

A prior-based approach to 3D face reconstruction using depth images

Donny Tytgat, Sammy Lievens, Erwin Six Alcatel-Lucent Bell Labs

Setting the scene

3D face reconstruction ...

Usefull for decoupling the capturing from the display phase

- Extract intrinsic features of a face
- Reconstruct by imposing a new context
 - Different viewpoint(s), other light conditions, etc.

... for <u>video</u> communication

Live: real-time, low latency execution Photo-realistic: quality that approaches reality

AT THE SPEED OF IDEAS[™]

Prior-aided stereo matching

- Based on [Zhang et al]
 - Block matching with dynamic windows (locally adaptive polygon approximation)
 - Winner-takes-all using SAD
- Accelerated SAD calculation using integral images
- Ingested **prior** information: sparse correspondences
 - Active Appearance Models (AAM)
 - Enables a reduction of the search space
- Per-pixel Gaussian mixture model (GMM) iso. winner-takes-all
 - Include temporal- and spatial influences

Prior-aided stereo matching

a. base

c. adding temporal influence

b. adding restricted search

d. adding neighbour influence *

AT THE SPEED OF IDEAS[™]

3D model animation by 2D morphing

• Input

- Static 3D mesh model
 - Currently a personal scan; can be replaced by fitted face-space model
- 2D sparse feature set from live feed
- Output
 - N x 2D+z images of coarsely animated mesh
- Method
 - Register 3D model to match the viewpoint of the 2D feed
 - Transfer sparse feature locations, estimate 3D positions
 - Create N 2D+z projections by warping the static mesh to the new feature locations

3D model animation by 2D morphing

3D model animation by 2D morphing

Aggregating multiple depth images into a consistent surface model

Aggregating multiple depth images into a consistent surface model

- Implicit surface
 - Continuous function that specifies the signed distance *d* of each point in space to the surface
 - Surface can be constructed by building the iso-surface over this function (d = 0)
- Why implicit surface?
 - Correspondence requirement is less strict
 - Surface scalability

Making it work... fast

- Adaptive sampling
- Local distance metric estimation
 - Project 3D point to the depth images, select distance with best score
- Global distance metric propagation by implicit surface filter

$$D'(p) = R(p)^{\alpha} D(p) + (1 - R(p)^{\alpha}) D_n(p)$$
$$\sum_{(x,y)\in N(p)} (R(x) + R(y)) \frac{(D(x) + D(y))}{2}$$
$$D_n(p) = \frac{\sum_{(x,y)\in N(p)} (R(x) + R(y))}{\sum_{(x,y)\in N(p)} (R(x) + R(y))}$$

Generated from 5 depth images, 27k triangles, 9FPS

Putting it all together...

Conclusions and future work

- Real-time 3D face reconstruction is possible
- Priors are important for
 - improving computational speed,
 - robustness,
 - completeness

- Replace static personal mesh by a fitted model
- Improve rendering quality
- Learn model intrinsics over time in order to reduce live data dependency

Thank you

www.alcatel-lucent.com