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Summary. This contribution provides an introduction to the concept of drift and
diffusion functions for complex dynamical systems such as wind energy converters.
These functions easily can be estimated from measured data. However, one has to
be aware about intrinsic errors in the estimation procedure that are discussed in the
following.

1 Introduction

Researchers in the field of the construction of wind energy converters are con-
fronted with a complex problem: the number of degrees of freedom of the wind
turbine is extraordinary high. In addition to the adjustable parameters of the
rigid body such as the pitch of the rotor-blades many dynamical modes of
different parts of the converters have to be considered for a complete descrip-
tion. Moreover the incoming flow is turbulent and fluctuating in space as well
as in time.

Complex behaviouriour in systems far from equilibrium can quite often be
traced back to rather simple laws due to the existence of processes of self-
organization. For adequate order parameters the dynamics is determined by
stochastic differential equations incorporating deterministic as well as stochas-
tic forces. Knowledge of the deterministic part of the dynamics can lead to
a deeper understanding of the properties of the system under consideration
while the stochastic forces account for the effects of the fluctuating microscopic
degrees of freedom. For certain order parameters these forces have properties
that are well-known in the theory of stochastic processes. Imagine for example
the power output of a wind turbine. Usually the power output is investigated
as a function of the (mean) wind speed. Without a doubt much more param-
eters of the turbine effect the output power and the dynamics of the system
act much faster than the common averaging periods.

Recently it has become evident, that knowledge of the stochastic dynamics
has significant advantages with respect to the conventional wind power curves:
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Anahua et al. considered the power output of the turbine as a stochastic pro-
cess [2]. A standard method allows for direct estimation of the characteristic
drift and diffusion functions from measured data [1]. By means of this method
Anahua et al. could extract the real time dynamics and in the meantime are
able to detect small deviations of the control system of the turbine from the
optimal working state.

2 Direct Estimation of Drift and Diffusion

Generally one has to distinguish between dynamical and measurement noise:
measurement noise is superimposed to the data during the measurement pro-
cess and has no further influence on the system’s dynamics. On the other hand
many complex systems on a macroscopic scale show some intrinsic, dynam-
ical noise stemming from the microscopic degrees of freedom. Under certain
conditions the time evolution of the state x of such systems can be described
by Langevin equations of the type

ẋ = D
(1)(x) +

√

D(2)(x)Γ (t) . (1)

Γ represents an independent, delta correlated and normal distributed stochas-
tic force that obeys 〈Γi(t)Γj(t

′)〉 = 2δijδ(t− t′). We apply Itô’s interpretation
of stochastic integrals [3]. The corresponding Fokker-Planck equation (FPe)
characterizes the evolution of the probability density function (pdf) f with
time,

∂

∂t
f(x, t) =



−
∑

i

∂

∂xi
D

(1)
i (x) +

∑

ij

∂2

∂xi∂xj
D

(2)
ij (x)



 f(x, t) . (2)

D
(1)(x) is called the drift vector, D(2)(x) the diffusion matrix of the corre-

sponding stochastic system.
From the Kramers-Moyal expansion [3] – the more general origin of the

Fokker-Planck equation that covers non-markovian processes – the following
definition is known:

D(n)(x) :=
1

n!
lim
τ→0

1

τ
〈[x(t + τ) − x(t)]

n
|x(t) = x〉 . (3)

It has been shown [1] that this expression applied for n = 1 and n = 2
can be used for direct estimation of drift and diffusion functions respectively
from time series data. This procedure successfully has been applied to the
power output of wind turbines [2] and various problems in medical and life
science. The computational requirements for this method are outstandingly
low. However, the required discretization of state space and – in particular –
the limiting procedure with respect to the time increment makes high demands
on the time series data with regard to the sampling frequency and the amount
of data-points. From now on the estimation of an one-dimensional process is
discussed. The generalization to higher dimensions follows accordingly.
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3 Stability of the limiting procedure

Any measured time series has a finite sampling rate that limits the available
time increments for the limiting procedure (3). Hence this expression has to
be extrapolated to the value τ ≡ 0.

A formal solution of the FPe for the conditional pdf p(x, t|x0, t0) is

p(x, t|x0, t0) = exp
[

L̂ (t− t0)
]

δ(x− x0) (4)

with L̂ being the Fokker-Planck operator. A Taylor expansion of this expres-
sion yields

p(x, t0 + τ |x0, t0) =

(

1 + τL̂ +
τ2

2
L̂2 +O(τ3)

)

δ(x− x0) . (5)

This pdf can be used for analytical calculation of the conditional moments
(3). Eventually one can assess the deviations of the estimate of drift and

diffusion D
(i)
E (x, τ) for finite τ from the intrinsic functions D(i)(x). The first

order corrections read:

D
(1)
E (x, τ) ≈ D(1)(x) +

τ

2

[

D(1)(x)
∂

∂x
D(1)(x) + D(2)(x)

∂2

∂x2
D(1)(x)

]

D
(2)
E (x, τ) ≈ D(2)(x) +

τ

2

[

D(1)(x)D(1)(x) + 2D(2)(x)
∂

∂x
D(1)(x) (6a)

+D(1)(x)
∂

∂x
D(2)(x) + D(2)(x)

∂2

∂x2
D(2)(x)

]

. (6b)

Depending on the shape of drift and diffusion functions significant deviations
from the intrinsic functions occur for finite τ . These deviations cannot be
grasped with statistical considerations as they originate in the properties of
the propagator for finite time.

4 Finite length of time series

On the other hand one has to consider the finite number of data points. Dis-
cretization of state space confines the number of points even more. Especially
in sparsely populated regions that come along with natural boundary con-
ditions the low density leads to huge errors in the estimation of drift and
diffusion.

A suitable measure for the error margin of the estimate is the standard
deviation, the root mean square displacement of the increments from their
mean. If N measurements contribute to the averages, the resulting error

EN

[

D
(1)
E (x0, τ)

]

in the estimated drift function gets
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Fig. 1. Estimated drift function
D

(1)
E

(x = 0.5) of synthetic Ornstein-
Uhlenbeck process as function of N .
Dashed region marks the symmetric
error-bars corresponding to (7).

Fig. 2. Error of drift estimate as func-
tion of time increment τ (triangles). A
divergent behaviour for τ → 0 is evi-
dent. The solid line represents the best
fit f(τ ) = 0.0045/

√
τ .
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In sum the statistical error in the estimated drift function is proportional to
(Nτ)−1/2. Figures 1 and 2 illustrate the divergent behaviour of the estimated

drift coefficient D
(1)
E in the cases of few data-points and small time increments

considering as example data from an Ornstein-Uhlenbeck process.

5 Conclusion

In conclusion there is simple method to estimate the dynamical drift and
diffusion functions from measured data. This method can be used to describe
the dynamical behaviour of complex systems such as wind energy converters.
Quantitative results from this method have to be considered carefully for the
reasons discussed in sections 3 and 4.

We would like to stress that there is a more recent extension that avoids the
evaluation of the conditional moments in the limit of small time increments
and improves the accuracy of the results substantially [4].
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