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Abstract

Analytical expressions for short-time correlation functions, diffusion coefficients,
mean square displacement, and second order statistics of many-body systems are
derived using a mean field approach in terms of nonlinear Fokker-Planck equa-
tions and Vlasov-Fokker-Planck equations. The results are illustrated for the Desai-
Zwanzig model, the nonlinear diffusion equation related to the Tsallis statistics, and
a Vlasov-Fokker-Planck equation describing bunch particles in particle accelerator

storage rings.

PACS: 52.25.Dg; 05.70.Ln; 05.40.-a

1 Introduction

Mean field theory is a fundamental approach to study stochastic properties of

many-body systems. In particular, using mean field theory first order statis-

1 e-mail: tdfrank@uni-muenster.de

Preprint submitted to Elsevier Preprint 19 January 2005



tics of many-body systems can be determined in terms of stationary and
transient distribution functions. Famous examples of dynamical mean field
models are the Boltzmann equation [1], Vlasov equations [2—6], and nonlinear
Fokker-Planck equations [7—26]. These equations have in common that they
are nonlinear with respect to density measures. The nonlinearities reflect the

interactions between the subsystems of the corresponding many-body systems.

While the first order statistics of dynamical mean field models has extensively
been studied, comparatively little is known about the second order statistics
and time correlation functions. In this context, Vlasov-Fokker-Planck equa-
tions [27-36], and nonlinear Fokker-Planck equations are of particular interest
because they allow for an interpretation in terms of generalized self-consistent
Langevin equations [23,37-41]. That is, trajectories of Brownian particles can
be computed for this kind of dynamical mean field models. Consequently, as
far as Vlasov-Fokker-Planck equations and nonlinear Fokker-Planck equations
are concerned, second order statistics and time correlation functions can at
least be determined numerically by solving appropriately defined Brownian

dynamics models.

Analytical expressions for time correlation functions have been derived previ-
ously in the context of generalized fluctuation-dissipation theorems [42-44]. In
addition, a hierarchy of differential equations has been derived involving time
correlation functions of different order. In some cases this hierarchy is closed
and can be solved, in others it cannot [45]. Finally, there are some special
cases in which exact expressions for two time-point joint probability densities
of dynamical mean field models can be derived, that is, in which analytical
expressions for the second order statistics of dynamical mean field models can
be found [14,46]. However, a general analytical discussion of the second order
statistics of mean field models in terms of nonlinear Fokker-Planck equations

and Vlasov-Fokker-Planck equations has not been carried out so far.



In the present study, we will derive analytical expressions for second order
statistics and time correlation functions for short time differences. In doing
so, we will also determine diffusion coefficients relevant on short time scales.
The focus will be on dynamical mean field models given in terms of nonlin-
ear Fokker-Planck equations (sections 2.1 and 2.2) and Vlasov-Fokker-Planck

equations (sections 2.3 and 2.4).

2 Short-time correlation functions and second order statistics
2.1 Nonlinear Fokker-Planck equations: general case

In line with mean field theory, we describe many-body systems in terms of the
behavior of a single subsystem (u-space description). Accordingly, let X (¢) €
) denote a time-dependent state variable of a subsystem of a many-body
systems, where X (¢) is defined on a single subsystem phase space 2 at every
time point ¢. We assume that X (¢) has distribution u(z) at an initial time
t = tp and denote that single subsystem probability density by P(z,t;u) =
(6(x — X (t))), where (-) is an ensemble average and §(-) is the delta function.
We further assume that P(z,t; u) satisfies a nonlinear Fokker-Planck equation

of the form

D platiw) = -2 Dy, PYP + 2= Dy(, P)P (1)
at ) Uy - a$ 1\Ly 8$2 2\4, .

In what follows, the focus will be on many-body systems that can be described
in terms of strongly nonlinear Fokker-Planck equations [14,41,47], which means

that the transition probability density P(z,t|x',t';u) of X (t) satisfies

0
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In particular, in the stationary case, we have P(z,t;u) = Py(z) and

0
— Py(z,t|2',t';u = Py) =

ot
—ED (z, Py(z)) + a—2D (z, Py (z))| Ps(z,t|2',t'; Py) (3)
9z 1Ly Lst 8532 2\ Lst sty sy Lst) -

2.1.1 Natural boundary conditions

Assuming natural boundary condition and €2 = IR, the transition probability
density Py(z,t" + Atla’,t'; Py) for small time differences At is determined
by the short-time propagator P (z, At|z') like Py(z,t' + At|2',t'; Py) =
PO (z, At|z') + O(At?) with [48-50]

0 N 1 [ — 2" — Di(2', Py(z')) At]?
POz, Atls") = \/ 4Dy (7, Py (7)) At exp{_ 4D, (2", Py (2')) At } '
(4)

Consequently, the second order statistics of the many-body systems under

consideration can be computed from

Py (z,t 4+ At; 2’ t'; Py) = PO(x, At|z") Py(z') + O(A#?) . (5)

Note that from this result for arbitrary functions f(z,y) the correlation func-
tions (f(X(t+ At), X(¢))) can be determined up to terms of order A#*. In
particular, autocorrelation functions such as Cp,, = (X" (t + At) X™ (1)), can
be computed from Eq. (5) for At small. Let us dwell on the case m =n =1

with

C(At) = (X (t+ At)X(t),, = //xx'Pst(x,t' + At; o't Py) deda’ .
Q0
(6)

First, we note that the relation [, x PO (z, At|2') dz = 2’4 D, (z, Py) At holds

because the short-time propagator is a Gaussian function. Consequently, we



get C(At) = (X?), + At [ xD:(z, Ps) Py (z) dz+ O(A#?). Multiplying Eq. (1)

in the stationary case with 22 and integrating with respect to z, gives us

/ 2Dy (2, Py) Py (2) dz = — / D (, Po) Pa() da . (7)

This implies that

C(At) = C(0) — (Dy),, At + O(AF?) . (8)

Accordingly, the short-time autocorrelation function C()(At) is simply given

by C©(At) = C(0) — (D,),, At.

Of particular interest is the statistics of increments 6 X (At) = X (t+At)—X (¢).
In general, the mean square displacement (0.X (At)?),, = ((X (¢t + At) — X ()]?)
is related to the autocorrelation function C(At) like (0.X (At)?),, = 2[C(0) —
C(At)]. Consequently, from Eq. (8) it follows that

st

(6X(At)*) =2(Dy), At + O(AP) (9)

st

We may define the time-dependent (or running) diffusion coefficient D®)
on the basis of the mean square displacement (§X (At)?) like (60X (At)?) =
JE' DB dz [51,52], which implies that the short-time diffusion coefficient is
given by D© = L1imp,, (6X (At)?),, /At. Then, we find

DO = (Da(z, Pst))g, - (10)

2.1.2  Special case: additive noise

For the special case Dy = @ the results derived above can be obtained in
an alternative fashion. We would like to mention this second approach be-

cause it is this second approach that can also be generalized in order to treat



Vlasov-Fokker-Planck equations (see Sec. 2.3). Our departure point is the self-

consistent Langevin

S X(1) = Dy, Pa) gy + QT (11)

corresponding to the strongly nonlinear Fokker-Planck equation (1) [14,41,47].
Here, T'(¢) denotes a Langevin force [48] normalized with respect to the delta
function like (I'(¢)['(¢')) = 26(t — t'). Note that the mean of I'(¢) vanishes.
Moreover, I'(¢) is an additive fluctuating force which implies that if we aver-
age over realizations of I'(¢) under the condition that the realization of X ()
satisfy some constraints, then the average vanishes as well. In short, due to
the additivity of I'(¢) all conditional averages of I'(¢) involving constraints
with respect to X (¢) vanish [53]. Now let (-)|,—, denote the average over all
realization of a statistical ensemble given that X (¢) equals = at time ¢. Then,
since (I'(¢))|y(y=, = 0 vanishes as discussed before, from Eq. (11) it follows

that

= Di(z, Py) - (12)

Next, recall that a differential equation of the form dA(t)/dt = f(t) can be
transformed into A(t+ At) = A(t) + At f(t) + O(At?). Consequently, Eq. (12)

can be transformed into

(X(t+ A1) x(y=e = = + Di(x, Py(x)) At + O(AL?) (13)

Multiplying this relation with x Py (z) and integrating with respect to x, gives
us C(At) = (X?%),, + At [oxD1(z, Ps) Py (z) dz + O(At?) again because of
(X(t+A)X (1) = Joz (X(t+ At))|x(sy=s Lot (x) dz. As argued in Sec. 2.1.1
this leads to Eqgs. (8,...,10).



2.1.8 Reflective and mized boundary conditions

In order to emphasize the relationship (10) between short-time diffusion co-
efficients D and intrinsic diffusion coefficients D, of many-body systems,
we consider now many-body systems involving reflective boundary conditions
with Q = [a, b] (and a < b) and mixed boundary conditions with Q = [a, 0] or

2 = [—00, b], where a and b correspond to reflective boundaries, respectively.

First, we realize that Eq. (3) holds for joint probability density Py (z,t; 2',t'; Pst)

in form of

82 Py (z,t' + At; o', t'; Py) =
0 0?

l——D1($, Pst) + @

8 DQ(ﬁE, Pst)‘| Pst(x, tl -+ At, .’Z;,, tl, Pst) (14)
T

If we multiply Eq. (14) with z and 2’ and integrate with respect to = and 2/,

we obtain

EC (At) //a:'D1 x, Py) Py (z, ' + At; o', t'; Py) dz da’ (15)
Q0

for At > 0. In the limit At — 0+ (limit from above), we get

4 o

A7 zD1(x, Py) Py (z) dz . (16)

At—>0+

Since Eq. (7) also holds for the aforementioned reflective and mixed boundary
conditions, Eq. (16) can be written as

4 o

= = — (D), (1)

At—0+

(see also [54]). From Eq. (17) we conclude again that Egs. (8,...,10) hold.



2.2 Nonlinear Fokker-Planck equations: examples

2.2.1 Desai-Zwanzig model

We first illustrate our results for the Desai-Zwanzig model [55]. Accordingly,
we consider a many-body systems with a single subsystem probability densities

that is defined on {2 = IR and satisfies

0 0 0?
—P(z,t;u) = —— (az — b2® — k(z — (X)) P+ Q=P 1
P (x,t;u) 5 (a:v bz’ — k(x — ( ))) + anQ (18)
for a,b,k, @ > 0. The drift and diffusion coefficient read D;(z, (X)) = ax —
bx® —k(z— (X)) and D, = Q, respectively. The stationary probability density

is given by

Py(z) = — exp 0 (19)

; {_bx4/4 —(a—K)z2/2 — mm} |

where Z is normalization constant and m is the order parameter m = (X).
The order parameter m can be determined by means of the self-consistency
equation m = [, xPy(z) dz. For k/Q larger than a critical value the system

is bistable and one finds (X) , = m with m # 0 [55].

Using Egs. (4), (5), and (19), the second order statistic is found as

Py(z,t' + Atya',t';m) =

exp {_ [z — 2’ + At(bz'® — (a — K)z' — km)]> + At[br'* — 2(a — k)22 — drkma’] }

4QAt

Z\/AnQAt
+O(AP?) .

Eq. (20) provides us with an analytical expression for the short-time second
order statistics of order At. Since we are dealing with a many-body system
driven by additive noise, the short-time diffusion coefficient D(® reads D =

Q (see Eq. (10)). Consequently, (6X?(At)) is given by (6X?(At)) ~ 2QAt

(20)



for small At. Fig. 1 illustrates (0.X?(At)) as function of At as obtained from
(6X?(At)) = 2QAt and as obtained from a numerical simulation of the Desai-
Zwanzig model (18).

Insert Fig. 1 about here

2.2.2 Plastino-Plastino model

A benchmark model in the theory of nonlinear Fokker-Planck equations is the
model proposed by Plastino and Plastino [56] that is closely related to the
generalized nonextensive entropy proposed by Tsallis [57-59] and to diffusion
processes through porous media [38,60-62]. According to the Plastino-Plastino

model the single subsystem probability density evolves like

2P( ¢ )—3 P(z, t; )+Q8—2Pq (21)
ot DW= G AT B TG

for v > 0 and €2 = R. The stationary probability density reads

Dst
[1+~DX% (1 — ¢)22/(2¢Q)] /(9

Py(z) = (22)

and corresponds to a classical solution with finite variance for ¢ € (1/3,1)
Here, Dy, is a normalization constant defined by Dy = [y/(2¢Qz2)]"/("+9) and
2 = \/WF[O.MI +q)/(1—¢q)]/T[1/(1 —q)] [63]. In the stationary case,
we have D; = —vyz, Dy = QD% '/[1 +vDy (1 — ¢)22/(2¢Q)]/ 9, and
transition probability densities satisfy the multiplicative noise Fokker-Planck

equation [38,45]

0 0
— Py (x, t|x',t'; Py) = =—vyxPy(x, t|2', t'; u)

ot T o
(1713_2 1+ ’YDslt_q(l - q)7?

+QDst 8332 QQQ Pst(.fﬂ,t‘l',,tl;Pst) -

(23)



Note that in the limit ¢ — 1 the Plastino-Plastino model given by Eqgs. (21)
and (23) reduces to the Fokker-Planck equation of an Ornstein-Uhlenbeck

process and the stationary distribution (22) becomes a Gaussian distribution.

Using Egs. (4), (5), and (22), the second order statistic of the Plastino-Plastino

model can be computed from

Py(z,t' + At;a' ' Py) =

exp {_ _ [¢ — o' + 7o' At]? }
4QDS 1 + DL (1 — ¢) [ 2/ (29Q)] /(-9 At

VAr QDI AL 1+ DL (1 = g/ (24@)] " VY

From Eq. (10) it follows that the short-time diffusion constant is given by

+ O(A#?) . (24)

D(O) = <D2>st == <XD1>st = 7<X2>st - rYKSt ’ (25)

where K denotes the variance of the stationary distribution such that

(6X (A1)?) = 27Ky At + O(AF) . (26)

Here, K is defined by Ky = [2Q2{~9 /4]*/(179) /(3g—1) [45]. Let us compare
this result with the exact expression for the mean square displacement. For
the Plastino-Plastino model the autocorrelation function for arbitrary At can

be found as C(At) = Ky exp{—7yAt} [45]. Consequently, we have

(6X (At)?) = 2K (1 — exp{—yAt}) (27)

We see that Eq. (26) indeed describes the correct linear approximation of the

exact result (27) for small values of At.

10



2.8  Vlasov-Fokker-Planck equations: general case

Having discussed univariate nonlinear Fokker-Planck equations that can be
cast into the generic form (1), we turn now to a generic class of multivari-
ate nonlinear Fokker-Planck equations: nonlinear Fokker-Planck equations of
the Vlasov-type. In order to grasp the essential features of Vlasov-Fokker-
Planck equations, we assume that the dynamics of a single subsystem is de-
fined on a two-dimensional phase space = IR? spanned by the general-
ized momentum p and position ¢ of the subsystem. Let p(p,q,t) denote the
time-dependent subsystem density. The total single subsystem Hamiltonian
H = Hy + Hyr (energy per subsystem) is composed of the free single sub-
system Hamiltonian Hy(p,q) and a subsystem-subsystem interaction Hamil-
tonian Hyr(q) = o V(g—¢')p(¢')dq', where V is the interaction potential and
p(q,t) = [ p(p,q,t) dp. The Vlasov equation for the evolution of p reads [2-6]

9  90H 8 0H
o  00H 00H _ 28
at” T ogow” " ap og (28)

In order to account for damping and fluctuations due to the contact of the
many-body system with its environment, we add on the right-hand side of Eq.
(28) a Fokker-Planck collision operator [27-36], which gives us the Vlasov-
Fokker-Planck equation

o _O0H 99H 0 . 0 (29)
o’ Togap? apagP T TaptP T T ape?

with v, D > 0. As shown in [37,47], we may interpret the Vlasov-Fokker-Planck

equation in terms of the Brownian dynamics model

0 0H,

atq_ op ’ (30)
a aH() a ! ! ! !

=0 = — 4¢P - VDT 1
5" 9 an/v(q ¢)P(¢',t)dp’'dqd — yp + (t), (31)

11



where P(p,q,t) = (6(p — p(t))0(q — q(?))), P(q,t) = (6(q — ¢(t))), and p(p, ¢, ) =
My (6(p —p(t))d(q — q(t))). That is, My = [q [q p(p, q,t) dpdg corresponds to

the total mass of the many-body system under consideration.

Since we are dealing with an additive noise source, we proceed now as in
Sec. 2.1.2 by introducing the conditional average (-) |pw)=po,q(t)=go (i short:

() lpo.go)- Then, from Eq. (30) it is clear that

&Hy (po,
(gt + AD) g0 = @0+ At% +0(AP) (32)
and
(p(t + A)) ], 40 = Po
8'H ) a ! ! !
+At —% - M, 8—(1/‘/(61— ¢)P(¢,t)dq| —ypo| + O(AL?) .
qo0

(33)

In the stationary case, we need to replace P(q’,t) in Eq. (33) by Py (q’). Mul-
tiplying Egs. (32) and (33) with ¢ Ps;(po, go) and po Py (po, o) and integrating
with respect to pg and ¢o, we obtain the correlation functions {g(t + At)q(t)),
(g(t + At)p(t)), (p(t+ At)q(t)), (p(t + At)p(t)) — just as in Sec. 2.1.2. The

result is
(e + 80a(0), = (), + e (70 +0(a) (30
oH, 2
(alt + A0p(D) = (P(D)a(D)) + At <p%> Lo(APR), (35)

(bl + Ag(D), = (PO, — At Kq(t) S ‘-’(t”> o <p<t>q<t)>st]

+0(A) (36)
(olt + A0p(B) = () — At Kp(t) L) > y <p2>st] +0(aR)

(37)

12



with H' = Hy(p,q) + Mo [ V(¢ — ¢')Pit(¢') dz. In order to evaluate these
relations, we first note that in the stationary case the Vlasov-Fokker-Planck

equation (29) for ps(p,q) = MyPy(p, q) reads

0 0H, 0 OH' 0 0?
29%p, - 9 p. =y pPy+ DDy .

op?
Multiplying Eq. (38) with ¢? and integrating with respect to p and g, we get
(g0H,/0p) = 0 which implies

(a(t+ At)g(t))y, = (4°)  + O(AF) . (39)

Multiplying Eq. (38) with pg and integrating with respect to p and g, we
get (p0H,/0p) = (q0OH'/dq) + 7 (pq),, which implies that {q(t + At)p(t)),, =
— (p(t + At)q(t)),, + O(At?). Note that the two correlation functions are not
only equivalent up to terms of order At? but they are exactly the same func-
tions. The reason for this is that p is an odd variable, whereas ¢ is an even vari-
able [48,49,64]. Therefore, if we reverse time the expression (p(¢)g(t')) becomes
— (p(—=t)g(—t')). In the stationary case time reversal does not change the ex-
pectation value (p(t)g(t')), which means that (p(¢)q(t')),, = — (p(—t)g(—t'))-
In particular, for t = t' + At we have (p(t' + At)q(t')),, = (p(At)q(0)),, =
—(p(=At)q(0)), = — P(0)g(At))y, = — (P()q(t' + At))y,- As a result, we

have

(gt + At)p(t))g, = — (p(t + At)q(t))g (40)

(see also [48, Sec. 7.3]). Finally, multiplying Eq. (38) with p? and integrating
with respect to p and ¢, we get (pdH'/dq) = —v (p?), + D, which implies

(p(t+ AD)p(1))y, = () — DAL+ O(AP) . (41)

Using Egs. (39,...,41), one can show that the statistics of the increments

dp(At) = p(t + At) — p(t) and 0q(At) = q(t + At) — g(t) satisfies

13



(8q(At)*) =0(Ar), (42)
(0q(At)dp(At))y, =O(AL?) (43)
<5p(At)2>st =2DAt + O(AP?) . (44)

Note that there is no linear term in Eq. (42) because of the aforementioned

relationship (g(t + At)p(t)), = — (p(t + At)q(t)),-

2.4 Vlasov-Fokker-Planck equations: bunch-particle dynamics in storage rings

We apply the general results of the previous section to the particular case of
the physical system represented by electron bunches in storage rings. Elec-
tron bunches induce electromagnetic fields, which act back on the particle
bunches and are referred to as wakefields [65,66]. Using the Vlasov theory of
many-body systems, these wakefields can be modeled in terms of subsystem-
subsystem interaction Hamiltonians Hyr. Taking damping due to radiation
losses into account as well as fluctuations, we end up with a description of par-
ticle bunches in terms of Vlasov-Fokker-Planck equations (29) [27-36]. In what
follows, we study a simple model for the bunch-particle dynamics in storage
rings that has been discussed in more detail in [47]. Accordingly, we assume a
quadratic free energy Hamiltonian Hy(p, q¢) = p®/2 + ¢*/2 and a short-ranged
interaction potential V (¢—¢') = kM '6(g—q'), where x describes the strength
of the impact of the wakefield and can assume both positive and negative val-
ues. In this case, the self-consistent Langevin equation given by Egs. (30) and

(31) becomes

0

5P (45)
0 0

GP="4- na—qP(q, t)—yp+VDT(t) . (46)

14



The stationary solution factorizes: Py (p, q) = Pst(p) Pst(q). Pst(q) corresponds
to a Haissinski distribution, whereas Py (p) is a Gaussian distribution Py (p) o
exp{—yp*/(2D)} with (p), = 0 and variance (p?), = D/v [47]. Note that
for negative x the Haissinski distribution Py (q) does not necessarily exist.
However, one can determine a boundary value k. < 0 such that for all k > &,
the Haissinski distribution is well-defined [67,68]. Since we have (p0H,/0p), =
(p*), = D/7v and (pg),, = 0, from Egs. (42,...,44) it follows that

(at + AOp(D),, = gm +O(AR) (47)
(ot + A)p(2)., = g _ DAL+ O(AB) | (48)
(0p*(At)) =2DA+O0(AP) . (49)

As shown in Fig. 2 for small At the mean square displacement (p(At)?)
indeed behaves like (dp(At)?) ~ 2DAL.
Insert Fig. 2 about here

3 Conclusions

We have studied the second order statistics of many-body systems using
mean field theory in terms of nonlinear diffusion equations such as nonlin-
ear Fokker-Planck equations and Vlasov-Fokker-Planck equations. Analytical
expressions for two-time point probability densities, time correlation func-
tions, mean square displacements and diffusion coefficients have been derived
for stationary systems on small time scales. In doing so, we have shown that
for a large class of systems the mean square displacement on small time scales
is proportional to the averaged diffusion coefficient of the relevant Brownian

subsystem dynamics.

In particular, our analysis has shown that the mean square displacement of

15



particle systems described by nonlinear diffusion equations increases linearly
on small time scales. This is in contrast with the fact that the variance of in-
tially delta-distributed particle distributions increase nonlinearly with respect
to time in the case of systems described by the nonlinear diffusion equation
[38,56,60—62]. In line with earlier considerations [41], we see from this exam-
ple that in the context of the mean field approach to many-body systems
we need to distinguish carefully between the transient behavior (as described
by time-dependent single-time point probability densities) and the station-
ary transition dynamics (as described by stationary two-time point transition

probability densities).

Moreover, we have seen that for short time differences subsystem-subsystem
interactions in many-body systems described by Vlasov-Fokker-Planck equa-
tions do not determine the time correlation functions of momentum and po-
sition variables. We found that autocorrelation functions of momentum vari-
ables and cross-correlation functions of momentum and position variables are
determined by damping and diffusion constants. That is, the dissipative part
of the system dynamics dominates the stochastic behavior of the many-body
systems in this time domain. Finally, we have found that autocorrelation func-
tions of position variables are of second or higher order with respect to time-
differences. Consequently, in this regard, many-body systems with interact-
ing subsystems exhibit qualitatively the same behavior as many-body systems
with non-interacting subsystems as described by the Kramers equation, where

autocorrelation functions of position variables are related to time-differences

At like A#® [69).
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Figure captions:

Fig. 1: Mean square displacement (MSD) (6X(At)?),, of the Desai-Zwanzig
model (18) as a function of At in the bistable regime. Solid line: analyti-
cal expression (60X (At)?), = 2QA¢t valid for short time differences A¢. Dia-
monds: exact result obtained by solving the Desai-Zwanzig model numerically
by virtue of the corresponding self-consistent Langevin equation (11) using an
Euler forward scheme (single time step 107%; number of realizations 30000;
random numbers via Box-Muller). Parameters: a = b= 1.0, k = 2.0, = 0.5.
Initial distribution u(z) = 6(x — 1). Before computing (6.X (At)?),, the Euler
forward scheme was iterated repeatedly until the system settled down in the

stationary regime with order parameter m ~ 0.7.

Fig. 2: Mean square displacement (6p(At)?),, of the Brownian dynamics model
given by Egs. (45) and (46) as a function of At. Solid line: short-time approx-
imation (p(At)?),, = 2DAt. Diamonds: exact result obtained by solving the
model numerically using the same simulation scheme as in [47] (single time
step 0.005; number of realizations 5000). Parameters: v = 1.0, k = 15.0,
D =35.0.
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