Forschungsschwerpunkte
Diffusion phenomena in metals and compounds including multi-principal element alloys and compositionally-complex alloys
The prime focus is on the development of tracer/interdiffusion couple method to determine composition-dependent tracer diffusion coefficients in multi-component alloys. Further directions are: Nanocrystalline and ultra-fine grained materials; Molecular dynamic simulations of diffusion phenomena; Anomalously fast ionic conductivity of grain boundaries in superionic oxide films; Correlation factors in impurity diffusion in ordered intermetallics
short circuit diffusion in metals and alloys
Fundamental problems of grain boundary diffusion and segregation in metallic materials, especially in bicrystals with perfectly characterized grain boundaries, are here in the focus. The diffusion (mainly radiotracer) investigations are used as source of unique information on structure and thermodynamic state of internal interfaces in materials and their evolution with stress and strain.
impact of deformation on diffusion processes in materials
thermodynamics of grain boundary segregation
diffusion phenomena in as-cast and deformed bulk metallic glasses
Main focus is on diffusion properties of shear bands in metallic glasses and their relation to thermodynamic and mechanical properties of the glasses
Impact of external fields (magnetic / elastic ) on diffusion; diffusion under plastic deformation
Vita
Akademische Ausbildung
- Umhabilitation und Erteilung der Venia Legendi beim Institut für Materialphysik, Münster Universität
- Habilitation at Institute of Metal Physics (Kiev, Ukraine).
- High education at the Department of Problems in Physics and Engineering, Moscow Institute of Physics and Technology (Dolgoprudny, Moscow region, Russia) (1987) Diploma thesis "Structural changes in metals introduced by a low-temperature hydrogen-helium plasma irradiation” (1990) PhD thesis "Computer Simulation of Texture Formation in Cubic Metals and Alloys under Rolling” and received doctors degree (Candidate of Sciences in Physics and Mathematics)
Beruflicher Werdegang
- permanent position at Institut für Materialphysik of the University of Münster as a head of isotope laboratory within the Professorship of Prof. Dr. Gerhard Wilde.
- visiting scientist at the Institut für Materialphysik of the University of Münster
- 1998 AvH Fellow (1998-2000) at the Institut für Materialphysik of the University of Münster
- (1987-1998) Work in the group of Prof. L.N. Larikov at IMPh,Kiev, Ukraine as Senior Research Scientist.
Laufende Projekte
- Korrelation der atomistischen Beschaffenheit von Korngrenzphasenumwandlungen mit ihren makroskopischen kinetischen Eigenschaften ( – )
Gefördertes Einzelprojekt: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: WI 1899/44-1; DI 1419/19-1 - Diffusion-diffusive Phasetransformationen in Alkalifeldspat ( – )
Gefördertes Einzelprojekt: DFG - Gemeinsame Antragstellung mit Österreich und Schweiz (D-A-CH) | Förderkennzeichen: DI 1419/18-1
- Korrelation der atomistischen Beschaffenheit von Korngrenzphasenumwandlungen mit ihren makroskopischen kinetischen Eigenschaften ( – )
Neueste Publikationen
Auswahl
- . ‘Composition dependence of Fe tracer diffusion coefficients in Fe–Ga alloys: a case study by a tracer-interdiffusion couple method.’ Acta Materialia 203 ()116446. doi: 10.1016/j.actamat.2020.10.065.
- . ‘Grain boundary diffusion and grain boundary structures of a Ni-Cr-Fe- alloy: Evidences for grain boundary phase transformations.’ Acta Materialia 195 (). doi: 10.1016/j.actamat.2020.05.051.
- . ‘Atomic transport in B2-ordered Al(Fe,Ni) alloys: Tracer-interdiffusion couple approach.’ Intermetallics 126 ()106920. doi: 10.1016/j.intermet.2020.106920.
- . ‘Grain boundary diffusion in CoCrFeMnNi high entropy alloy: kinetic hints towards a phase decomposition.’ Acta Materialia 195 (): 304–316. doi: 10.1016/j.actamat.2020.05.009.
- . ‘Phenomenon of ultra-fast tracer diffusion of Co in HCP high entropy alloys.’ Acta Materialia 196 (): 220–230. doi: 10.1016/j.actamat.2020.06.025.
Gesamtliste
- . ‘Evidence for Glass–glass Interfaces in a Columnar Cu–Zr Nanoglass.’ Advanced Functional Materials 2302386 (). doi: 10.1002/adfm.202302386 .
- . ‘Tracer diffusion under a concentration gradient: A pathway for a consistent development of mobility databases in multicomponent alloys.’ Journal of Alloys and Compounds 930 (): 167301. doi: 10.1016/j.jallcom.2022.167301.
- ‘’Anti-sluggish’ Ti diffusion in HCP high-entropy alloys: Chemical complexity vs. lattice distortions.’ Scripta Materialia 224 (): 115117. doi: 10.1016/j.scriptamat.2022.115117.
- . ‘’Non-equilibrium’ grain boundaries in additively manufactured CoCrFeMnNi high-entropy alloy: enhanced diffusion and strong segregation.’ Journal of Applied Physics 132 (): 245105. doi: 10.1063/5.0133144..
- . ‘Kinetic and structural insights into the grain boundary phase transitions in Ni-Bi alloys.’ Acta Materialia 245 (): 118632. doi: 10.1016/j.actamat.2022.118632.
- . ‘Additively manufactured equiatomic CoCrFeMnNi high entropy alloy: precipitation-induced heterogeneity by mechano-chemical coupling.’ Journal of Alloys and Compounds 938 (): 168514. doi: 10.1016/j.jallcom.2022.168514.
- ‘Atomic diffusion in bcc Fe–Mn alloys: Theoretical analysis and experimental measurements across the Curie temperature.’ Acta Materialia 251 (). doi: 10.1016/j.actamat.2023.118883.
- ‘Does Zn mimic diffusion of Al in the HCP Al-Sc-Hf-Ti-Zr high entropy alloys?’ Scripta Materialia 229 (). doi: 10.1016/j.scriptamat.2023.115376.
- . ‘Recent advances in understanding diffusion in multi-principal element systems.’ Annual Review of Materials Research 52 (): 383–409. doi: 10.1146/annurev-matsci-081720-092213.
- . ‘Nanomaterials by Severe Plastic Deformation: Review of Historical Developments and Recent Advances.’ Materials Research Letters 10 (): 163–256. doi: 10.1080/21663831.2022.2029779.
- . ‘Ab initio prediction of vacancy energetics in HCP Al-Hf-Sc-Ti-Zr high entropy alloys and the subsystems.’ Acta Materialia 227 (): 117677. doi: 10.1016/j.actamat.2022.117677.
- ‘Intrinsic heterogeneity of grain boundary states in ultrafine-grained Ni: A cross-scale study by SIMS and radiotracer analyses.’ Acta Materialia 22 (): 101397. doi: 10.1016/j.mtla.2022.101397.
- ‘Zr diffusion in BCC refractory high entropy alloys: A case of ‘non-sluggish’ diffusion behavior.’ Acta Materialia 233 (). doi: 10.1016/j.actamat.2022.117970.
- . ‘Low-temperature metastable-to-equilibrium phase transitions in Fe-Ga alloys.’ Intermetallics 145 (): 107540. doi: 10.1016/j.intermet.2022.107540.
- . ‘Model for non-equilibrium vacancy diffusion applied to study the Kirkendall effect in high-entropy alloys.’ Acta Materialia 232 (): 117966. doi: 10.1016/j.actamat.2022.117966.
- . ‘Self-diffusion in carbon-alloyed CoCrFeMnNi high entropy alloys.’ Acta Materialia 237 (): 118136. doi: 10.1016/j.actamat.2022.118136.
- . ‘Reassessment of mobility parameters for Cantor High Entropy Alloys through an automated procedure.’ Calphad: Computer Coupling of Phase Diagrams and Thermochemistry 79 (): 102498. doi: 10.1016/j.calphad.2022.102498.
- ‘"Non-equilibrium" grain boundaries in additively manufactured CoCrFeMnNi high-entropy alloy: Enhanced diffusion and strong segregation.’ Journal of Applied Physics 132, No. 24 (). doi: 10.1063/5.0133144.
- . ‘A Combined Experimental and First-Principles Based Assessment of Finite-Temperature Thermodynamic Properties of Intermetallic Al3Sc.’ Materials 2021, 14, No. 1837 ().
- . ‘High entropy alloy nanocomposites produced by high pressure torsion.’ Acta Materialia 2021, No. 208 (): 116714. doi: 10.1016/j.actamat.2021.116714.
- . ‘Tracer diffusion in the σ phase of the CoCrFeMnNi system.’ Acta Materialia 203 (). doi: 10.1016/j.actamat.2020.116498.
- . ‘Composition dependence of tracer diffusion coefficients in Fe-Ga alloys: A case study by a tracer-diffusion couple method.’ Acta Materialia 203 ().
- . ‘Decelerated aging in metallic glasses by low temperature thermal cycling.’ Phys Rev Research 3 ().
- . ‘Composition dependence of Fe tracer diffusion coefficients in Fe–Ga alloys: a case study by a tracer-interdiffusion couple method.’ Acta Materialia 203 ()116446. doi: 10.1016/j.actamat.2020.10.065.
- . ‘Interface-Driven Thermo-Electric Switching Performance of VO+ Diffused Soda-Lime Glass.’ Physica Status Solidi – Rapid Research Letters 15 (): 2100077. doi: 10.1002/pssr.202100077.
- . ‘Techniques of Tracer Diffusion Measurements in Metals, Alloys and Compounds.’ Diffusion Foundations 29 (): 31–73. doi: 10.4028/www.scientific.net/DF.29.31.
- . ‘The impact of magnetic transition on Mn diffusion in alpha-iron: Correlative state-of-the-art theoretical and experimental study.’ Phys Rev B 2021 (): 184107. doi: 10.1103/PhysRevB.104.184107.
- . ‘Multicomponent diffusion revisited: pair-mobilities and consistent definition of diffusion coefficients.’ Materialia 2021 (): 101047. doi: 10.1016/j.mtla.2021.101047.
- High-Entropy Alloys: Diffusion In Encyclopedia of Materials: Metals and Alloys, edited by , 402–416. Münster: Elsevier, . doi: 10.1016/B978-0-12-803581-8.11771-0.
- ‘Impact of cryogenic cycling on tracer diffusion in plastically deformed Pd40 Ni40 P20 bulk metallic glass.’ Acta Materialia 209 (). doi: 10.1016/j.actamat.2021.116785.
- ‘Impact of magnetic transition on Mn diffusion in α -iron: Correlative state-of-the-art theoretical and experimental study.’ Physical Review B 104, No. 18 (). doi: 10.1103/PhysRevB.104.184107.
- ‘Interface-Driven Thermoelectric Switching Performance of VO+-Diffused Soda-Lime Glass.’ Physica Status Solidi - Rapid Research Letters 15, No. 7 (). doi: 10.1002/pssr.202100077.
- . ‘Tracer diffusion in the σ phase of the CoCrFeMnNi system.’ Acta Materialia 2021, No. 203 116498 (): 1–9. doi: 10.1016/j.actamat.2020.116498.
- . ‘Impact of severe plastic deformation on the relaxation of glassy and supercooled liquid states of amorphous Pd40Ni40P20.’ Journal of Applied Physics 128, No. 155107 (): 1–9. doi: 10.1063/5.0026950.
- . ‘Experimental and theoretical study of tracer diffusion in a series of (CoCrFeMn)100-xNix alloys.’ Acta Materialia 194 (): 236–248.
- . ‘Grain boundary diffusion and grain boundary structures of a Ni-Cr-Fe- alloy: Evidences for grain boundary phase transformations.’ Acta Materialia 195 (). doi: 10.1016/j.actamat.2020.05.051.
- . ‘Shear Bands in Monolithic Metallic Glasses: Experiment, Theory, and Modeling.’ Frontiers in Materials 7, No. 144 (). doi: 10.3389/fmats.2020.00144.
- . ‘Tracer diffusion in ordered pseudo-binary multicomponent aluminides.’ Scripta Materialia 178 (): 227–231. doi: 10.1016/j.scriptamat.2019.11.044.
- . ‘Tracer diffusion in multi component pseudo-binary B2 aluminides.’ Scripta Materialia 178 (): 227–231. doi: 10.1016/j.scriptamat.2019.11.044.
- . ‘Atomic transport in B2-ordered Al(Fe,Ni) alloys: Tracer-interdiffusion couple approach.’ Intermetallics 126 ()106920. doi: 10.1016/j.intermet.2020.106920.
- . High-Entropy Alloys: Diffusion In Encyclopedia of Materials: Metals and Alloys, edited by , 1–15. Elsevier, . doi: 10.1016/B978-0-12-803581-8.11771-0.
- . ‘Intrinsic heterogeneity of shear banding: hints from diffusion and relaxation measurements of Co micro-alloyed PdNiP-based glass.’ J Applied Physics 127 ()115109. doi: 10.1063/1.5142162.
- . ‘Relative grain boundary energies in ultrafine grain Ni obtained by high pressure torsion.’ Scripta Materialia 182 (): 90–93.
- . ‘Diffusion, defects and understanding the growth of multicomponent interdiffusion zone between Pt-modified B2 NiAl bond coat and single crystal superalloy.’ Acta Materialia 195 (): 35–49. doi: 10.1016/j.actamat.2020.04.016.
- . ‘Ultrafast atomic diffusion paths in fine-grained nickel obtained by Spark Plasma Sintering.’ Metall Mater Transactions A 51 (): 3425–3434. doi: 10.1007/s11661-020-05791-4.
- . ‘Effect of the Annealing Temperature and Constant Magnetic Field on the Decomposition of Quenched Beryllium Bronze BrB-2.’ Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 14 (): 464–472.
- . ‘Grain boundary structures in metallic materials subjected to severe plastic deformation.’ Philosophical Magazine 100 (): 2365–2385. doi: 10.1080/14786435.2020.1767310.
- . ‘Grain boundary diffusion in CoCrFeMnNi high entropy alloy: kinetic hints towards a phase decomposition.’ Acta Materialia 195 (): 304–316. doi: 10.1016/j.actamat.2020.05.009.
- . ‘Analyzing the ‘non-equilibrium state’ of grain boundaries in additively manufactured high-entropy CoCrFeMnNi alloy using tracer diffusion measurements.’ JALCOM 844 ()155757. doi: 10.1016/j.jallcom.2020.155757.
- . ‘Tracer diffusion in single crystalline CoCrFeNi and CoCrFeMnNi high-entropy alloys: kinetic hints towards a low-temperature phase instability of the solid-solution?’ Scripta Materialia 187 (): 57–62. doi: 10.1016/j.scriptamat.2020.05.060.
- . ‘Phenomenon of ultra-fast tracer diffusion of Co in HCP high entropy alloys.’ Acta Materialia 196 (): 220–230. doi: 10.1016/j.actamat.2020.06.025.
- . ‘Impact of interstitial carbon on self-diffusion in CoCrFeMnNi high entropy alloys.’ Scripta Materialia 188 (): 264–268. doi: 10.1016/j.scriptamat.2020.07.044.
- . ‘The Fe-Ga phase diagram: revisited.’ JALCOM 846 ()156486.
- . ‘Accelerated grain boundary migration in nanolaminated interstitial-free steel during chromizing.’ Materials Research Letters 9 (): 84–90. doi: 10.1080/21663831.2020.1827072.
- . ‘Novel Multicomponent B2 Ordered Aluminides: Compositional Design, Synthesis, Characterization and Thermal Stability.’ Metals 10 ()1411.
Alle Publikationen sowie Projekte sind in der WWU-Forschungsdatenbank zu finden.