

A Dynamic MRF Model for Foreground Detection on Range Data Sequences of Rotating Multi-Beam Lidar

Csaba Benedek, Dömötör Molnár and Tamás Szirányi

Distributed Events Analysis Research Laboratory Computer and Automation Research Institute (MTA SZTAKI) Budapest Hungary contact email: csaba.benedek@sztaki.mta.hu

Workshop on Depth Image Analysis 2012, Tsukuba City,

Content

[Introduction](#page-2-0)

[Problem formulation and data mapping](#page-12-0)

[Point cloud classification](#page-17-0)

[Evaluation and applications](#page-29-0)

Content

[Introduction](#page-2-0)

[Problem formulation and data mapping](#page-12-0)

[Point cloud classification](#page-17-0)

[Evaluation and applications](#page-29-0)

Introduction

- \triangleright Foreground detection from a static viewpoint:
	- \triangleright separating regions moving objects in measurement sequences of a sensor installed in a fixed position
- \triangleright Applications of foreground detection in visual surveillance
	- \triangleright people or vehicle detection and tracking
	- \blacktriangleright activity analysis
	- \blacktriangleright biometric identification
- Difficulties with optical video sequences

Low illumination

Occlusion (1 or 2 ?)

Various object appearances

Introduction

- \blacktriangleright Range cameras instead of conventional video sources
	- \triangleright Direct geometric information, independent of outside illumination
	- \blacktriangleright Avoiding artifacts of stereo vision
- \blacktriangleright Time-of-Light (ToF) cameras
	- \blacktriangleright depth image sequences over a regular 2D pixel lattice
	- \triangleright established image processing approaches (such as MRFs)
	- \blacktriangleright limited Field of View (FoV)
- \triangleright Rotating multi-beam Lidar systems (RMB-Lidar)
	- ► 360° FoV of the scene
	- \blacktriangleright artifacts of rotating sensor: angle shift between time frames, fluctuation of rotation speed

MTA SZTAKI

Velodyne HDL-64 High Speed RBM System

\blacktriangleright Specification

- \triangleright 64 laser and sensor
- \blacktriangleright 120m distance
- \blacktriangleright < 2cm accuracy
- \blacktriangleright > 1.333M point/sec

Benedek et. al. (MTA SZTAKI) [Foreground Detection on Range Data](#page-0-0) 11 November 2012 6/25

OMTA SZTAKI

Range image formation of a RMB Lidar

- \triangleright Point cloud mapping into a cylinder shaped range image
	- \triangleright cylinder axis: axis of the rotation
	- \triangleright vertical resolution: number of sensors
	- horizontal resolution: rot. speed dependent

Problems

- -
- -
-

MTA SZTAKI

Range image formation of a RMB Lidar

- \triangleright Point cloud mapping into a cylinder shaped range image
	- \triangleright cylinder axis: axis of the rotation
	- \triangleright vertical resolution: number of sensors
	- \triangleright horizontal resolution: rot. speed dependent

\blacktriangleright Problems

- \blacktriangleright Ambiguous pixel-surface mapping:
	- \blacktriangleright different objects at a given pixel in the consecutive time steps
- \blacktriangleright Multi-modal distributions for the background-range values
	- \triangleright aggregated errors in case of dense background motion (e.g. moving vegetation)
- \triangleright Non-linear calibration to obtain Euclidean coordinates from the measurements (distance, pitch and angle)
	- \triangleright inhomogeneous density of the projected points

Range image formation of a RMB Lidar

- \triangleright Point cloud mapping into a cylinder shaped range image
	- \triangleright cylinder axis: axis of the rotation
	- \triangleright vertical resolution: number of sensors
	- \triangleright horizontal resolution: rot. speed dependent

\blacktriangleright Problems

- \blacktriangleright Ambiguous pixel-surface mapping:
	- \blacktriangleright different objects at a given pixel in the consecutive time steps
- \blacktriangleright Multi-modal distributions for the background-range values
	- aggregated errors in case of dense background motion (e.g. moving vegetation)

^I Non-linear calibration to obtain Euclidean coordinates from the measurements (distance, pitch and angle)

 \triangleright inhomogeneous density of the projected points

Range image formation of a RMB Lidar

- \triangleright Point cloud mapping into a cylinder shaped range image
	- \triangleright cylinder axis: axis of the rotation
	- \triangleright vertical resolution: number of sensors
	- \triangleright horizontal resolution: rot. speed dependent

\blacktriangleright Problems

- \blacktriangleright Ambiguous pixel-surface mapping:
	- \blacktriangleright different objects at a given pixel in the consecutive time steps
- \blacktriangleright Multi-modal distributions for the background-range values
	- aggregated errors in case of dense background motion (e.g. moving vegetation)
- \triangleright Non-linear calibration to obtain Euclidean coordinates from the measurements (distance, pitch and angle)
	- inhomogeneous density of the projected points

Related work on RBM-Lidar sensors

- \blacktriangleright Kalyan, 2010, IEEE SMC: direct extraction of the foreground objects from the range image by mean-shift segmentation
	- \triangleright moving and static objects may be merged into the same blob
- \triangleright Foreground detection in the spatial 3D domain
	- only bounding boxes \rightarrow insufficient for activity recognition (e.g. skeleton fitting)
	- \triangleright MRF techniques based on 3D spatial point $neighborhoods \rightarrow low accuracy for small$ neighborhoods, high computational complexity for large ones
	- \triangleright Proposed model: a hybrid approach
		- \triangleright MRF filtering in the 2D range image domain
		- \triangleright 3D point classification to handle 2D ambiguities
		- \triangleright spatial foreground model to eliminate background motion

Related work on RBM-Lidar sensors

- \blacktriangleright Kalyan, 2010, IEEE SMC: direct extraction of the foreground objects from the range image by mean-shift segmentation
	- \triangleright moving and static objects may be merged into the same blob
- \triangleright Foreground detection in the spatial 3D domain
	- only bounding boxes \rightarrow insufficient for activity recognition (e.g. skeleton fitting)
	- \triangleright MRF techniques based on 3D spatial point $neighborhoods \rightarrow low accuracy for small$ neighborhoods, high computational complexity for large ones
	- \blacktriangleright Proposed model: a hybrid approach
		- \triangleright MRF filtering in the 2D range image domain
		- \triangleright 3D point classification to handle 2D ambiguities
		- \triangleright spatial foreground model to eliminate background motion

Content

[Introduction](#page-2-0)

[Problem formulation and data mapping](#page-12-0)

[Point cloud classification](#page-17-0)

[Evaluation and applications](#page-29-0)

- ► Pointcloud at time t : $\mathcal{L}^t = \{p_1^t, \ldots, p_l^t\}$ $\left\{ \begin{matrix} t \ f^{t} \end{matrix} \right\}$, $\mathcal{I}^{t} = \mathcal{R} \cdot \mathcal{C}^{t}$
	- \triangleright R number of vertically aligned sensors,
	- \blacktriangleright c^t : number of point columns at t
- Point attributes for $p \in \mathcal{L}^t$:
	- ► sensor distance $d(p) \in [0, D_{\text{max}}]$, pitch index $\hat{\vartheta}(p) \in \{1, ..., R\}$ and yaw angle $\varphi(\bm{\rho}) \in [0,360^\circ]$
- ► Point labeling: $\omega(\rho) \in \{fg, bg\}$
- \blacktriangleright Range image formation:
	- \triangleright Cylinder projection using a $R \times S_W$ sized 2D pixel lattice S. $s = [v_s, x_s]$: given pixel in S
	- \blacktriangleright $\mathcal{P}: \mathcal{L}^t \to \mathcal{S}$ point mapping operator:

$$
s \stackrel{\text{def}}{=} \mathcal{P}(p) \text{ iff } y_s = \hat{\vartheta}(p), \ x_s = \text{round}\left(\varphi(p) \cdot \frac{S_W}{360^\circ}\right)
$$

- ► Pointcloud at time t : $\mathcal{L}^t = \{p_1^t, \ldots, p_l^t\}$ $\left\{ \begin{matrix} t \ f^{t} \end{matrix} \right\}$, $\mathcal{I}^{t} = \mathcal{R} \cdot \mathcal{C}^{t}$
	- \triangleright R number of vertically aligned sensors,
	- \blacktriangleright c^t : number of point columns at t
- ► Point attributes for $p \in \mathcal{L}^t$:
	- ► sensor distance $d(p) \in [0, D_{\text{max}}]$, pitch index $\hat{\vartheta}(p) \in \{1, \ldots, R\}$ and yaw angle $\varphi(\pmb{\rho})\in [0,360^\circ]$
- ► Point labeling: $\omega(\rho) \in \{fg, bg\}$
- \blacktriangleright Range image formation:
	- \triangleright Cylinder projection using a $R \times S_W$ sized 2D pixel lattice S. $s = [v_s, x_s]$: given pixel in S
	- \blacktriangleright $\mathcal{P}: \mathcal{L}^t \to \mathcal{S}$ point mapping operator:

$$
s \stackrel{\text{def}}{=} \mathcal{P}(p) \text{ iff } y_s = \hat{\vartheta}(p), \ x_s = \text{round}\left(\varphi(p) \cdot \frac{S_W}{360^\circ}\right)
$$

- ► Pointcloud at time t : $\mathcal{L}^t = \{p_1^t, \ldots, p_l^t\}$ $\left\{ \begin{matrix} t \ f^{t} \end{matrix} \right\}$, $\mathcal{I}^{t} = \mathcal{R} \cdot \mathcal{C}^{t}$
	- \triangleright R number of vertically aligned sensors,
	- \blacktriangleright c^t : number of point columns at t
- ► Point attributes for $p \in \mathcal{L}^t$:
	- ► sensor distance $d(p) \in [0, D_{\text{max}}]$, pitch index $\hat{\vartheta}(p) \in \{1, \ldots, R\}$ and yaw angle $\varphi(\pmb{\rho})\in [0,360^\circ]$
- ► Point labeling: $\omega(p) \in \{fg, bg\}$
- \triangleright Range image formation:
	- \triangleright Cylinder projection using a $R \times S_W$ sized 2D pixel lattice S. $s = [v_s, x_s]$: given pixel in S
	- \blacktriangleright $\mathcal{P}: \mathcal{L}^t \to \mathcal{S}$ point mapping operator:

$$
s \stackrel{\text{def}}{=} \mathcal{P}(p) \text{ iff } y_s = \hat{\vartheta}(p), \ x_s = \text{round}\left(\varphi(p) \cdot \frac{S_W}{360^\circ}\right)
$$

- ► Pointcloud at time t : $\mathcal{L}^t = \{p_1^t, \ldots, p_l^t\}$ $\left\{ \begin{matrix} t \ f^{t} \end{matrix} \right\}$, $\mathcal{I}^{t} = \mathcal{R} \cdot \mathcal{C}^{t}$
	- \triangleright R number of vertically aligned sensors,
	- \blacktriangleright c^t : number of point columns at t
- ► Point attributes for $p \in \mathcal{L}^t$:
	- ► sensor distance $d(p) \in [0, D_{\text{max}}]$, pitch index $\hat{\vartheta}(p) \in \{1, \ldots, R\}$ and yaw angle $\varphi(\pmb{\rho})\in [0,360^\circ]$
- ► Point labeling: $\omega(p) \in \{fg, bg\}$
- \blacktriangleright Range image formation:
	- \triangleright Cylinder projection using a $R \times S_W$ sized 2D pixel lattice S. $s = [v_s, x_s]$: given pixel in S
	- \blacktriangleright $\mathcal{P}: \mathcal{L}^t \to \mathsf{S}$ point mapping operator:

$$
s \stackrel{\text{def}}{=} \mathcal{P}(\rho) \text{ iff } y_s = \hat{\vartheta}(\rho), \ x_s = \text{round}\left(\varphi(\rho) \cdot \frac{S_W}{360^\circ}\right)
$$

Content

[Introduction](#page-2-0)

[Problem formulation and data mapping](#page-12-0)

[Point cloud classification](#page-17-0)

[Evaluation and applications](#page-29-0)

Background model

- $\triangleright \forall s \in S$: Mixture of Gaussians approximation of the $d(s)$ range history
	- ighthroad K number of components (here $K = 5$)
	- ► background: $k_{\rm s}$ largest weighted components $\sum_{i=1}^{k_{\rm s}} w^{i}_{\rm s} >$ $\mathcal{T}_{\rm bg}$
- \blacktriangleright $f_{\text{ho}}(s)$: background fitness term of pixel s

$$
f_{\text{bg}}(s) = \sum_{i=1}^{k_{\text{s}}} w_{\text{s}}^i \cdot \eta \left(d(s), \mu_{\text{s}}^i, \sigma_{\text{s}}^i \right).
$$

 \triangleright Noisy result - errors in textured or dynamic background

$$
|\mathbf{A}|\mathbf{A}|\leq |\mathbf{A}
$$

Background model

- $\triangleright \forall s \in S$: Mixture of Gaussians approximation of the $d(s)$ range history
	- ighthroad K number of components (here $K = 5$)
	- ► background: $k_{\rm s}$ largest weighted components $\sum_{i=1}^{k_{\rm s}} w^{i}_{\rm s} >$ $\mathcal{T}_{\rm bg}$
- \blacktriangleright $f_{\text{bg}}(s)$: background fitness term of pixel s

$$
f_{\text{bg}}(s) = \sum_{i=1}^{k_s} w_s^i \cdot \eta \left(d(s), \mu_s^i, \sigma_s^i\right).
$$

 \triangleright Noisy result - errors in textured or dynamic background

Background model

- $\triangleright \forall s \in S$: Mixture of Gaussians approximation of the $d(s)$ range history
	- ighthroad K number of components (here $K = 5$)
	- ► background: $k_{\rm s}$ largest weighted components $\sum_{i=1}^{k_{\rm s}} w^{i}_{\rm s} >$ $\mathcal{T}_{\rm bg}$
- \blacktriangleright $f_{\text{bg}}(s)$: background fitness term of pixel s

$$
f_{\text{bg}}(s) = \sum_{i=1}^{k_s} w'_s \cdot \eta \left(d(s), \mu_s^i, \sigma_s^i \right).
$$

Noisy result - errors in textured or dynamic background

$$
|\mathbf{A}|\cdot|\mathbf{A}|\
$$

Foreground model

Local range values in motion-regions

Foreground class: non-parametric kernel density model

 \triangleright in the neighborhood of foreground pixels, we should find foreground pixels with similar range values

$$
f_{\text{fg}}(s) = \sum_{r \in N_s} \left(1 - \zeta(f_{\text{bg}}(r), \tau_{\text{fg}}, m_{\star})\right) \cdot k\left(\frac{d_s^t - d_r^t}{h}\right)
$$

► h: kernel bandwidth, $\zeta : \mathbb{R} \to [0, 1]$ sigmoid function

Dynamic MRF Model

- ► 2-D pixel lattice \rightarrow graph: $S = \{s\}$
- Nodes: image points (s is a pixel)
- \blacktriangleright Edges: interactions \rightarrow cliques
	- \triangleright intra-frame edges: spatial smoothness
	- \triangleright inter-frame edges: temporal smoothness

 \triangleright MRF energy function

 $E = \sum$ s∈S $V_D(d^t_s|\omega^t_s)$ Dataterm $+\sum$ s∈S \sum r∈N^s $\alpha \cdot \mathbf{1}\{\omega_{\mathbf{s}}^t \neq \omega_{\mathsf{r}}^{t-1}\} + \sum$ temporal smoothness s∈S \sum r∈N^s $\beta \cdot \mathbf{1} \{ \omega_s^t \neq \omega_r^t \},$ spatial smoothness

- \blacktriangleright Energy optimization
	- \triangleright Graph cut based method (real time)

Dynamic MRF Model: data terms

- \blacktriangleright $\zeta(x, \tau, m)$ sigmoid function: soft thresholding
	- \triangleright τ : soft threshold, *m*: steepness

 \blacktriangleright The data terms are derived from the data energies by sigmoid mapping:

$$
V_D(d_s^t|\omega_s^t = bg) = \zeta(-\log(f_{bg}^t(s)), \tau_{bg}, m_{bg})
$$

$$
V_D(d_s^t|\omega_s^t = fg) = \begin{cases} 1 & \text{if } d_s^t > \max_{\{i=1...k_s\}} \mu_s^{i,t} + \epsilon \\ \zeta(-\log(f_{fg}^t(s)), \tau_{fg}, m_{fg}) & \text{otherwise.} \end{cases}
$$

In Setting sigmoid parameters $\tau_{\text{fg}}, \tau_{\text{bg}}, m_{\text{fg}}, m_{\text{bg}}$: Maximum Likelihood learning, based on training samples

Label backprojection

 \triangleright Point cloud labeling based on the segmented range image

- \triangleright Problems due to angle quantization for the discrete pixel lattice
- \blacktriangleright Misclassified points near *object* edges and, 'shadow' edges

Benedek et. al. (MTA SZTAKI) [Foreground Detection on Range Data](#page-0-0) 11 November 2012 16 / 25

Final point cloud classification

- \triangleright Classification of the point of the cloud based on the segmented range image
	- \blacktriangleright $\omega(p)$: point cloud label
	- $\triangleright \omega_s$: range image label of pixel corresponding to point p
	- In handling the ambiguous point (p) pixel (s) assignments

- $\omega(\rho) = \text{fg}$, iff one of the following two conditions holds:
	-
	-
- $\omega(\rho) = \text{bg}$: otherwise.

Final point cloud classification

- \triangleright Classification of the point of the cloud based on the segmented range image
	- \blacktriangleright $\omega(p)$: point cloud label
	- $\triangleright \omega_s$: range image label of pixel corresponding to point p
	- ighthanormulation handling the ambiguous point (p) pixel (s) assignments

- $\omega(\rho) = fg$, iff one of the following two conditions holds:
	- \circ ω_s = fg and distance of p matches to the background range image value in s
	- \circ $\omega_s = \text{bg}$ and we find a neighbor r of pixel s, where $\omega_r = \text{fg}$ and the distance of p matches to the background range image value in r

• $\omega(\rho) = \text{bg}$: otherwise.

Final point cloud classification

- \triangleright Classification of the point of the cloud based on the segmented range image
	- \blacktriangleright $\omega(p)$: point cloud label
	- $\triangleright \omega_s$: range image label of pixel corresponding to point p
	- ighthanormulation handling the ambiguous point (p) pixel (s) assignments

- $\omega(\rho) = fg$, iff one of the following two conditions holds:
	- \circ ω_s = fg and distance of p matches to the background range image value in s
	- \circ $\omega_s =$ bg and we find a neighbor r of pixel s, where $\omega_r =$ fg and the distance of p matches to the background range image value in r

• $\omega(\rho) = \text{bg}$: otherwise.

Final point cloud classification

- \triangleright Classification of the point of the cloud based on the segmented range image
	- \blacktriangleright $\omega(p)$: point cloud label
	- $\triangleright \omega_s$: range image label of pixel corresponding to point p
	- ighthanormulation handling the ambiguous point (p) pixel (s) assignments

- $\omega(\rho) = fg$, iff one of the following two conditions holds:
	- \circ ω_s = fg and distance of p matches to the background range image value in s
	- \circ $\omega_s =$ bg and we find a neighbor r of pixel s, where $\omega_r =$ fg and the distance of p matches to the background range image value in r
- $\omega(p) = \text{bg}$: otherwise.

Content

[Introduction](#page-2-0)

[Problem formulation and data mapping](#page-12-0)

[Point cloud classification](#page-17-0)

[Evaluation and applications](#page-29-0)

Test datasets

- ▶ Two LIDAR sequences: Courtyard (video surveillance) and Traffic (traffic monitoring)
	- Sensor: Velodyne HDL 64E S2 camera, $R = 64$ beams
	- \triangleright Courtyard: 2500 frames, four pedestrians, 20 Hz recording
	- \triangleright Traffic: 160 frames, >20 objects (cars), 5 Hz recording
- \triangleright Reference techniques:
	- \triangleright Basic MoG on the range image
	- \triangleright uniMRF: uniform foreground model for range image segmentation in the DMRF framework.
	- \triangleright 3D-MRF MRF model in the 3D point cloud space
- \triangleright Quantitative analysis:
	- \triangleright 3D point cloud annotation tool manual Ground Truth (GT) generation
	- \triangleright Point level F-measure of foreground detection

Test datasets

- ▶ Two LIDAR sequences: Courtyard (video surveillance) and Traffic (traffic monitoring)
	- Sensor: Velodyne HDL 64E S2 camera, $R = 64$ beams
	- \triangleright Courtvard: 2500 frames, four pedestrians, 20 Hz recording
	- \triangleright Traffic: 160 frames, >20 objects (cars), 5 Hz recording
- \blacktriangleright Reference techniques:
	- \blacktriangleright Basic MoG on the range image
	- \triangleright uniMRF: uniform foreground model for range image segmentation in the DMRF framework.
	- \rightarrow 3D-MRF MRF model in the 3D point cloud space
- \triangleright Quantitative analysis:
	- \triangleright 3D point cloud annotation tool manual Ground Truth (GT) generation
	- \triangleright Point level F-measure of foreground detection

Test datasets

- \triangleright Two LIDAR sequences: *Courtyard* (video surveillance) and Traffic (traffic monitoring)
	- Sensor: Velodyne HDL 64E S2 camera, $R = 64$ beams
	- \triangleright Courtvard: 2500 frames, four pedestrians, 20 Hz recording
	- \triangleright Traffic: 160 frames, >20 objects (cars), 5 Hz recording
- \blacktriangleright Reference techniques:
	- \blacktriangleright Basic MoG on the range image
	- \triangleright uniMRF: uniform foreground model for range image segmentation in the DMRF framework.
	- \rightarrow 3D-MRF MRF model in the 3D point cloud space
- \blacktriangleright Quantitative analysis:
	- \triangleright 3D point cloud annotation tool manual Ground Truth (GT) generation
	- \triangleright Point level F-measure of foreground detection

Qualitative results

Courtyard scenario

Basic MoG **Proposed DMRF**

Traffic scenario

Basic MoG Proposed DMRF

Benedek et. al. (MTA SZTAKI) [Foreground Detection on Range Data](#page-0-0) 11 November 2012 20/25

Qualitative results

Benedek et. al. (MTA SZTAKI) [Foreground Detection on Range Data](#page-0-0) 11 November 2012 21 / 25

Quantitative evaluation

MTA SZTAKI

Application: multiple pedestrian detection & tracking

- Object detection: ground projection of foreground points + blob detection
- \blacktriangleright Tracking: based on Kalman filter and Hungarian matching algorithm

Application: multiple pedestrian detection & tracking

Online demo available at our laboratory

Benedek et. al. (MTA SZTAKI) [Foreground Detection on Range Data](#page-0-0) 11 November 2012 24/25

Application: towards dynamic scene reconstruction

Benedek et. al. (MTA SZTAKI) [Foreground Detection on Range Data](#page-0-0) 11 November 2012 25 / 25