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For a class of Vlasov-Fokker-Planck equations that have frequently been used to examine beam
dynamic instabilities in accelerators and storage rings, it is shown that the stability of stationary
distributions can be determined by studying reduced models defined by Smoluchowski equations. This
is illustrated explicitly for longitudinal particle bunches in beams subjected to a particular class of wake
fields, described by a Haı̈ssinski distribution. For this class we find that continuous Haı̈ssinski distributions
are stable because they correspond to minima of appropriately defined free energy functionals. For
parameters for which continuous distributions no longer exist, discontinuous distributions may still exist
but correspond to free energy maxima and saddle points and are unstable.
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I. INTRODUCTION

Nonlinear Vlasov-Fokker-Planck equations have fre-
quently been used to describe beam dynamics in accelera-
tors and storage rings. On account of their nonlinearity,
they are helpful approaches to examine beam dynamic
instabilities [1–6]. Nonlinear Vlasov-Fokker-Planck equa-
tions that describe beam dynamic instabilities typically
involve two different kinds of state variables such as par-
ticle positions and energies. In general, the stability of such
nonlinear models has to be examined on the complete
phase spaces spanned by these variables. However, in
accelerator physics we are often dealing with mean field
interactions (e.g. interactions due to wake fields or particle-
particle interactions) that involve only particle positions.
Therefore, the question arises whether or not the stability
of accelerator beams can be examined in the subspace
describing particle positions. That is, can we determine
the stability of particle beams by means of reduced dy-
namical models? If this question can be answered in the
affirmative, analytical and numerical methods for the
stability analysis of beam dynamics could in general be
considerably simplified.

In the present study it will be shown that for a funda-
mental class of nonlinear Vlasov-Fokker-Planck equations
it is sufficient to perform stability analysis on reduced
dynamical models defined by Smoluchowski equations.
In order to demonstrate this point, we will first view
position and energy variables as counterparts of position
and momentum variables of particles belonging to self-
interacting Hamiltonian systems. We will show that the
stability of such Hamiltonian systems can be determined
by studying appropriately defined Smoluchowski equa-
tions (see Sec. II A). In this context, we will confine
ourselves to studying self-interacting Hamiltonian func-
tions with symmetric kernels. This implies that we will
consider only accelerator systems with odd wake functions

(i.e. with purely imaginary impedances) [7], Sec. 2.3. The
Smoluchowski approach will then be applied to examine
the stability of particle bunches in longitudinal beams as
predicted by the Haı̈ssinski theory (see Sec. II B). That is,
we will consider a wake field function given by the deriva-
tive of the Dirac delta distribution. In this context, it will
also be shown that the Smoluchowski approach is consis-
tent with alternative approaches reported in earlier studies
[8,9].

II. SMOLUCHOWSKI APPROACH

In order to emphasize the generality of our approach, we
consider first a wide class of self-interacting Hamiltonian
systems described by nonlinear Vlasov-Fokker-Planck
equations such as can be found in plasma physics, astro-
physics as well as accelerator physics. Accordingly, let
p;q denote generalized momentum and position variables
of such Hamiltonian systems. Let P�p;q; t� � h��q�
q�t����p� p�t��i describe the probability density (distri-
bution function) of p and q, where ���� denotes the Dirac
delta function and averages h�i refer to ensemble averages.
Likewise, let ��q; t� and ��p; t� denote the reduced proba-
bility densities ��q; t� �

R
P�p;q; t�d3p and ��p; t� �R

P�p;q; t�d3q, respectively. We will consider systems
exhibiting Hamiltonian functions of the form

 H�p;q� �
p2

2m
� V�q; �� (1)

with p2 � jpj2, where V is a self-consistent potential that
depends on the reduced probability density �. We assume
that the potential V is composed of a single particle poten-
tial V0 and a mean field interaction potentialG such that we
can write

 V�q; ��q; t�� � V0�q� �
Z
G�q;q0���q0; t�dq03: (2)
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The function G is assumed to be symmetric: G�q;q0� �
G�q0;q�. In the context of beam dynamics, G�q;q0� �
G�q� q0� corresponds to an integrated wake field function
like G�z� �

Rz W�z0�dz0, where W denotes the wake field.
The symmetry constraint onG then implies thatW must be
an odd function.

We will account for dissipation and fluctuations using
the framework of canonical-dissipative systems [10–16]
such that the stochastic Hamiltonian dynamics finally reads

 

d

dt
q �

@
@p
H

d

dt
p � �

@
@q
H �

�
m

p�
������������
�kBT

p
��t�;

(3)

where � is a Langevin force [17] normalized with respect
to the Dirac delta function like h�i�t��k�t0�i � 2�ik��t�
t0� with i; k � 1; 2; 3. Here, T is regarded as an equilibrium
temperature and kB denotes the Boltzmann constant. In
Sec. II B we will reinterpret the product of these two
parameters simply as a diffusion constant or a noise am-
plitude. The nonlinear Vlasov-Fokker-Planck equation
corresponding to Eq. (3) reads ([18], Sec. 4.6)
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: (4)

The stationary distribution Pst factorizes like Pst�p;q� �
�st�p��st�q� and its kinetic part is given by the Maxwell-
Boltzmann distribution

 �st�p� �
�

m
2�kBT

�
3=2

exp
�
�

p2

2mkBT

�
: (5)

The distribution �st�q� is implicitly defined by means of
the self-consistency equation

 �st�q� �
1

Z
exp

�
�
V�q; �st�q��

kBT

�
; (6)

where Z denotes a normalization constant.

A. Stability analysis

In what follows we will exploit the stability analysis by
means of Lyapunov’s direct method and the free energy
approach to nonlinear Fokker-Planck equations as pro-
posed by Shiino [19,20] and reviewed in [18], Sec. 5.1.

1. Lyapunov’s direct method: A simple example

For the following discussion it will be helpful to recall
the basic steps of Lyapunov’s direct method. To this end,
we consider the simple example of a first-order dynamical
system given by dx�t�=dt � �dL�x�=dx, where x�t� is a

time-dependent state variable and L�x� a potential func-
tion. In this case, it is clear that

(i) the potential L is a monotonically decreasing func-
tion with respect to t for solutions x�t� (because we
have dL=dt � �jdL=dxj2);

(ii) fixed points xst correspond to extrema of L (i.e. we
have dx=dt � 0, dL=dx � 0);

(iii) if L is bounded from below then from the two
aforementioned properties it follows that L be-
comes stationary in the limit t! 1 which in turn
implies that x�t� converges to a fixed point xst;

(iv) irrespective of the boundedness of L, it follows that
a fixed point xst is stable (unstable) if the inequality
d2L=dx2 > 0 (d2L=dx2 < 0) holds at x � xst.

2. Free energy approach in full phase space

Next, we will apply Lyapunov’s direct method to the
Vlasov-Fokker-Planck equation (4). To this end, we will
replace the aforementioned quantities x�t� and L�x� by the
probability density P�p;q; t� and a free energy functional F
defined on P. Let U denote the internal energy of the
Hamiltonian system (1) given by U � hp2=�2m� �
V0�q�i � 0:5

R
G�q;q0���q; t���q0; t�dq3dq03. Let S de-

scribe the Boltzmann-Gibbs-Shannon entropy S �
�kB

R
P lnPdp3dq3. Then, the free energy F of the

Hamiltonian system (1) is given by F � U� TS. That
is, we have
 

F �
�
p2

2m
� V0�q�

	
�

1

2

Z
G�q;q0���q; t���q0; t�dq3dq03

� kBT
Z
P lnPdp3dq3: (7)

Note that the variational derivative ofU with respect to P is
given by �U=�P � H. Likewise, we have
 

�F
�P
�
p2

2m
� V0�q� �

Z
G�q;q0���q0; t�dq03

� kBT�1� lnP�: (8)

Let us define the gradient r � �@=@p; @=@q� of the six-
dimensional phase space spanned by p and q. Using the
reversible drift I � �Ip; Iq� � ��@H=@q; @H=@p� and
Eq. (8), the Vlasov-Fokker-Planck equation (4) can be
written as

 

@
@t
P�p;q; t� � �r � �IP� � �
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@p

�
P
@
@p

�F
�P

�
(9)

(see also [18,21]). It can be shown that for solutions
P�p;q; t� of Eq. (9) the free energy F as a function of
time evolves like

 

d

dt
F � �hXth � Ii � �

Z
P
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�F
�P









2
dp3dq3 (10)

with Xth � �r�F=�P (see Appendix A). In what follows
it might be helpful to interpret the expressions Xth, F, and
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hXth � Ii from the perspective of linear nonequilibrium
thermodynamics [18], Sec. 4.5.1. Accordingly, Xth can be
regarded as a thermodynamic force. Changes of the free
energy F can be decomposed like dF � dU� TdS with
dS � diS� deS, where diS and deS describe entropy
changes due to so-called internal and external processes.
In general, internal processes are processes that would also
be present if we isolate a system from its environment,
whereas deS is given by TdeS � dU. Consequently, we
have dF � �TdiS and Eq. (10) can be written as

 d iS �
1

T
hXth � Iidt�

�
T

Z
P








 @
@p

�F
�P









2
dp3dq3dt:

(11)

Accordingly, the two terms occurring in Eq. (11) describe
two ways of internal entropy production. However, the first
term involves a conservative (reversible) force I.
Therefore, it cannot contribute to the entropy production
diS and we conclude that hXth � Ii � 0 for solutions
P�p;q; t� of Eq. (9) (see also [18], Sec. 4.5.5, and the null
space hypothesis of the GENERIC approach to thermody-
namics [22]). Putting hXth � Ii equal to zero in Eq. (11), we
see that entropy changes due to internal processes can
result either in an entropy increase or leave the entropy
constant: diS 	 0. In fact, the inequality diS 	 0 should
not be regarded as a conclusion but as a fundamental
thermodynamical principle. In this sense, we have just
shown that the nonlinear Vlasov model (4) satisfies this
principle of internal entropy increase. Let us put now hXth �
Ii equal to zero in Eq. (10). Then, we obtain

 

d

dt
F � ��

Z
P








 @
@p

�F
�P









2
dp3dq3 
 0 (12)

and conclude that the free energy is a monotonically
decreasing function. That is, the free energy decrease
may be regarded as a consequence of the internal entropy
increase. Alternatively, taking a mathematical point of
view, it can be shown that hXth � Ii � 0 holds if we have
r � I � 0 and I � r�U=�P � 0 [18], Sec. 4.5.5. In fact,
these conditions are satisfied by the expressions occurring
in Eqs. (1)–(3). Equation (12) can be regarded as a counter-
part to the first issue dL=dt 
 0 mentioned in Sec. II A 1.

Let us turn now to the second issue mentioned in the
simple example of Sec. II A 1. To this end, we first note that
the implication

 

d

dt
F � 0,

@
@t
P � 0 (13)

holds (see Appendix B). That is, the stationarity of the free
energy implies the stationarity of the probability density
and vice versa. Substituting Eqs. (5) and (6) into Eq. (8),
we see that stationary distributions Pst are given by ex-
trema of the free energy F. That is, the variational deriva-
tive of F with respect to P is a constant at P � Pst:

 

�F
�P









P�Pst

� � (14)

with � � kBTf1� ln��2�kBT=m�
3=2Z�g. This is in anal-

ogy to the aforementioned simple case of Lyapunov’s
direct method for which we have seen that extrema of L
correspond to fixed points xst. Note that Eq. (14) can
alternatively be expressed by stating that the first variation
�F vanishes at stationary distributions for all perturbations
�: �F�Pst���� � 0.

In many cases F is bounded from below ([18], Sec. 4.7).
In these cases, F corresponds to a Lyapunov functional and
we conclude that in the long time limit any transient
probability density P�p;q; t� of Eq. (4) will converge to a
stationary one (H-theorem). In doing so, we see that the
third issue listed in Sec. II A 1 can be generalized such that
it also holds for the nonlinear Vlasov model (4).

Turning to the final point mentioned in Sec. II A 1, we
note that irrespective of the boundedness of F, the free
energy functional F can be used to determine the stability
of stationary distributions Pst�p;q�. If Pst corresponds to a
free energy minimum then it is stable; if Pst corresponds to
a free energy maximum or a saddle point then it is unstable
(see [18]. Sec. 5.1.1, and [19]):
 

�2F > 0) Pst�p;q� � stable (15a)

�2F < 0) Pst�p;q� � unstable: (15b)

Note that in Eq. (15a) we require that for all perturbations
the inequality �2F > 0 holds, whereas in Eq. (15b) it is
sufficient that there is at least one perturbation for which
the inequality �2F < 0 holds.

3. Stability analysis using Lyapunov’s direct method in
the reduced phase space

Our next objective is to show that the nature of the
extrema (i.e. the sign of the second variation �2F) can be
determined by studying an appropriately defined reduced
problem that can be derived from the full dynamics given
by Eq. (3). More precisely, we will show next that there is
no need to carry out a stability analysis in the six-
dimensional phase space �p;q�. It is sufficient to consider
the subspace which is spanned by the position variable q.

First, let us decompose for Pst�p;q� � �st�p��st�q� the
free energy F into F�Pst�p;q�� � Fp��st�p�� � Fq��st�q��
with Fp � hp2=�2m�i � TSp, Fq � Upot � TSq,
�Upot=�� � V, Sp � �kB

R
� ln�dp3, and Sq �

�kB
R
� ln�dq3. Then, the stationary distributions �st�p�

and �st�q� given by Eqs. (5) and (6) satisfy the extremal
principles �Fp=��st�p� � �p and �Fq=��st�q� � �q,
where �p and �q are normalization constants that may
be interpreted as chemical potentials. In other words,
�st�p� and �st�q� correspond to the extrema of the (sub-
system) free energies Fp and Fq. Likewise, for Pst�p;q�we
have �F=�Pst�p;q� � � � �p ��q. Having discussed
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the first-order variational derivatives, we turn now to the
second-order derivatives. The second variation of F with
respect to a perturbation � reads

 �2F�Pst�p;q�����p;q�� � �2U� kT
Z �2�p;q�
Pst�p;q�

dp3dq3

(16)

with

 �2U �
Z
G�q;q0�~��q�~��q0�dq3dq03 (17)

and ~��q� �
R
��p;q�dp3. Now we use the Schwarz in-

equality for integrals in the form of
R
a2�x�dx

R
b2�x�dx 	

�
R
a�x�b�x�dx�2 and make the following replacements:

dx! dp3, a! ��p;q�=
�������������
�st�p�

p
, b!

�������������
�st�p�

p
. Thus, we

get

 

Z �2�p;q�
�st�p�

dp3 	

�Z
��p;q�dp3

�
2
� ~�2�q�: (18)

Substituting this result into Eq. (16), we obtain

 �2F�Pst�p;q�����p;q�� 	 �2Fq��st�q���~��q��

� �2U� kT
Z ~�2�q�
�st�q�

dq3: (19)

The inequality (19) represents our central result. From
Eq. (19) it follows that, if �2Fq > 0 holds for all perturba-
tions ~��q�, then �2F > 0 holds for all perturbations ��p;q�
and Pst�p;q� is a stable stationary distribution. The equals
sign in Eqs. (18) and (19) holds for perturbations of the
form ��p;q� �

�������������
�st�p�

p
~��q�. Consequently, if there is a

perturbation ~��q� such that �2Fq < 0 holds, then for the

perturbation ��p;q� �
�������������
�st�p�

p
~��q� we have �2F < 0 and

Pst�p;q� is an unstable stationary distribution. In sum, the
inequality (19) states that the relations (15) can be simpli-
fied and replaced by

 �2Fq > 0) Pst�p;q� � stable

�2Fq < 0) Pst�p;q� � unstable:
(20)

We see that the free energy functional Fq defined on the
subspace q determines completely the stability of the sta-
tionary distributions of the full dynamical system.

4. Stability analysis using Vlasov-Smoluchowski
equations

Equation (20) states that the stability analysis of
Pst�p;q� can be based on the reduced free energy measure
Fq. Therefore, the question arises: how can we interpret
this approach via Fq? What is the dynamical system that is
represented by Fq? We will answer this question by in-
troducing heuristically an evolution equation related to Fq.
To this end, we first introduce a new time variable �. Let
~��q; �� denote the probability density of a dynamical sys-

tem exhibiting the free energy Fq. According to the free
energy approach to nonlinear Fokker-Planck equations
[18], Sec. 4.5, the evolution of ~��q; �� is given by

 

d

d�
~��q; �� � �

@
@q

�
~��q; ��

@
@q

�Fq
�~��q; ��

�
: (21)

It can be shown that—consistent with fundamental prin-
ciples in physics—transient solutions ~��q; �� of Eq. (21)
converge to stationary distributions ~�st�q� that make Fq
minimal [18], Sec. 4.5.7. Therefore, we conclude that sta-
tionary distributions ~�st�q� of Eq. (21) corresponds to sta-
tionary distributions �st�q� of the original Vlasov model
(3). Moreover, we conclude that stationary distributions
~�st�q� are stable (unstable) if the corresponding distribu-
tions Pst�p;q� � �st�p�~�st�q� are stable (unstable). In
other words, the full and reduced Vlasov Fokker-Planck
equations (3) and (21) exhibit stationary solutions that are
not only equivalent to each other but also have the same
stability properties. As a result, if we know the stability of
~�st�q�, we can conclude whether or not Fq exhibits a
minima at ~�st�q� and, in doing so, we can determine the
stability of Pst�p;q�, see Eq. (20). In sum, stability analysis
can be performed on the basis of the reduced Vlasov
equation (21) using the implications
 

~�st�q� � stable ) Pst�p;q� � �st�p�~�st�q� � stable

~�st�q� � unstable ) Pst�p;q� � �st�p�~�st�q� � unstable

(22)

instead of the relations (20).
Having derived the evolution equation (21), we still need

to discuss it physical interpretation. To this end, it is help-
ful to consider the self-consistent Langevin equation that
corresponds to Eq. (21) and reads ([18], Sec. 3.4.2)

 

d

d�
q��� � �

@
@q
V�q���; ~��q; ��� �

���������
kBT

p
����; (23)

where � denotes a Langevin force with h�i����k��0�i �
2�ik���� �

0�. The Langevin equation (23) can be derived
from the original Langevin equation (3) by putting
dp=dt � 0 and t � ��. Because of this property,
Eqs. (21) and (23) can be regarded as Smoluchowski
equations [17] that can be obtained in the high friction
limit �! 1 from the second-order dynamical equation
(3) and (4). A more formal treatment of this high friction
limit is given in Appendix C.

As we have just stated, Smoluchowski equations are
usually defined for the high friction limit �! 1. In con-
trast, the derivation of Eq. (21) holds for arbitrary values of
� > 0. That is, � can be small and even represent a
perturbation parameter. In the analysis carried out above,
the Smoluchowski equation (21) is just the nonlinear
Fokker-Planck equation related to the free energy func-
tional Fq. The stability analysis by means of the
Smoluchowski equation (21) and the relation (22) can be

T. D. FRANK Phys. Rev. ST Accel. Beams 9, 084401 (2006)

084401-4



carried out whether � is large or not. It should be regarded
as a technique alternative to the free energy approach that
has been discussed in Sec. II A 3 and was centered around
the relation (20).

B. Haı̈ssinski theory

1. Vlasov-Fokker-Planck equation of the Haı̈ssinski
model

Following the notation used in [5,9], we describe
bunched particles of a longitudinal beam in a storage
ring by means the relative particle position q with respect
to the bunch center and the relative particle energy p (or
energy error) with respect to the beam design energy. Note
that we are dealing now with a two-dimensional phase
space �p; q� instead of a six-dimensional one.
Accordingly, the probability density of p and q can be
computed from P�p; q; t� � h��q� q�t����p� p�t��i and
the corresponding reduced probability densities are given
by ��p; t� � h��p� p�t��i and ��q; t� � h��q� q�t��i.
The single particle potential V0 reads V0�q� � q2=2 such
that the Hamiltonian (1) becomes H � p2=2� q2=2�R
G�q; q0���q0; t�dq0, where we have put m � 1. The inte-

gral kernel G�z� corresponds to the wake field function
W�z� of storage rings like G�z� �

R
z W�z0�dz0. Aiming at a

discussion of Haı̈ssinski distributions P�p; q�, we consider
a wake field function W�z� � 	d��z�=dz, which is said to
be dominated by a purely imaginary impedance ([7],
Sec. 6.2), where 	 can assume both positive and negative
values [7,9,23]. Consequently, we haveG�q; q0� � 	��q�
q0� and the self-consistent potential V reads V�q; �� �
q2=2� 	��q; t�. In sum, the nonlinear Vlasov-Fokker-
Planck Eq. (4) becomes [18,24–26]
 

@
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P�p; q; t� � p

@
@q
P�p; q; t�

�

�
q� 	

@��q; t�
@q

�
@
@p
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@p

�
p�Q
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@p

�
P�p; q; t�|�����������������������{z�����������������������}

A

; (24)

where Q is a nonequilibrium noise amplitude and replaces
the equilibrium expression kBT. The Fokker-Planck colli-
sion operator A in Eq. (24) accounts for dissipation and
fluctuations due to synchrotron radiation [4,5,8,23,27,28].

2. Stability analysis using Lyapunov’s direct method in
the reduced phase space

Let us apply the results derived in Sec. II A in order to
examine stationary solutions of the beam dynamics model
(24). First, we note that as shown in [24] the stationary
distribution of Eq. (24) can be expressed as Pst�p; q� �
�st�p��st�q� with �st�p� �

�����������
2�Q
p

expf�p2=�2Q�g � 1,
where �st�q� denotes the Haı̈ssinski distribution [29] de-

fined by

 �Q� 	�st�q��
d�st�q�

dq
� �q�st�q�: (25)

As argued in Sec. II A 2, the stability of Pst�p; q� is deter-
mined by the free energy

 F�P�p; q�� �
�
p2 � q2

2

	
�
	
2

Z
�2�q�dq�QS (26)

with S�P�p; q�� � �
R
P lnPdpdq. However, as shown in

Sec. II A 3, it is sufficient to analyze only the subspace free
energy Fq defined by

 Fq���q�� �
�
q2

2

	
�
	
2

Z
�2�q�dq�QSq (27)

with Sq���q�� � �
R
� ln�dq. In particular, we need to

determine whether or not the Haı̈ssinski distribution
�st�q� corresponds to a minimum of the free energy Fq.
To this end, we examine the second variation of Fq with
respect to a perturbation ~�. From Eq. (27) we find that
�2Fq �

R
�	�Q=�st�q��~�

2�q�dq. Using Shiino’s expan-

sion [18,19] ~��q� �
������������
�st�q�

p

�q� that involves a new per-

turbation function 
, we obtain

 �2Fq�
� �
Z
�	�st�q� �Q�
2�q�dq: (28)

For 	 > 0 we have �2Fq > 0. That is, the Haı̈ssinski
distribution corresponds to a stable stationary probability
density. Let us consider the case 	 < 0. If there is a
q�-value for which 	�st�q

�� �Q< 0 holds, then there is
a formally defined perturbation 
 with 
2�q� � ��q� q��
for which �2F becomes negative. Therefore, the Haı̈ssinski
distribution is an unstable distribution. Following [9,23],
we consider the case 	 < 0 but 	�st�q� �Q> 0 for all q.
Then, from Eq. (25) if follows that �st�q� is unimodal and
symmetric with a peak at q � 0. Consequently, if
	�st�q� �Q> 0 holds for the maximum value q � 0,
then 	�st�q� �Q> 0 holds for all q. Conversely, if
	�st�0� �Q< 0 holds, then there are several values q�

(first of all q� � 0) for which 	�st�q� �Q< 0 and the
distribution (if it exists) is an unstable one. In sum, in
analogy to Eq. (20), our stability analysis for the Vlasov-
Fokker-Planck equation (24) yields

 

	�st�q � 0� �Q> 0) �2Fq > 0) Pst�p; q� � stable

	�st�q � 0� �Q< 0) �2Fq < 0) Pst�p; q� � unstable:

(29)

This result is consistent with previous studies on the stabil-
ity of Haı̈ssinski distributions [8,9]. For continuous
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Haı̈ssinski distributions we have 	�st�q� �Q> 0 for all
q.1 As a result, continuous Haı̈ssinski distributions are
stable if they exist. In fact, considering 	 as a control
parameter and decreasing 	, then continuous Haı̈ssinski
distributions cease to exist at the instability point given by
	�st�q � 0� �Q � 0 (see also [9,23,27]). Continuous dis-
tributions �st�q� can be computed from [24,30,31]

 �st�q� �
Q
	

LW
�
	
ZQ

��q�
�
; (30)

where LW��� is a distortion function given by the
Lambert’s W-function [32], � is the Gaussian distribution
��q� � �

�����������
2�Q
p

��1 expf�q2=�2Q�g, and Z is determined
by the requirement

R
�st�q�dq � 1. Using this function, we

can compute �st�0� and the critical parameter value 	c
defined by 	c�st;	c�0� �Q � 0 or

 	c � �
Q

�st;	c�0�
: (31)

An analytical expression for 	c can be found and is given
by [23]

 	c � �
���
2
p
Q3=2

Z 1

0

1� x�������������������������
x� lnx� 1
p dx: (32)

A geometrical interpretation of Eq. (31) can be obtained as
follows. It is known that �st�q� describes bunch shortening
for 	 < 0. That is, �st�0� increases as a function of j	j for
	 < 0—as illustrated in Fig. 1—and Q=�st�0� de-
creases—as shown in Fig. 2. Consequently, if we plot
f1�	� � Q=�st;	�0� as a function of 	, then the critical
parameter 	c is defined by the intersection point of f1�	�
with the diagonal f2�	� � 	 (see Fig. 2).

3. Stability analysis using the Smoluchowski equation of
the Haı̈ssinski model

Let us reiterate that the stability analysis carried out in
the previous section II B 2 can be interpreted as a
Smoluchowski approach. To put emphasis on this point,
we would like to note that the Smoluchowski equation
related to the free energy (27) explicitly reads

 

d

d�
~��q; �� �

@
@q

�
q� 	

@~��q; ��
@q

�
~��q; ��

�Q
@2

@q2 ~��q; ��: (33)

Every stationary distribution ~�st of Eq. (33) corresponds to
a Haı̈ssinski distribution (25): ~�st � �st. Moreover, the
distributions ~�st and �st have the same stability properties.
Consequently, the stability analysis in Sec. II B 2 that was
centered around the free energy Fq [see Eq. (27)] and has
led us to Eq. (29) actually was a stability analysis for
stationary solutions of the Smoluchowski model (33).
However, in principle, any other type of stability analysis
can be applied to the Smoluchowski model (33). For
example, we may apply linear stability analysis.

In order to make this point more explicit, let us briefly
outline the linear stability analysis of stationary solutions
of Eq. (33). Let ~��q; �� denote a small perturbation of the
stationary distribution ~�st�q� � �st�q� given by Eq. (25).
That is, we put ~��q; �� � �st�q� � ~��q; ��. From Eq. (33) it
then follows that
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0.16

0.18

0.2
 (q)

–3 –2 –1 0 1 2 3q

κ
ρ

FIG. 1. Bunch shortening due to a decrease of the parameter 	.
Haı̈ssinski distributions (30) are shown for several parameters 	
(from bottom to top: 	1 � 0, 	2 � �5:0, 	3 � �10:0) and Q �
5:0.

0
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/  

 (
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–18 –16 –14 –12 –10 –8 –6 –4 –2

κ

ρ

FIG. 2. Geometrical solution of Eq. (31) for Q � 5:0.
Diamonds: f1�	� � Q=�st�0� computed from Eq. (30). Solid
line: diagonal f2�	� � 	. Dashed vertical line: analytical solu-
tion 	c computed from Eq. (32).

1For continuous distributions it follows from Eq. (25) that the
relation 	�st�q� �Q � 0 must be satisfied, which implies that
we either have 	�st�q� �Q> 0 or 	�st�q� �Q< 0 for all q.
The latter option does not allow for continuous distributions that
can be normalized to unity.
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d

d�
~��q; �� �

@
@q
q~��q; �� �

@2

@q2 f�	�st�q� �Q�~��q; ��g

(34)

neglecting terms of second and higher order in ~�. Using
Eq. (25) in terms of q � ��	�Q=�st�d�st=dq, we obtain
 

d

d�
~��q; �� � �

@
@q

��
	�

Q
�st�q�

�
d�st

dq
~��q; ��

�

�
@2

@q2

��
	�

Q
�st�q�

�
�st�q�~��q; ��

�
; (35)

which can be transformed into

 

d

d�
~��q; �� �

@
@q
�st�q�

@
@q

��
	�

Q
�st�q�

�
~��q; ��

�
: (36)

If 	�Q=�st�q�> 0 holds for all q, that is, if 	 > 	c
(cf. Sec. II B 2), then Eq. (36) corresponds to a diffusion
equation with a positive-definite (state-dependent) diffu-
sion term and we conclude that for t! 1 the perturbation
~� will converge to zero everywhere. In this case, we con-
clude that �st�q� is a stable stationary distribution. In
contrast, if 	�Q=�st�q�< 0 holds for q 2 I, where I
denotes a particular interval [i.e. if there is a noncontinuous
distribution �st�q� with 	 < 	c], then the coefficient 	�
Q=�st�q� is negative on I. Consequently, the perturbation
will increase on I. In this case, we conclude that �st�q� is an
unstable stationary distribution. Note that this argument
holds irrespective of the fact that the perturbation ~� exhib-
its both negative and positive function values. An alterna-
tive proof of this line of reasoning can be found in
Appendix D. Using Eq. (22), we conclude from the linear
stability analysis of the Smoluchowski model (33) that
Pst�p;q� � �st�p��st�q� is a stable (unstable) solution for
	 > 	c (	 < 	c). That is, by means of a linear stability
analysis of the Smoluchowski model we arrived at the
same conclusions as in Sec. II B 2.

III. CONCLUSIONS

We have shown that the stability of stationary distribu-
tions of particular six-dimensional nonlinear Vlasov-
Fokker-Planck equations can be determined by studying
the stability of stationary distributions of appropriately
defined Smoluchowski equations defined on reduced
three-dimensional phase spaces. The stability analysis for
the Smoluchowski equations can in principle be carried out
by different methods: linear stability analysis, analysis of
self-consistency equations for order parameters (see e.g.
[18], Sec. 5.1.3), and Lyapunov’s direct method. That is,
irrespective of the method that is used to determine the
stability of the reduced Smoluchowski dynamics, the con-
clusion can be drawn that the full dynamics evolving in the
six-dimensional phase space has the same stability prop-
erties as the reduced dynamics. In particular, in the context
of nonlinear Vlasov-Fokker-Planck equations often linear

stability analysis is used. Irrespective of the fact that in our
analysis Lyapunov’s direct method has been used to con-
struct a link between full nonlinear models and reduced
Smoluchowski models, linear stability analysis can defi-
nitely be applied to determine the stability of stationary
distributions. The advantage of our approach is that such a
linear stability analysis will involve only simplified, re-
duced partial differential operators. This point has been
demonstrated explicitly in Sec. II B 3.

It is important to realize, however, that the unstable,
nonstationary behavior of the reduced dynamics will in
general not correspond to the unstable, nonstationary be-
havior of the full dynamics. Likewise, amplitude equations
that describe the growth of unstable modes and are derived
from the full and the reduced dynamics will in general not
be equivalent.

We studied bunch particle distributions of the Haı̈ssinski
type. We showed that they correspond to extrema of free
energy functionals. Continuous distributions have been
found to be stable and to correspond to free energy minima.
We demonstrated that, at the critical parameter 	c at which
continuous solutions cease to exist, the free energy minima
become maxima or saddle points. That is, discontinuous
stationary distributions that may exist for 	 < 	c will
correspond to unstable distributions. These results are in
line with previous analytical and numerical studies that
have been shown that for 	 > 	c stable Haı̈ssinski distri-
butions exist, whereas for 	 < 	c beam dynamics defined
by the Vlasov-Fokker-Planck equations of the Haı̈ssinski
type becomes unstable [8,9].

We would like to note that for the class of nonlinear
Vlasov-Fokker-Planck equations addressed in our study
nonlinear Smoluchowski equations can be derived simply
by putting dp=dt � 0 or by more sophisticated methods
(see Appendix C). For more comprehensive beam dynamic
models it is however not at all clear whether associated
Smoluchowski models can be derived. This is because it is
still an open question how to derive in general
Smoluchowski equations from nonlinear Fokker-Planck
equations. In this context, we would also like to mention
that our analysis was developed for many-particle systems
and beam dynamic instabilities involving symmetric self-
interaction potentials and odd wake field functions, respec-
tively. Future work may be devoted to clarify to which
extent our approach can be generalized to account for
asymmetric self-interaction potentials and wake field func-
tions exhibiting even components.

APPENDIX A: DERIVATION OF EQ. (10)

In general, differentiating a free energy functional
F�P�p;q; t�� with respect to time t yields

 

d

dt
F �

Z �F
�P

@P
@t

dp3dq3: (A1)

Substituting now the special case of Eq. (9) into Eq. (A1),
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we obtain
 

d

dt
F � �

Z �F
�P
r � �IP�dp3dq3

� �
Z �F
�P

@
@p

�
P
@
@p

�F
�P

�
dp3dq3: (A2)

Integration by parts gives us
 

d

dt
F �

Z
P
�
r
�F
�P

�
� Idp3dq3

� �
Z
P
�
@
@p

�F
�P

��
@
@p

�F
�P

�
dp3dq3: (A3)

Using Xth � �r�F=�P, Eq. (A3) is equivalent to
Eq. (10).

APPENDIX B: DERIVATION OF EQ. (13)

Since F is a functional of P, we have @P=@t � 0)
dF=dt � 0. Next, let us show that the opposite implication
holds as well. It is clear from Eq. (12) that if F is stationary
(i.e. if dF=dt � 0 holds) then we have @�F=�P@p � 0.
Next, we consider a probability density P�p;q; t� that
might depend explicitly on time t but leaves F�P� constant
in the sense that we have @�F=�P@p � 0. Substituting
@�F=�P@p � 0 into Eq. (9) we see that such a probability
density P�p;q; t� must satisfy the Liouville equation

 

@
@t
P�p;q; t� � �r � �IP�: (B1)

From Eq. (B1) it follows that the probability density
P�p;q; t� either corresponds to a stationary one or de-
scribes a deterministic system. In other words, Eq. (B1)
exhibits two kinds of solutions: (i) @P=@t � 0 and (ii)
@P=@t � 0 with P�p;q; t� � h��q� q�t����p� p�t��i
and dq=dt � @H=@p, dp=dt � �@H=@q. Deterministic
solutions of type (ii) are in contradiction with the self-
consistent Langevin equation (3). That is, the system can-
not be a deterministic one for dF=dt � 0. Therefore, we
are left with solutions of type (i) and we conclude that the
probability density P corresponds to a stationary one
whenever the condition dF=dt � 0 holds: dF=dt � 0)
@P=@t � 0. Note that the same conclusion can also be
drawn using an alternative argument as proposed in [17],
Sec. 6.1 (last paragraph).

APPENDIX C: DERIVATION OF EQ. (21) IN THE
HIGH FRICTION LIMIT

In this Appendix, we consider the high friction limit
�! 1. We will show that in this limiting case the
Smoluchowski equation (21) can be derived from the non-
linear Vlasov-Fokker-Planck equation (4) using the tech-
niques developed for ordinary linear Fokker-Planck
equations [33].

In a first step, we eliminate the operator @=@p in Eq. (4)
by means of the differential operator @=@q. To this end, we

integrate left and right-hand sides of Eq. (4) over a straight
line C defined by p�s� � ��q�s� � q0� in the six-
dimensional phase space �p;q�. Then all integrals of the
form

R
C�@=@p� �@=@q�A�p;q�ds will vanish. Therefore,

we substitute in Eq. (4) @=@p like

 

@
@p
�

�
@
@p
�

1

�
@
@q

�
�

1

�
@
@q
: (C1)

Thus, we obtain

 

@
@t
P�p;q; t� �

�
@
@p
�

1

�
@
@q

��
�
m

p�
@V
@q
� 2�kBT

@
@q

�
P

� �kBT








 @
@p
�

1

�
@
@q









2
P

�
1

�
@
@q

�
@V
@q
� kBT

@
@q

�
P: (C2)

Integrating along C and putting t � �� with P�p;q; t� !
P�p;q; �� yields

 

d

d�

Z
C
P�p;q; ��ds �

Z
C

@
@q

�
@V
@q
� kBT

@
@q

�
Pds: (C3)

Next, we assume that the kinetic dynamics is in equilib-
rium and consider distributions of the form P�p;q; �� �
�st�p���q; �� with �st�p� defined by Eq. (5). Multiplying
left- and right-hand sides of Eq. (C3) with �2 and substi-
tuting p � ��q� q0� into �st�p�, we get expressions like
�2�st�p� � �2�2�kBT=m�3=2�
expf��2�q�q0�

2=�2mkBT�g. In the high friction limit
�2 ! 1 these expressions converge to the Dirac delta
function ��q�q0� such that Eq. (C3) becomes

 

d

d�

Z
��q� q0���q; ��dq �

Z
��q� q0�

@
@q

�
@V
@q

� kBT
@
@q

�
��q; ��dq;

(C4)

where we have replaced ds by dq. Consequently, we have

 

d

d�
��q0; �� �

@
@q0

�
@V
@q0
� kBT

@
@q0

�
��q0; ��: (C5)

This result holds for all coordinates q0, which implies that
we can drop the index 0. Consequently, Eq. (C5) which is
equivalent to Eq. (21) is the Smoluchowski equation of
Eq. (4) in the sense that it can be obtained from Eq. (4) in
the high friction limit �! 1. Note that the derivation
presented here cannot be carried out for nonlinear
Fokker-Planck equations in general. For example, as we
have seen above, the procedure requires that the nonline-
arity involves only the reduced probability density ��q; t�
and does not involve a momentum variable p.
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APPENDIX D: LINEAR STABILITY ANALYSIS
BASED ON EQ. (36): RIGOROUS PROOFS

Following [18], Sec. 5.1.2, we prove that a perturbation
~� decreases or increases as a function of time by studying
how appropriately defined norm measures k~�k evolve with
time. To this end, let us first assume that the inequality
	�st�q� �Q> 0 holds for any q. In this case, we define the

norm k~�k �
��������������������������
�2Fq��st��~��

q
that involves �2Fq as defined

in Sec. II B 2 and reads explicitly

 k~�k �

������������������������������������������������Z �
	�

Q
�st�q�

�
~�2�q�dq

s
: (D1)

Differentiating k~�k with respect to �, we obtain

 

d

d�
k~�k �

1

k~�k

Z �
	�

Q
�st�q�

�
~��q; ��

@
@�

~��q; ��dq: (D2)

Substituting Eq. (36) into Eq. (D2) and using integration by
parts, we obtain
 

d

d�
k~�k ��

1

k~�k

Z
�st�q�

�
@
@q

�
	�

Q
�st�q�

�
~��q;��

�
2
dq
 0:

(D3)

We see that the norm decreases—as indicated. Since the
most right-standing equal sign in Eq. (D3) only holds for
~� � 0, we conclude that the square of the norm k~�k2

decreases strictly monotonically and converges to zero
when the perturbation ~� converges to zero everywhere.

Next, let us assume that the inequality 	�st�q� �Q< 0
holds for any q 2 I with I � ��c; c� and c > 0. In this
case, we study the evolution of a perturbation ~��q� which
vanishes for q =2 I. That is, we require that ~��q� solves
Eq. (36) under the boundary conditions ~��q � 
c� � 0.

Then, we define the norm k~�k �
������������������������������
��2Fq��st��~��

q
(see also

[18], Sec. 5.1.2) that reads explicitly

 k~�k �

���������������������������������������������������������
�
Z c

�c

�
	�

Q
�st�q�

�
~�2�q�dq

s
: (D4)

Differentiating k~�k with respect to �, we obtain

 

d

d�
k~�k � �

1

k~�k

Z c

�c

�
	�

Q
�st�q�

�
~��q; ��

@
@�

~��q; ��dq:

(D5)

Substituting Eq. (36) into Eq. (D5) and using integration by
parts, we obtain
 

d

d�
k~�k �

1

k~�k

Z c

�c
�st�q�

�
@
@q

�
	�

Q
�st�q�

�
~��q;��

�
2
dq	 0:

(D6)

We see that the norm increases with time which indicates
that the perturbation increases as a function of time.
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