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Abstract

Using Langevin equations we describe the random walk of single particles that
belong to particle systems satisfying Vlasov-Fokker-Planck equations. In doing so,
we show that Haissinski distributions of bunched particles in electron storage rings

can be derived from a particle dynamics model.

PACS: 52.25.Dg; 29.27.Bd; 05.40.+j

1 Introduction

Particle beams of electron storage rings can be bunched. A particle bunch is
a group of particles that move together and have roughly the same energy.
Bunches of charged particles produce wakefields that act back on the bunch
particles [1]. There is a mean field theory of the wakefields which is similar
to the Debye theory of polarization and leads to Vlasov equations for parti-

cle distributions. In order to take damping and diffusion due to synchrotron
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radiation into account, one may supplement the Vlasov equation with colli-
sion terms of the Fokker-Planck type [2-11]. Vlasov-Fokker-Planck equations
thus obtained are of general interest because they also offer approximative

descriptions of plasma diffusion (see e.g. [12-16]).

In view of these applications of Vlasov-Fokker-Planck equations, the question
arises if stochastic single particle descriptions can be derived from them. For
Vlasov equations without collision terms, Hamiltonian particle descriptions
can be obtained [1,10]. For ordinary Fokker-Planck equations single particle
descriptions are available in terms of Langevin equations [17]. As we will shown
below, for Vlasov-Fokker-Planck equations Langevin equations can be defined
as well. To this end, we will elaborate on recent developments in the theory

of nonlinear Fokker-Planck equations [18-24].

2 Single particle motions defined by generalized Langevin equa-

tions
2.1 General case

Let p(p,q,t) denote a particle density of the generalized coordinate g and
momentum p with p and ¢ defined on a phase space 2. We assume that p
is normalized to My = [, p(p, q,t) dpdq and that the Hamiltonian H of the

many-body system under consideration is given by

H = Hy(p,q) + /HMF(q —¢)pW',¢)dp' dd (1)
Q

where H, describes the single particle Hamiltonian and the integral reflects

particle-particle interactions in a self-consistent mean field fashion. Then, the



Liouville equation for p(p, ¢, t) reads
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and is of the type of a Vlasov equation because of the integral in Eq. (1).
Adding a Fokker-Planck collision term [12-15], we obtain
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where v > 0 is a damping constant and D > 0 is a diffusion coefficient.
We will refer to Eq. (3) as a Vlasov-Fokker-Planck equation. Aiming at a
stochastic descriptions in terms of Langevin equations, we transform Eq. (3)
in an evolution equation for a probability density P(p,q,t) = p(p,q,t)/M,

normalized to unity:
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with
H' = Hy(p,q) + M, /HMF(q —¢)P(p',¢)dp’ d¢', (5)
Q

We assume that Hyr(z) describes a symmetric function. Then, Eq. (4) can be
interpreted as a free energy Fokker-Planck equation of a canonical-dissipative

system [22]. To see this, we define the internal energy U[P] as

U[P] = (Hy) + % / / Hur (¢ — ¢ )P(p,q)P(p',¢')dpdg dp'dqg"  (6)

where (-) is defined as average with respect to P. Furthermore, we define the

entropy S[P] = — o PIn Pdpdq and the conservative drift forces

0 U 0 oU
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(where 6U/6P is the variational derivative of U) related to the conservative
drift vector I = (I, 1,). Using V = (0/0p, 0/0q), Eq. (4) can be written as

0 0 0 d0F

ot
where () is a noise amplitude Q = D/~ and F the free energy F' = U — @S.
Eq. (8) corresponds to a free energy Fokker-Planck equation of a canonical-
dissipative systems and can formally be derived from linear nonequilibrium
thermodynamics [22]. Stationary distributions can be obtained from the free

energy principle

oF
5P 1% (9)

where y is a constant because I corresponds to a conservative force and satisfies
V-I=0andI-VU/SP (see [22] for details). From Eq. (9) we obtain the

implicit equation

Py(p,q) = %exp {—W} : (10)

From solutions of Eq. (10) we then obtain the stationary particle density

distributions pg(p, ¢) = My Py (p, q). Let us write Eq. (4) as

0 0?
—P t)=-V-(tP)+ D—P 11
5 P.0.0) ==V - (P) + D (1)
with the probability-dependent drift vector
1
h(p,q,P) =1(p,q, P) +p : (12)
0

We assume that for solutions of Eq. (4), the time-dependent drift vector h’
defined by h/(p, ¢,t) = h(p, ¢, P) corresponds to the first Kramers-Moyal coef-

ficients of a Markov diffusion process. Then, Eq. (4) is called a strong nonlinear



Fokker-Planck equation and the transition probability density P(p, ¢, t|p,¢',t")
for ¢t > t' of the Markov diffusion process given by Eq. (4) satisfies [24]

0
~“Pp.q.tlp.qd.t) =
T (p.q,tp', ¢, 1)
2

0
—V -|h(p,q, P(p,q,t))P(p, ¢, tlp’, ¢, t)] +Da—p2P(p, ¢.tp,q,t) . (13)

Note that the evolution equation for the transition probability is linear with
respect to P(p,q,t|p',q',t") because h depends on P(p,q,t) and does not de-
pend on P(p,q,t|p’, ¢, t'). While the Vlasov-Fokker-Planck equation (11) only
defines the evolution of P(p, ¢,t) and does not define a stochastic process [21],
Egs. (11,...,13) indeed define a stochastic process. This process is given by
the hierarchy of N-point joint probability densities

P(pn,an,tn;---501, 1, 1) =
P(pn, qn, tN|PN=1,qN-1,tn-1) - - - P(P2, @2, to|p1, @1, t1) P(p1, q1, 1) (14)

known from Markov processes. The N-point joint probability densities in gen-
eral and P(p,q,t) in particular can also be obtained from an appropriately
defined Langevin equation. Let p(¢) and ¢(t) define the random variables cor-
responding to P(p, q,t) = (6(p — p(t))d(q — q(t))), where 6(+) is the Dirac delta
function and (-) denotes an ensemble average. Then, p(t) and ¢(¢) satisfy the

stochastic differential equation [21,24]

d . 8Hy(p,q)

dtQ(t)_ op

g __aHO(pa Q) . 2 o ;) 1 !

3P = Tog Moan/HMF(q ¢VP(p',q',t)dp' dg
—yp+VDT(t), (15)

where I'(t) denotes a Langevin force with (I'(¢)T'(t')) = 26(¢t — t'). The prob-
ability density P(p,q,t) in Eq. (15) is either computed from Eq. (4) or from
P(p,q,t) = (6(p — p(t))d(q — ¢q(%))). In the former case, we have a two-layered



description. In the latter case, we have a self-consistent Langevin equation

[21].

2.2  Haissinski distributions of bunched particle beams

Particles in bunched longitudinal beams traveling through electron storage
rings can be described in terms of their relative positions and rescaled en-
ergy deviations. Relative positions are defined with respect to moving frames
related to the traveling bunches and will be denoted by ¢. Rescaled ener-
gies deviations will be denoted by p and are typically measured in terms of
appropriately rescaled energy deviations from beam design energies. It then
turns out that the bunch particle distribution P(p, ¢,t) satisfies the Vlasov-
Fokker-Planck equation (3) with Hy defined by Hy = p?/2 + ¢*?/2 and Hyr
given by the wakefield Hyy of the particle bunch [5-11]. Following [25], we are
interested to study qualitatively the collective phenomena that result from
particle-particle interactions in particle bunches via wakefields and confine
ourselves to model the impact of the wakefield Hyw by a Dirac delta function:

Hyr = Hyw = kM '6(g — ¢'). Then, Eq. (4) reads

0 oOP(p,q,t) OP(p,q,t) 0
atP(p,q,th 9 9 q+f~€aqP(q,t)
= 2 [pP( H] + Da—ZP( t) (16)
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and Eq. (15) becomes
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with P(q,t) = [ P(p,q,t)dp = (6(¢ — q(t))) and (p,q) € Q = R?. Stationary
distributions can be found in form of Py (p, ¢) = Py (p)Pest(q) with

_ 1 N
Py(p) = om0 P { 2@} (18)
and Py (q) given by
Q+rPal@) 2D = _gp,(g) (19)

This can be verified by substituting Py (p, ¢) into Eq. (16) (see also [25]).
Stationary solutions of this kind are called Haissinski solutions [1,26] and they
are known to be stable provided they exist [25]. Alternatively, from the free
energy principle we obtain Eq. (10) in form of

1 p? q?/2 + kP (q)
Fy(p.q) = iexp{—@}exr){— 0 } : (20)
which gives us Py (p, q) = Py(p)Pst(q) and Eq. (18) as well as
1 2/9 + kP,
Pu(g) = —; exp {—q / +C; t(Q)} : (21)

where Z' is a normalization constant. Eq. (21) can be evaluated using the
concept of distortion functionals [27-30]. To this end, we transform Eq. (21)

into

P { SPal)} = W@ . W) = o]~ @

where Z" is another normalization constant. Next, we recall that the inverse
of the function f given by f(LW) = LW exp{LW} is Lambert’s W-function
(or Q-function) denoted here by LW(f) [31]. Then, we introduce the distor-
tion function G(z) = zexp{xz/Q} and its inverse function G~!(z) given by

G 1(2) = QLW(k2/Q)/k. Thus, we get

Pula) = 2 (oW @) | 23



where Z" is determined by the requirement [ Py (q) dg = 1. In sum, Egs. (18)
and (23) define the stationary Haissinski solutions of the Vlasov-Fokker-Planck
equation (16). Note that an expression similar to Eq. (23) has previously been
derived [32]. For k = 0 we have LW(z) = z, Z" = 1 and Py(q) = W(q).
For k > 0 we can read off from Eq. (17) that particles are driven away from
regions of high density (because P(q,t) acts as a potential) and, consequently,
the distributions Py (q) are broader than the Gaussian distribution W (g). For
k < 0 particles are attracted by regions of high density and, consequently, we
deal with squeezed distributions and the distributions Py(q) are smaller than

the Gaussian distribution W (g), see Fig. 1.

Now let us simulate the self-consistent Langevin equation (17). In order to
cope with the probability density occurring in Eq. (17), one may determine
P(q,t) in terms of a histogram [30]. Let us use an alternative method that has
the advantage that there is no need to store a histogram. Recall that there
are several representations of the Dirac delta function. For example, we may

exploit the relation [33]

N 1 1[z—2'
O —al) = Jlim = P V5 TAr | (- (24)

Using P(q,t) = (6(q — q(t))) and Eq. (24), we discretize Eq. (17) by means of

the Euler forward scheme

Qni1 = Qn + Atpn
Pn+1 = Pn

K & l 1 g, —d.]’
—At g, — (L—1)Van[Az)? l:zl ([Qn — q,] exp{—§ [Tx] }) + YPn
+VDAtw, (25)

where ¢, and p,, describe the random variables ¢(t,) and p(t,) at time points
t, = nAt. At and Ax should correspond to small numbers. The variables

w,, are Gaussian distributed random numbers with (w,) = 0 and (w,w,) =



20, (see [17] for details). The variables ¢! denote further realizations of
the random variable ¢(t). That is, we solve Eq. (25) for L realizations given
by ¢, and ¢!, where L should correspond to a large number. Fig. 2 shows
Py (p) computed from the random walk model (25) for x > 0 and shows for
the sake of comparison the exact result given by the Gaussian distribution
(18). Fig. 3 shows the Haissinski distribution Py (g) as obtained from the
simulation of Eq. (25) for the same parameter value x and as computed from
Eq. (23). Fig. 4 shows the Haissinski distribution Py (g) in the case of k < 0 as
obtained from the simulation of the Langevin equation (17) via Eq. (25) and
as computed from Eq. (23). We have also computed the distribution Py (p) for
this parameter value and have again obtained a distribution as shown in Fig. 2.
Figures 2, 3, and 4 illustrate that we can describe the single particle dynamics
of a particle ensemble satisfying the Vlasov-Fokker-Planck equations (16) by

means of the corresponding Langevin equation (17) and its discretization (25).

2.3 Generalized Haissinski distributions

Our considerations can easily be generalized to systems with wakefields Hy =
kMy'6(q — ¢') and single particle Hamiltonians Hy, = p?/2 + V(q), where
V' (q) describes a potential with respect to the coordinate ¢q. Then, Eq. (16) is
replaced by

0 0P (p,q,t) OP(p,q,t) [dV 0

é%(n%®+p 9 9 dq+”@ (¢,1)

= _8 [pP( t)] +D—(92 P( t) (26)
- ,Yap p pa qa apQ paq’ .

Likewise, we need to replace Eq. (17) by

d
—a(t) =
dtq() p

d AV 8P(q1)
TR

—p+VDI(t) . (27)



Stationary solutions are given by Pi(p,q) = Past(p)Pst(q) with Py (p) defined
by Eq. (18) and Py (gq) given by Eq. (23), where W (q) now corresponds to the

Boltzmann distribution

W(g) = P {=V(9)/Q}

= Texp (V(0)/Q}dg (28)

3 Conclusion

We have proposed a random walk model in terms of a Langevin equation for
particles satisfying a Vlasov-Fokker-Planck equation. The advantage of the
random walk model is that all quantities of interest can be computed from
the model. For example, single point and joint probability densities as well as
correlation functions can be derived. A second advantage is that the random
walk model can be solved numerically with relatively little computational ef-
fort. As an example, we have studied possible impacts of wakefields on particle
bunches in longitudinal particle beams. Using a relatively simple approxima-
tion of a wakefield, we have seen that particle-particle interactions can lead to
a broadening or squeezing of Gaussian distributions that describe the spatial
distribution of the particles in the absence of particle-particle interactions.
These broadened and squeezed Gaussian distributions correspond to Haissin-
ski distributions that have also been derived from the proposed random walk
model. Having discussed the stationary case, future studies may be devoted
to examine time-dependent solutions of the Vlasov-Fokker-Planck equation
for bunched particles. Since analytical time-dependent solutions of nonlinear
Vlasov-Fokker-Planck equations can hardly be obtained, most probably we
will need to employ numerical methods in order to obtain time-dependent so-
lutions. In this context, the proposed Langevin equation offers a promising

departure point.
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Figure captions:

Fig. 1: Haissinski distributions given by Eq. (23) for @@ = 5 and several param-
eters of k: broadened distribution for k = 15 (solid line), Gaussian distribution

for k = 0 (dashed line), and squeezed distribution for k = —10 (solid line)

Fig. 2: Gaussian stationary distribution Py (p) of the Vlasov-Fokker-Planck
equation (16) as obtained from the analytical expression (18) (solid line) and
the simulation of the Langevin equation (17) via Eq. (25) (diamonds). Param-
eters: Q@ =5, k = 15, v =1 (L = 25000, At = 0.03, 2[Az]> = 0.1, p}, = ¢} = 0,

evaluation of the stationary case py, g, at n = 200).

Fig. 3: Haissinski distribution for x = 15 computed from Eq. (23) (solid line)
and the Langevin equation (17) (diamonds) (parameters other than x as in

Fig. 2).

Fig. 4: Haissinski distribution for k = —10 computed from Eq. (23) (solid line)
and the Langevin equation (17) (diamonds) (parameters other than x as in

Fig. 2).
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Fig. 4.
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