Towards an Augmented Reality System for Violin Learning Support

H. Shiino, F. de Sorbier and H. Saito **Keio University - Japan** November 11th **WDIA 2012**

Motivation

- Violin is one of the most difficult instrument
 - No fret on the fingerboard
 - Manipulation of the bow

Previous works (1)

MusicJacket

- Advices using vibro-tactile feedbacks
- Works only for the bowing arm

van der Linden, J., Schoonderwaldt, E. and Bird, J. "Good Vibrations: Guiding Body Movements with Vibrotactile Feedback". *Proceedings of* the Third International Workshop on Physicality, 13-18, 2009

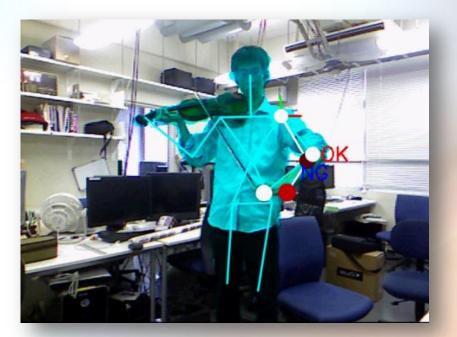
Previous works (2)

- Guitar playing support
 - AR toolkit markers for tracking the fingerboard
 - Display a virtual hand for advising the finger position

Y. Motokawa, H. Saito. "Support system for guitar playing using augmented reality display". *In Proceedings of the 5th IEEE and ACM ISMAR*, 243-244, 2006

Our goal (1)

Display virtual frets and visual guides on the screen

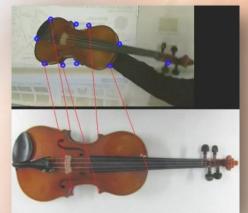


Require to estimate the pose of the violin

Our goal (2)

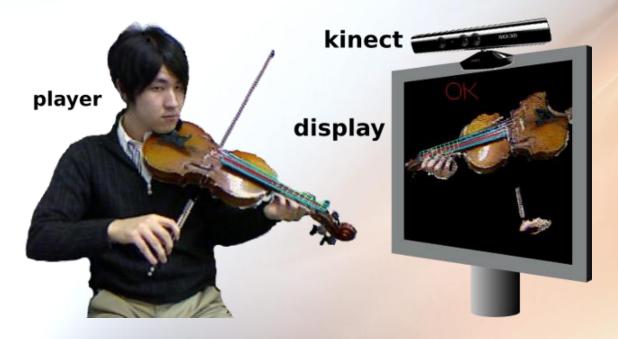
 Teach the correct position of the bowing arm

Require to track the player's bowing



Pose estimation without marker

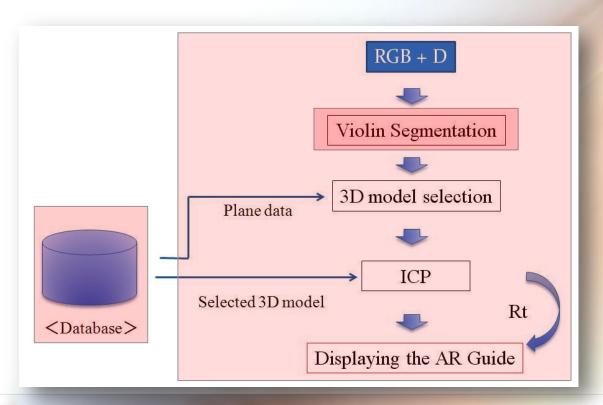
- Using a feature detector
 - Many occlusions caused by the player
 - The surface of the violin has a poor texture
 - The material of the violin is highly specular



Using feature detection is not robust

Our approach

- Kinect for estimating the pose of the violin
- Also used for tracking the player



Feedback displayed onto a screen

Our system workflow

- 1. Offline phase: build a 3D model of the violin with AR references
- 2. Online phase: pose estimation and feedback

Pose estimation with ICP

- Iterative Closest Point algorithm
 - Slow if too many points
 - Inaccurate if not enough
- Proposed solution
 - Use several template for describing the reference model
 - Associate a plane equation for describing a violin template
 - Construct a 3D model from templates for AR datas
 - Detect the violin in the color image
 - Estimate the pose between the current point cloud and one given template

Segmentation of the violin

- Segment the violin based on its color
- From corresponding 3D points
 - Compute a plane equation
 - Create a 3D box along and centered on it
 - Refine the segmentation

Storage of the templates

- Add a new template when candidate is enough different from stored ones
- Compute the final 3D model

Online tracking of the violin

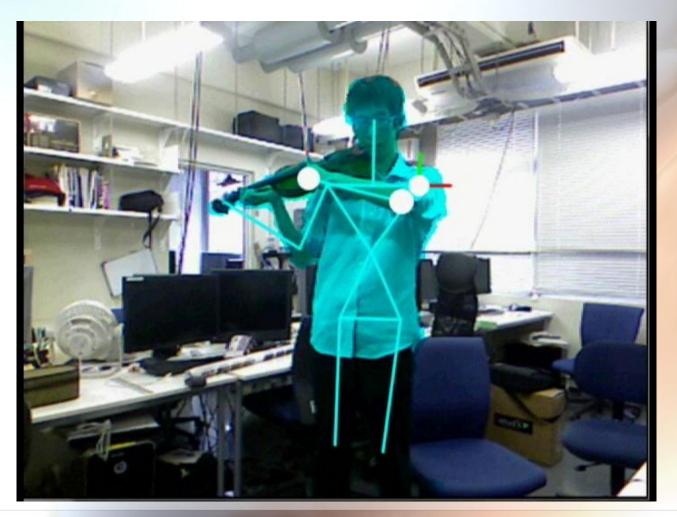
- Same segmentation than in the offline stage
- Deduce the corresponding template by comparing plane equations
- Compute the rigid transformation *Rt* by applying the ICP algorithm
- Display virtual advices on the captured model defined based on the pre-computed model

Violin tracking result

Virtual Frets on the violin

- Virtual information associated with the pre-computed 3D model
- Transform the captured violin to the pose of the 3D model
 - Computed with the result of the tracking
 - Result displayed in a stable manner

Fingering and bow advices


- Analysis of the note played
 - A fret and a string highlighted
 - Advise on the position of the bow

About the bowing technique

 Follow movements of a scaled and aligned captured movement

Results

- Processing time: 21ms
- About the tracking

	Rx(deg)	Ry(deg)	Rz(deg)	T(mm)
Minimum error	0.12	0.25	0.20	0.22
Maximum error	13.29	8.27	7.89	32.1
Average error	3.07	2.69	2.78	7.20

Difference of Pitch

Fret number	1	2	3	4	5	6	7	8	9	average
Difference of pitch	11.1	14.1	12.0	12.4	13.4	15.8	12.8	13.9	19.2	13.8

Conclusions

- Violin pedagogy with augmented reality using Kinect
 - Real time tracking of the violin and the player
 - Display virtual frets and strings
 - Detect the note played
 - Advise on position of the bow and the position of the bowing arm

Future works

- Perform an evaluation with different kind of players
- Study about another visualization option
 - See-through HMD
- Extension to other string instruments

 sanshin

Questions?

Thank you for your attention

