =
gµν

q2 −m2
V1

C1(p1 − p2)µ
1

p2
a

δcacbCf

µ4−D
r

∫
dDk

(2π)D

[
v̄bγνΓ2/paΓ̃1 (/k +mg̃) Γ̃2ua

]
(
k2 −m2

g̃

)(
(pa + k)2 −m2

q̃

) . (B.26)
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We can define

Σ := µ4−D
r

∫
dDk

(2π)D
/k +mg̃(

k2 −m2
g̃

)(
(pa + k)2 −m2

q̃

) (B.27)

=
i

4π2
(γµB

µ +mg̃B0) =
i

4π2

(
/paB1 +mg̃B0

)
(B.28)

containing the divergent scalar integrals. If we compute the squared matrix element,

only the term proportional to B1 will contribute. The term proportional to B0 will be

zero because of an odd amount of γ matrices. After evaluating the resulting traces in

D-dimensions we get the squared Feynman amplitude

MM∗B =
Cf

(4π)2
|MB|2(L̃1R̃∗2 + R̃1L̃∗2)B1(p2

a,m
2
g̃,m

2
q̃) , (B.29)

where we have used the common color factor

Cf = (T aT a) =
4

3
. (B.30)

To get the Feynman amplitude for the antiquark self energy we have to change pa ↔ pb.

B.2.3 The gluon vertex correction

For the SM vertex correction we have to compute the diagram shown in Fig. B.4.

q

p1

p2

pa

pb

pa + k
Γ2 Γ1

Γ̃2

Γ̃1

Figure B.4: Feynman diagram for the QCD vertex correction.

Before we write down the whole amplitude, we focus on the hadronic part of the

matrix element. We can write the part of the vertex correction as

iΛµ = ig2
sµ

4−D
2

∫
dDk

(2π)D

−igρσ
[
γρi(/pa + /pb + /k)iγµΓ2i/kγσ

]
k2(pa + k)2(pa + pb + k)2

(B.31)

= ig2
s

µ
4−D
2

(2π)D

∫
dDk

[
γρ(/pa + /pb + /k)γµΓ2/kγ

ρ
]

k2(pa + k)2(pa + pb + k)2
. (B.32)
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It can be expresses in terms of the generic tensor integrals

iΛµ = ig2
s

i

(4π)2
γρ(γσγµγσ′C

σσ′ + /paγµγσC
σ + /pbγµγσC

σ)γρ (B.33)

Before we rewrite the tensor integrals in terms of the scalar integrals, let us have a look

at the squared Feynman amplitude:

MM∗B =
|fc|2
4 · 9 Tr [T aT a]

1

(q2 −m2
V1

)

1

(q2 −m2
V2

)
(B.34)

Γ1Γ̄3(p1 − p2)µ(p1 − p2)ν Tr
[
/pbΛµΓ2Γ̄4/paγν

]
. (B.35)

Since we deal with massless particles, all the terms in Λ proportional to /pa on the left- or

to /pb on the right-hand side will vanish due to the Dirac equation. Therewith and with

the help of Eq. (B.6), we can write the virtual correction in terms of scalar integrals

and the LO amplitude

MM∗B =
1

2
g2
s

1

(4π)2
|MB|2 (B.36)[

4pa · pb(C23 + C11)− 2(4−D)pa · pb(C23 + C12) + (2−D)2C24

]
, (B.37)

where we have used the tensor reduction formalism presented in Ref. [41]. The arguments

of the C functions are only (pa + pb)
2 due to the massless approximation.

B.2.4 The SUSY vertex correction

The MSSM-QCD vertex correction corresponds to the exchange of a gluino by two

squarks depicted in Fig. B.5.

q

p1

p2

pa

pb

pa + k
Γ2 Γ1

Γ̃2

Γ̃1

Figure B.5: Feynman diagram for the MSSM-QCD vertex correction.
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Again we define the vertex correction as

iΛµ = iΓ2µ
4−D
2

∫
dDk

(2π)D
Γ̃1(/pb + /k +mg̃)Γ̃2(pb − pa − 2k)µ

(k2 −m2
q̃1

)((pa + k)2 −m2
g̃)((pa + pb + k)2 −mq̃2)

. (B.38)

We can write the squared amplitude in a compact form:

MM∗B =
|fc|2
4 · 9 Tr [T aT a]

1

(q2 −m2
V1

)

1

(q2 −m2
V2

)
(B.39)

Γ1Γ̄3(p1 − p2)µ(p1 − p2)ν Tr
[
/pbΛµΓ̄4/paγν

]
Γ2 . (B.40)

The only contributing parts are

Λµ ∼ /k(pb − pa − 2k)µ (B.41)

and therefore the vertex correction can be expressed as

Λµ ∼ pbµγσCσ − paµγσCσ − 2γσCσµ . (B.42)

Using again the massless quark approximation, we end up with the squared Feynman

amplitude:

MM∗B =2C24
1

(4π)2

1

2

1

12

1

(q2 −m2
V1

)

1

(q2 −m2
V2

)
(B.43)(

(L̃1R̃2)C1R2C
∗
3R
∗
4 + (R̃1L̃2)C1L2C

∗
3L
∗
4

) [
tu−m2

1m
2
2

]
. (B.44)

B.3 The real corrections

B.3.1 Real gluon emission

For the real gluon emission we have to consider two diagrams, where either the gluon is

emitted by the quark or the antiquark. The former is shown in Fig. B.6.
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pb

q

p1

p2

pa
p3

Γ2 Γ1

Γ̃1

Figure B.6: Feynman diagram for the real gluon emission.

The two matrix elements can be written as

iMa =
−igµν

q2 −m2
V1

C1(p1 − p2)µ

[
v̄bγν (L2PL +R2PR) i

/pa − /p3

p2
a − p2

3

(−igs)γρua

]
εaρT

a ,

(B.45)

iMb =
−igµ,ν
q2 −m2

V1

C1(p1 − p2)µ

[
v̄b(−igs)γρi

/pb − /p3

p2
b − p2

3

γν (L2PL +R2PR)ua

]
εaρT

a .

(B.46)

To write the squared amplitude in a compact form we introduce the hadronic tensor

Hµν and the sleptonic one Lµν . This yields

→ |M|2 ≡ LµνHµν = Lµν
(
Haa
µν +Hbb

µν +Hab
µν +Hba

µν

)
, (B.47)

where the different exponents correspond to the different realizations of the process. The

interference term is denoted by Hab
µν and Hba

µν . We include the electroweak propagators

into the definition of Lµν and all strong correction parts in Hµν . For the summation

over the gluon polarizations we use the common relation∑
λ

ερε
∗
ρ′ ∼ −gρρ′ , (B.48)
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yielding

Lµν =
1

q2 −m2
V1

1

q2 −m2
V2

C1(p1 − p2)µC∗3 (p1 − p2)ν , (B.49)

Haa
µν = −|fc|

2

36

g2
s

(2pa · p3)2 Tr
[
/pbγµΓ2

(
/pa − /p3

)
γρ/paγ

ρ
(
/pa − /p3

)
Γ̄2γν

]
, (B.50)

Hbb
µν = −|fc|

2

36

g2
s

(2pb · p3)2 Tr
[
/paΓ̄4γν

(
/pb − /p3

)
γρ/pbγ

ρ
(
/pb − /p3

)
γµΓ2

]
, (B.51)

Hab
µν = −|fc|

2

36

g2
s

4pa · p3pb · p3
Tr
[
/pbγµΓ2

(
/pa − /p3

)
γρ/paΓ̄4γν

(
/pb − /p3

)
γρ
]
, (B.52)

Hba
µν = −|fc|

2

36

g2
s

4pa · p3pb · p3
Tr
[
/pbγρ

(
/pb − /p3

)
γµΓ2/paγ

ρ
(
/pb − /p3

)
Γ̄4γν

]
. (B.53)

The large traces have been computed with FORM. The color factor is |fc|2 = 3 Trλaλa.

B.3.2 Real quark emission

For the real quark emission we can have a s-channel, an u-channel and the interference

terms. The diagrams are shown in Fig. B.7.

pa

pb

q

p3

p1

p2
Γ̃1 Γ2

Γ1

(a)

pa

pb

q
p1

p2

p3

Γ2

Γ̃1

Γ1

(b)

Figure B.7: Feynman diagrams for real quark emission.

Since the sleptonic tensor will be the same as in the real gluon emission we will just
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state the hadronic tensor, where we have to consider a different color factor.

Hss
µν = −|fc|

2

96

g2
s

(2pa · pb)2 Tr
[
γρ/paγ

ρ(/pa + /pb)γµΓ4/p3
γνΓ2(/pa + /pb))

]
, (B.54)

Huu
µν =

|fc|2
96

g2
s

(2pb · p3)2 Tr
[
/paγµΓ4(/p3

− /pb)γρ/p3
γρ(/p3

− /pb)γνΓ2

]
, (B.55)

Hsu
µν =

|fc|2
96

g2
s

4pb · p3pa · pb
Tr
[
γρ/paγµΓ4(/p3

− /pa)γ
ρ
/p3
γνΓ(/pa + /pb)

]
, (B.56)

Hus
µν = −|fc|

2

96

g2
s

4pa · pbpb · p3
Tr
[
γρ(/p3

− /pa)γµΓ2/paγ
ρ(/pb + /pa)γνΓ4/p3

]
. (B.57)

B.3.3 Real antiquark emission

Similar as for the real quark emission we will have a s-channel and a t-channel diagram.

The computation is more or less the same as for the real quark emission.
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The extended program code was originally made for gaugino pair production [1]. We

have used it to update the resummation predictions for gaugino cross sections, invariant

mass and transverse momentum distributions for the same BPs and same setup as for

the slepton pair production done in this thesis. The whole work including all further

references can be found in Ref. [25].

Due to the same quantum numbers the Higgsino and the electroweak gauginos will mix

after the electroweak symmetry breaking. The neutral H̃0
1,2 mixes with B̃ and W̃ 0 to

form four neutral mass eigenstates χ0
i with i ∈ {1,2,3,4} called neutralinos. The χ0

1 is in

most mSUGRA scenarios the LSP. In addition the charged fields H̃±1,2 can mix with the

winos W̃± giving two mass eigenstates χ±k called charginos. The mixing depends on the

values of tanβ, µ and the trilinear coupling in the mSUGRA parameter space.

Since gauginos are fermionic the production of pairs is closely related to the Drell-Yan

process. However at LO we have additional t- and u-channels due to squark exchange

which are depicted in Fig. C.1. This leads to many different diagrams for NLO

corrections including self-energies, vertex corrections and “boxes”. The computations

can be found in Ref. [1].

We have updated the results for gaugino-pair production for the 8 TeV run of the LHC

Figure C.1: Leading-order Feynman diagrams for gaugino pair production at hadron
colliders. Here the virtual particle corresponds to an electroweak gauge
boson (left) or squark (center and right). From Ref. [42].

and newer PDF sets, the same as for slepton pair production, i.e. MSTW 2008 NLO. In
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Fig. C.2 (a) we show the results for the total cross section for model line 10.1 of a χ̃0
2χ̃

+
1 ,

the so called golden channel. The cross section decreases exponentially by increasing

the almost degenerated mass of the gaugino pair. Comparing Fig. C.2 (a) and 4.5 we

can see that even for larger masses of the gauginos the cross section is roughly three

times larger than for the sleptons. In Tab. C.1 results for all possible final states are

shown while using BP 1 of the LPCC numbering scheme. We can see that the cross

section for the golden channel is enhanced. This is a common feature to many SUSY

models, where the χ̃0
1 is mostly bino like. For further results including different BPs

see [25]. In addition we show again the scale and PDF uncertainties with the expected

behavior for NLO matched to NLL. We expect that the gauginos will be found as one of

the first SUSY particles since the cross section is quite large with respect to the other

supersymmetric particles.

Finally we present a transverse momentum distribution of the golden channel in Fig.

C.2 (b). We see the typical behavior for the NLO and resummation results. In addition

we have included results generated with MADGRAPH v.5 [37] interfaced to PYTHIA [38]

for generating one and two additional jets. This Monte Carlo tool is widely used by

experimental collaborations. We can see that the results for ressumation fit the curve

for 1-jet-matching quite well. This is obvious since the resummation code [1] includes

the emission of one hard jet.
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(b) Transverse momentum distribution for the production of a χ̃0
2χ̃

+
1 pair at the

COM energy of 8 TeV in a proton-proton collision for BP 1. NLO, NLO+NLL and
results from Monte Carlo event generators matched to 1 and 2 jets are shown.

Figure C.2: Total cross sections for model line 10.1 (a) and the transverse momentum
distributions for NLO, resummation and Monte Carlo event generators.
From Ref. [25].
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Table C.1: Total cross sections related to the production of various gaugino pairs of
masses m1 and m2, presented together with the associated scale and PDF
uncertainties for the LHC running at a center-of-mass energy of

√
s = 8 TeV

in the context of the benchmark point 1 of the LPCC numbering scheme.
The cross sections are given at the leading order and next-to-leading order
of perturbative QCD and matched to threshold resummation. The PDF
uncertainties are not shown for the LO results. Any cross section smaller
than 0.1 fb is omitted.

Process m1 (GeV) m2 (GeV) LO (fb) NLO (fb) NLO+NLL (fb)

pp→ χ0
1χ

0
1 161.7 161.7 0.81+5.8%

−5.3% 1.06+3.5%
−3.0%

+2.8%
−2.0% 1.03+0.5%

−0.6%
+2.9%
−2.0%

pp→ χ0
1χ
−
1 161.7 303.5 0.16+6.0%

−5.5% 0.20+2.5%
−2.4%

+2.9%
−2.4% 0.20+0.0%

−0.3%
+2.9%
−2.5%

pp→ χ0
2χ

0
2 303.8 303.8 0.85+9.2%

−7.9% 1.07+3.5%
−3.5%

+3.1%
−2.2% 1.05+0.0%

−0.4%
+3.5%
−1.9%

pp→ χ0
2χ

0
3 303.8 526.5 0.21+9.4%

−8.1% 0.25+2.6%
−2.9%

+3.2%
−2.3% 0.25+0.1%

−0.5%
+3.2%
−2.3%

pp→ χ0
2χ
−
1 303.8 303.5 14.46+6.7%

−6.1% 17.25+1.6%
−1.7%

+3.0%
−2.6% 17.05+0.2%

−0.7%
+3.1%
−2.6%

pp→ χ0
3χ

0
4 526.5 542.4 0.83+11.0%

−9.3% 0.97+2.8%
−3.3%

+3.9%
−2.4% 0.96+0.4%

−0.9%
+3.8%
−2.5%

pp→ χ0
3χ
−
1 526.5 303.5 0.12+9.4%

−8.1% 0.15+2.6%
−2.9%

+3.8%
−2.9% 0.15+0.1%

−0.6%
+3.8%
−3.0%

pp→ χ0
3χ
−
2 526.5 542.2 0.42+11.2%

−9.5% 0.50+2.8%
−3.3%

+4.9%
−3.6% 0.49+0.4%

−0.9%
+4.9%
−3.5%

pp→ χ0
4χ
−
2 542.4 542.2 0.39+11.3%

−9.6% 0.47+2.7%
−3.2%

+4.9%
−3.6% 0.46+0.5%

−1.1%
+4.9%
−3.7%

pp→ χ+
1 χ

0
1 303.5 161.7 0.38+6.0%

−5.4% 0.46+2.5%
−2.4%

+2.8%
−2.1% 0.46+0.2%

−0.5%
+2.9%
−2.1%

pp→ χ+
1 χ

0
2 303.5 303.8 35.16+6.3%

−5.8% 40.90+1.6%
−1.7%

+2.9%
−2.2% 40.51+0.0%

−0.3%
+2.9%
−2.2%

pp→ χ+
1 χ

0
3 303.5 526.5 0.34+9.2%

−7.9% 0.40+2.6%
−2.9%

+3.7%
−2.4% 0.40+0.0%

−0.3%
+3.6%
−2.5%

pp→ χ+
1 χ
−
1 303.5 303.5 25.64+6.6%

−5.9% 30.37+1.7%
−1.9%

+2.7%
−2.0% 30.04+0.0%

−0.5%
+2.7%
−2.1%

pp→ χ+
2 χ

0
3 542.2 526.5 1.27+11.1%

−9.4% 1.46+2.9%
−3.3%

+4.4%
−2.7% 1.45+0.3%

−0.7%
+4.3%
−2.9%

pp→ χ+
2 χ

0
4 542.2 542.4 1.21+11.2%

−9.5% 1.37+2.7%
−3.2%

+4.4%
−2.8% 1.36+0.4%

−0.8%
+4.6%
−2.6%

pp→ χ+
2 χ
−
2 542.2 542.2 0.86+10.9%

−9.3% 1.00+2.6%
−3.1%

+4.0%
−2.4% 0.99+0.4%

−0.9%
+4.1%
−2.4%
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anlehnenden Ausführungen meiner Arbeit besonders gekennzeichnet und die Quellen

zitiert habe.

Münster, den 12. November 2012


	Introduction
	Theoretical background
	Supersymmetry and the MSSM
	Motivation
	Concepts of Supersymmetry
	The Minimal Supersymmetric Standard Model

	QCD at the LHC
	The Drell-Yan process
	Parton distribution functions
	Collider kinematics and important distributions


	Resummation
	The basic ideas behind resummation
	Soft photon resummation
	Threshold resummation
	Transverse momentum resummation

	Slepton pair production
	Analytical results
	Numerical results
	Experimental constraints
	Benchmark scenarios
	Total cross sections
	Invariant mass distributions
	Transverse momentum distributions

	Implications for dark matter
	Sneutrino as a dark matter candidate
	The monojet analysis


	Conclusion and outlook
	Feynman rules
	Feynman amplitudes
	Leading-order process
	Virtual corrections
	The quark self energy
	SUSY self energy for quarks
	The gluon vertex correction
	The SUSY vertex correction

	The real corrections
	Real gluon emission
	Real quark emission
	Real antiquark emission


	Gaugino pair production

