

Impact of Thermal and Environmental Conditions on the Kinect Sensor

<u>David Fiedler</u> Heinrich Müller

Department of Computer Science 7
Technische Universität Dortmund
Otto-Hahn-Straße 16, 44227 Dortmund, Germany
{fiedler,mueller}@ls7.cs.uni-dortmund.de

Motivation

- Using the Kinect as a range sensor is very popular
- Many calibration approaches exist to increase the quality of the range data
- The RGB-Sensor is often involved in the calibration process

Problem: Depth and RGB sensor are

both sensitive to thermal and

environmental changes

Consequence: Disregarding this problem can

lead to invalid calibration

results and range measurements

Goal: Analyze the thermal and

environmental influence and derive simple rules to

reduce/avoid errors

Overview

- Motivation
- Pretests: Thermal influence on optical camera systems
- Experimental setup
- Thermal and environmental influences on distance measurements
 - Practical rules for error reduction
- Summary

time

Texture-rich poster

IR Camera

- Use optical flow approach to visualize the movement within the image
- Color coding of the movement:
 - Hue indicated direction
 - Saturation indicates magnitude

White color: no movement

Bruhn A., Weickert J., Schnoerr C.: Lucas/Kanade meets Horn/Schunk: combining local and global optical flow methods.

warm state

cold state

IR Camera

Observation:

Movements during the cold to warm transition

			1							
Parameter	3 w	$ f_y $	c_x	c_y	p_1	p_2	p_3	q_1	q_2	Error
RGB										
Cold	1041.60	1043.29	656.70	520.56	0.18314	-0.51989	0.45196	0.00012	0.00122	0.07146
Warm	1046.25	1048.14	656.87	523.67	0.19178	-0.55455	0.50113	0.00069	0.00144	0.06770
Difference	4.65	4.85	0.17	3.10	0.00864	-0.03466	0.04917	0.00057	0.00022	-0.00376
IR										
Cold	586.02	586.78	321.27	239.21	-0.10137	0.46481	-0.6413	-0.00112	-0.00009	0.02704
Warm	587.14	588.04	322.70	238.15	-0.11278	0.5179	-0.71455	-0.00213	-0.00013	0.02438
Difference	1.12	1.25	1.43	-1.06	-0.01141	0.05309	-0.07325	-0.00101	-0.00004	-0.00266

- Larger focal lenght in the warm state
- Confirms the observed zoom-in effect

✓ Rule 1: Camera calibration and subsequent measurements should be performed at the same thermal conditions

Experimental Setup

1) Kinect

- 3) Checkerboard 1.2mx0.8m
- 2) Mounted fan
- 4) Light source

- 5) Temperatur sensor
- 6) Table fan

Experimental Setup: Distance measurement methods

- Detect checkerboard region within the RGB-camera image and extract corners
- Generate planar checkerboard model plane (MP) and calculate the homography
- Deternime 3D position and rotation from homography
- Calculate mean distances to the checkerboard in two ways:
 - Mean distance of intersection points of rays with the model plane (MP)
 - Mean depth value within the checkerboard reagion in the depth image

RGB-camera

Depth image

Thermal and environmental influences on distance measurements:

1) Kinect Power-On

Tracking both distances during the first 135 minutes (warm-up phase)

Conditions

- Static scene (no movements)
- No fan activity
- Room temperature at 27.7°C

Distance Changes

- Model Plane: -6.9 mm (~0.5%)
- Kinect Depth: 19.4mm (~1.3%)
- 90% of overall change reached after 60 minutes (Model Plane) and 41 minutes (Kinect Depth)

☑ Rule 2: A warm-up time of up to 60 minutes is necessary to reach stable measurements

2) Kinect after Stand-By and USB-Disconnection

- Examine changes due to interruptions of the on-line state (streaming data)
- Constant environmental conditions (temperatur 26.9 °C, no fan, no air draft)
- Warm-up phase before entering each interruption phase

Stand-By: No data stream, connection to USB and power supply

USB-Disconnection: Comparable to power disconnection

Туре	nterruption	2 min	5 min	10 min	15 min	10 h
Stand-By	MP [mm]	-	-	-	0.7	1.7
	Depth [mm]	-	-	-	-3.1	-6.0
USB- Discon- nection	MP [mm]	0.3	1.2	2.4	-	-
	Depth [mm]	-6.1	-10.4	-14.7	-	-

☑ Rule 3: Try to keep the Kinect always in the on-line mode. If this is not possible, leaving it in the stand-by mode is the best alternative.

3) Fan Cooling and Air Draft

Experiment 1: Mounted Fan

- Alternating between phases with and without fan cooling
- Tracking distances in three repetitions of the experiment

	Cool down phase	Warm-up phase	Impact of ventilation on distance measurement
Model Plane	18 min	60 min	5.7 mm
Kinect Depth	10 min	33 min	-22.8 mm

3) Fan Cooling and Air Draft

Experiment 2: Kinect's internal Fan

- Small and silent fan (less powerpull)
- Activation at room temperature of ~30°C
- Observed impact on distances after activation:
 - Model Plane: 2.4 mm
 - Kinect Depth: -12.2 mm

Experiment 3: Air Draft

- No control of real air draft
 - → Simulation with a table fan
- Activation for only 10 seconds in a distance of 30 cm (3 repititions):
 - Model Plane: insignificant
 - Kinect Depth: -3.2, -3.1 and -3.2 mm

☑ Rule 4: Try to avoid air draft while using the Kinect in the warm state.

Variations in temperature

Experiment 1: Natural temperature fluctuations

- Closed door and window before starting (26.2°C)
- Window was opened at start of experiment (morning)
- Avoidance of air draft (closed door, blinded window)
- Weather (mix of sun and rain) causes natural indoor temperatur variations

1502

1500

1498

1496

1494

100

200

300

Distance [mm]

- Window was closed at minute 497 (evening)
- Correlations:
 - Temperature and MP: negative
 - Temperature and depth: positive

Temp. influence	Min	Max	Diff.	mm/°C
Temperature [°C]	22.8		3.40	
Kinect Depth[mm]	1494.57	1500.96	6.39	1.88
Model Plane[mm]	1493.79	1495.69	1.90	-0.56

☑ Rule 5: Try to keep the environmental temperature stable.

500

700

800

600

400

Time [min]

Kinect Depth Model Plane

Temperature

25

Variations in temperature

Experiment 2: Controlled room cooling / heating

- Static scene, comparable to previous tests
- Temperatur sensor directly at Kinect's ventilation slot
- Temperatures at the beginning: Sensor: 27.1°C, Room: 22.0°C
- Cold outdoor temperatures (11°C)
- Open window: minute 5-75 (room cool down)
- Closed window: minute 75-185 (room warm-up)

Correlation to temperature:

Kinect Depth: 0.9685

Model Plane: -0.9960

Temp. influence	Min	Max	Diff.	mm/°C
Temperature [°C]	21.31		6.38	-
Kinect Depth[mm]	1461.60	1474.32	12.72	1.99
Model Plane[mm]	1471.39	1474.56	3.17	-0.50

Summary and future work

- Sensitivity of the Kinect sensor to
 - Temperature (~ 2mm per 1 °C)
 - Air draft (~3mm in 10 s)
 - Working interruptions (~15mm in 10 min)

- Several experiments to evaluate the environmental influence
- Practical rules to reduce errors during
 - Calibration phase
 - Measurement phase
- Future work
 - Temperature dependent correction function

Practical rules for error reduction

- Rule 1: Camera calibration and subsequent measurements should be performed at the same thermal conditions.
- Rule 2: A warm-up time of up to 60 minutes is necessary to reach stable measurements.
- Rule 3: Try to keep the Kinect always in the on-line mode. If this is not possible, leaving it in the stand-by mode is the best alternative.
- Rule 4: Try to avoid air draft while using the Kinect in the warm state.
- ☑ Rule 5: Try to keep the environmental temperature stable.

Thank you very much for your attention

