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Abstract

We propose a novel method to identify noise sources of stochastic systems with
time delays. In particular, we demonstrate how to distinguish between additive
and multiplicative noise sources and to determine the structure of parametric and

multiplicative noise sources of time-delayed human motor control systems.

PACS: 87.19.St, 02.30.Ks, 05.45.Tp

1 Introduction

Dynamical systems that involve time delays have been studied in various dis-
ciplines ranging from laser physics to biophysics [1-6]. In particular, many
biological systems exhibit time-delayed control mechanisms that arise due to
the transport of matter, energy, and information with finite propagation ve-

locities [7-14] (for a recent review see [15]). Delay systems in general and
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biological systems in particular are typically subjected to noise sources. Dif-
ferent types of noise sources have been considered. Stochastic resonance has
been found in delay systems with additive noise [5]. Multiplicative noise can
lead to noise-induced drifts in time-delayed systems [16,17]. Multiplicative
and parametric noise is assumed to be an intrinsic property of neural con-
trol mechanisms in general [18]. In particular, there is evidence that the pupil
light reflex [11,19], pointing movements [12] and balancing movements [14]
involve time-delayed control mechanisms with parametric and multiplicative
noise. It is important to realize that multiplicative and parametric noise may
support the functioning of biological systems (e.g. increased sensitivity due to
stochastic resonance, noise-induced corrective movements [14], minimization
of the accuracy-flexibility trade-off [20]). That is, noise sources may play a
constructive role in biological systems. In view of these considerations, we can
only obtain a complete understanding of stochastic delay systems if we are
able to identify both their deterministic and stochastic constituents. Specifi-
cally, the challenge is to determine the evolution equations of experimentally
observed stochastic delay systems. In contrast to several useful methods that
reconstruct deterministic evolution equations of delay systems [21-23], we will
show here how to determine the type and the structure of noise sources of de-
lay systems. To this end, we will exploit, on the one hand, the Fokker-Planck
approach to stochastic delay systems introduced by Guillouzic et al. [17,24—26]
and, on the other hand, a recently developed data analysis method for Markov

diffusion processes [27-30].

Let us consider stochastic delay systems described by a state variable X that

satisfies the stochastic differential equation

%X(t) = h(X, X,) + (X, X,)T(%) (1)

for ¢ > 0. Here, X, denotes the time-delayed state variable X, (¢) = X (¢t — 7).
For t € [—7,0] the state variable X (¢) is given by X (¢) = ¢(t). The variable I"



denotes a Langevin force with (I'(¢)['(¢')) = d(t — t') [31,32]. Accordingly, the
whole expression Y = g(X, X;)['(¢) describes the noise source of the system
under study. For g = const. we deal with additive noise. If g depends on X or
X, we deal with multiplicative noise. Systems with parametric noise will be
studied in the approximation of multiplicative noise systems [14,23], which is
well-known from ordinary stochastic systems [32] (for alternative approaches,
e.g., the evaluation of expressions like I'?, see [33]). The noise term Y can be
interpreted according to the Ito and Stratonovich calculus [16,17,26] — just as
in the case of systems without delay [31,32]. In what follows, we will use the
Ito calculus. Using the method of steps, Eq. (1) can be solved iteratively in
time intervals of width 7. However, the time variable can be treated in either

absolute or relative time.

First, let us discuss the method of steps with respect to an absolute time
frame. Then, the time variable of the original problem (1) is used and Eq. (1)
is solved iteratively for ¢t € [T, T + 7) with T'= N7 and N = 0,1,2,... [34].

It is clear that at the interfaces between two intervals the limiting case

li_I)%P(:r,T+e|x',T—e) =§(x —z') (2)

holds, where P(z,t|z’,t') denotes a conditional probability density.

Second, let us consider the method of steps with respect to a relative time
frame. Then, a relative time variable z € [0, 7) is used that is related to ¢ by
z =t — N7. By means of z, Eq. (1) can be written as the ordinary (N+1)-

dimensional Ito-Langevin equation

d

5 X(2) = h(X(2) + G(X(2)) - T(2) (3)
for X = (Xns,--.,Xo), where the vectors h and T' are defined by hy =
h(Xkr, X(g-1)-) and T' = (U, ..., ) and G describes a (N+1) x (N+1)-
matrix with coefficients Gy, = 6k g(Xir, X(x—1)r) [17,26,35]. The components



[y satisfy ([ (2)gr(2)) = 0kpd(z — 2') and initial distributions for X can
be derived from the condition lim¢_,o P(Zgr, €|Zkr—r, T — €) = 6(Tpr — T(k—1)r),
which is the counterpart of Eq. (2), and the requirement X ,(z) = ¢(z — 7).
Both methods are equivalent because we can put X(t) = X¢(t — T) and
['(t)=Tr(t—T)fort € [T,T + 7). From Eq. (3) it follows that the evolution
of the transition probability density P(x, z|x',2’) is given by

0 0 0 0

v rony Y 1ot v o I
aZP(X,,z\X,z) . h(x)P(x, z|x', 2') + : D(x)P(x, z|x', 2')

with Dy, = i ¢°(Tkr, T(k—1)r)/2 [31,32]. That is, univariate non-Markovian
processes defined by Eq. (1) can equivalently be expressed in terms of multi-
variate Markov processes described by Egs. (3) and (4). Note that this conclu-
sion is in line with the well-known fact that there are non-Markovian processes
that can be expressed in terms of Markov processes by introducing additional
state variables [31]. The coefficients h and D can now be estimated from time
series data if the data are regarded with respect to the relative time frame
[27-30]. Using the backward transformation from the relative time frame to
the absolute time frame, we find that the drift coefficient h and the diffusion

coefficient D(z,z,) = ¢*(z,x,)/2 are given by the ensemble averages

. 1
h(z,z,) = Al%r_r)lo At (X(t+At) - X(t»lX(t):z,X.r(t):x-r ) (5)
(6)

D(z,z;)= lim L <[X(t + At) — X(t)]2>‘

At—0 2At X(t)=x,X,(t)=x,

If we deal with systems that are ergodic in the stationary case, the ensemble
averages in Eqs. (5) and (6) can be computed by means of time averages. Let

us study some generic cases in more detail.

Key features of human pointing movements can be understood from the stochas-
tic delay equation dX/dt = —atanh[cX, + /QI'(¢)] involving parametric

noise, where a, ¢, and @ are positive constants [12]. For small noise am-



plitudes (), a Taylor expansion with respect to the noise term gives us the
multiplicative noise model dX/dt = —atanh[cX,] — a \/@F(t)/ [cosh(cX,)]?
[23,32]. This tanh-model belongs to a class of time-delayed systems for which
the dynamics is dominated by time-delayed variables and can be described
by dX/dt = h(X;) + g(X,)['(¢). For systems of this kind, Egs. (5) and (6)
reduce to h(z;) = limayo[At]™" (X (t + At) — X ()|, ()=, and D(z,) =
limag0[2A8) 7" ([X (¢ + At) — X ()]*) | x, (5y=a, - We solved the tanh-model nu-
merically for the multiplicative noise case and applied the proposed data analy-
sis technique using a single stationary trajectory and time-averaging. As shown
in Fig. 1, we recovered the drift and diffusion coefficients from the time series
analysis. In particular, from Fig. 1 one can read off that the system under
consideration exhibits a multiplicative noise source. Moreover, the explicit

structure of the noise source can be read off. Next, let us consider two models

involving both time-delayed and non-delayed variables.
Insert Figure 1 about here.

First, we consider a model proposed by Tass et al. that describes periodic
tracking movements under artificially delayed visual feedback [13]. We use
the stochastic evolution equation (42) in reference [23] but replace the noise
term g = 4/QT'(¢) by a multiplicative noise term ¢(X, X;) with ¢(X, X,) =
VOI'(t) [1 — ecos(rX)]/[1 — €] with € € [0,1). The noise amplitude g(X, X,)
depends only on the non-delayed variable and has a minimum at X = 0. Note
that X is a re-scaled periodic random variable such that X € [—1,1]. We
computed a stationary trajectory from the model by Tass et al. and evaluated
the trajectory using Eq. (6) and the time-averaging procedure (see Fig. 2).
Fig. 2 shows the diffusion coefficient D(z,z,) = ¢*(x,z,)/2 as a function of
x. We see that the proposed data analysis technique nicely reconstructs the
multiplicative noise term. Fig. 2 also shows D(z,z,) as a function of x, for a
fixed value of z. From this graph and similar graphs that can be obtained for

different z-values, we conclude that the diffusion coefficient does not depend



on the non-delayed variable. Note that by means of Eq. (5), we also extracted
the drift term from the stochastic trajectory. Thus, we obtained the same

figure as shown in reference [23] (Fig. 4).
Insert Figure 2 about here.

A common feature of simple dynamical systems is that they are destabilized
by noise, on the one hand, and time-delays, on the other hand. For example,
the variability of the random walk given by dX/dt = —aX — bX, + VQT'(t)
for a,b > 0 increases monotonically with @) and 7 [34,35]. As stated in the
introduction, noise can also improve the functioning of systems. Such con-
structive impacts of noise have been found for example in balancing move-
ments. In a study by Cabrera and Milton it has been shown that multi-
plicative noise results in corrective movements in stick balancing tasks on
time scales shorter than the delay time [14]. We study here the Cabrera-
Milton model in the regime of overdamped movements, which reads dX/dt =
gsin(X) — RyX, — /QX,I'(t) for the angular variable X € [0,27] and ex-
hibits a parabolic diffusion coefficient D(z,z,) = Qz2/2 that depends on the
time-delayed variable. Here, ¢, Ry, and @) are positive constants. In order to
ease the presentation of our numerical results, we introduce again a re-scaled
periodic variable defined on [—1,1]. In addition, we add a small additive noise
to the diffusion coefficient, which gives us D(z,z,) = Q(e + z2)/2. Then,
the model equation for overdamped balancing movements reads dX/d¢ =
gsin(nX) — Ry X, — \/Q\/ﬁ ['(t) and the amplitude of the additive noise
is given by @ €/2. The stochastic differential equation was solved numerically
to obtain a single stationary trajectory. The trajectory was evaluated using
Egs. (5) and (6) in combination with time-averaging (see Figs. 3 and 4). Fig.
3 shows the drift coefficient h(z,z,) as a function of z for fixed z, and as
a function of x, for fixed = as obtained from the model equation (lines) and
from the data analysis (diamonds). In Fig. 4 we have plotted the diffusion

coefficient D(z,z,) as a function of z for z, = 0 as obtained from the time



series analysis. From this graph and similar graphs for other values of z,, we
can read off that the diffusion coefficient does not depend on z. In addition,
the amplitude of the additive noise source can be estimated. Fig. 4 also gives
D(xz,x,) as a function of z, for a fixed value of z. We see that the data analysis

yields both qualitatively and quantitatively the correct result.

Note that in the three aforementioned examples we kept the number N of gen-
erated data points fixed. We chose N such that even for the models with very
large recurrence times we obtained a good match between the reconstructed
and the original functions A and D. More precisely, we used N = 10® and we
observed that for the parameters used in our simulations (see captions of Figs.
1, 2, and 3) the Cabrera-Milton model exhibited the largest recurrence time
of all three models. For the Cabrera-Milton model we obtained an average
recurrence time of 2 x 10* with respect to the sampling rate and the most
unlikely states at (z,z,) ~ (0,41) and (z,z,) &~ (£1,0). That is, these states
were visited on the average only every 20000 data points. For the model by
Tass et al. we found an average recurrence time of about 10® with respect
to the sampling rate and the most unlikely events at (z,z,) ~ (0,%1) and
(z,z;) ~ (£1,0). Finally, for the tanh-model the average recurrence time was
about 40 with respect to the sampling rate and the states at x, = +1 (this
relatively small recurrence time seems to be due to the fact that here we are
dealing with a one-dimensional phase space, whereas in the two other cases

the phase spaces are two-dimensional).

Insert Figures 3 and 4 about here.

Having illustrated the power of the proposed data analysis method, the ques-
tion arises whether or not we can find support for our hypothesis that we
deal with stochastic delay systems described by delay Langevin equations of
the form (1). Since Eq. (1) can equivalently be expressed in terms of Eq.
(3), we need to show that the Markov property with respect to the rela-



tive time frame given by z holds. To a certain extent, this can be done [27].
First, one may show that the Chapman-Kolmogorov equation P(x, z|x", 2") =
[ P(x, 2|x', 2)P(x', 2'|x", 2") d¥ 12’ holds for z > 2’ > 2" which implies that
we deal with a Markov process. Second, one may compute Kramers-Moyal

coefficients D;, . ; (x,z) of order n given by

1.
D;, .. i, (x,2) = - lli% (Yirr —Tiyr) -+ (Yipr —Tir) Py, 2 + €]%, 2) dV Ty |
) Q
(7)
where 71, ..., 1%, are integers with 75 > 0. If the forth order coefficients vanish, it

follows from the Pawula theorem that we are dealing with a Markov diffusion

process [31,32].

We have shown how to determine the noise sources of time-delayed feedback
systems that satisfy delay Langevin equations. In doing so, we are in the
position to distinguish on the basis of experimental observations between dif-
ferent types of noise sources such as additive and multiplicative noise sources.
Moreover, the functional dependencies of noise sources on time-delayed and
non-delayed variables can be assessed. Finally, we have demonstrated that by
means of a relative time frame we are able to prove that the systems under
consideration can be described in terms of delay Langevin equations at all.
This last issue is related to the Kramers-Moyal expansion of the Chapman-
Kolmogorov equation. Since it is known from the theory of Markov processes
that there are processes for which the Kramers-Moyal expansion fails, although
the Chapman-Kolmogorov equation is satisfied (e.g. Lévy flights), there might
be a much larger class of time-delayed feedback systems to which our data anal-
ysis method can be applied (see also [36]). In this context, the Markov property
may be proven by showing that P(x, z|x', 2/; x", 2";x", 2";...) = P(x, z|x/, 2')

holds for z > 2/ > 2" > 2" > ... [29].

In conclusion, we would like to remark that the number of data points required



by the proposed data analysis technique increases with the desired resolution
of the functional dependencies of noise sources on delayed and non-delayed
state variables. Roughly speaking, from long time series the structure of noise
sources can be determined with a high resolution, whereas from short time
series we can obtain at best hints about the type of noise sources involved in
the systems being studied. More precisely, the crucial issue is how often on the
average the systems visit the points in their phase spaces we are interested in
(for the recurrence time problem see also the discussion above). Therefore, if
we have only relatively short time series at our disposal, we may add a priori
information about the system under study (such as symmetry properties)
and assume that the noise sources are described by particular functions with
unknown parameters. The parameters can then be fitted by the proposed data

analysis technique as shown in [37].
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Figure caption:

Fig. 1: Drift function h(z,) = —atanh(cz,) plotted versus z, (dashed line),
diffusion coefficient D(z,) = 0.5Qa?/[cosh(cz,)]* plotted versus z, (solid
line), and reconstructions of A and D by means of time series analysis (di-
amonds). Parameters: 7 = 0.1, a = 2, ¢ = 7/2, Q = 1 (number of data points
N = 108, sampling period At = 0.01, spatial discretization of h and D with
Az, =0.1).

Fig. 2: Diffusion coefficient D(z,z,;) = 0.5Q{[1 — ecos(mz)]/[1 — €]}* plot-
ted versus z (dashed line), plotted versus x, for x = 0 (straight, solid line),
and reconstructions of D(z,0) and D(0,z,) by means of time series analysis
(diamonds). Parameters: 7 = 0.2, ¢ = 0.5, Q = 1 (N = 10%, At = 0.02,
Az = Az, =0.1).

Fig. 3: The drift function h(x,z,) = gsin(nz) — Roz, is shown for h(z,0)
(dashed line) and A(0,z,) (solid line). Diamonds indicate results obtained
from the data analysis. Parameters: 7 = 0.2, ¢ = 0.5, Ry =2, Q =1, ¢ =0.1
(N = 108, At = 0.02, Az = Az, = 0.1).

Fig. 4: Diffusion coefficient D(z, z,) = 0.5Q(e+z?2) as a function of z for z, = 0
(straight, dashed line), as a function of z, (solid line), and reconstructions of
D(z,0) and D(0,z,) by means of time series analysis (diamonds). Parameters

see Fig. 3.
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