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Introduction
I Foreground detection from a static viewpoint:

I separating regions moving objects in measurement sequences of a
sensor installed in a fixed position

I Applications of foreground detection in visual surveillance
I people or vehicle detection and tracking
I activity analysis
I biometric identification

I Difficulties with optical video sequences
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Introduction
I Range cameras instead of conventional video sources

I Direct geometric information, independent of outside illumination
I Avoiding artifacts of stereo vision

I Time-of-Light (ToF) cameras
I depth image sequences over a

regular 2D pixel lattice
I established image processing

approaches (such as MRFs)
I limited Field of View (FoV)

I Rotating multi-beam Lidar systems
(RMB-Lidar)

I 360◦ FoV of the scene
I artifacts of rotating sensor: angle

shift between time frames,
fluctuation of rotation speed
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Velodyne HDL-64 High Speed RBM System

I Specification
I 64 laser and sensor
I 120m distance
I < 2cm accuracy
I > 1.333M point/sec

Benedek et. al. (MTA SZTAKI) Foreground Detection on Range Data 11 November 2012 6 / 25



Range image formation of a RMB Lidar
I Point cloud mapping into a cylinder shaped

range image
I cylinder axis: axis of the rotation
I vertical resolution: number of sensors
I horizontal resolution: rot. speed dependent

I Problems
I Ambiguous pixel-surface mapping:

I different objects at a given pixel in the consecutive time steps
I Multi-modal distributions for the background-range values

I aggregated errors in case of dense background motion (e.g. moving
vegetation)

I Non-linear calibration to obtain Euclidean coordinates from the
measurements (distance, pitch and angle)

I inhomogeneous density of the projected points
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Related work on RBM-Lidar sensors
I Kalyan,2010, IEEE SMC: direct extraction of the

foreground objects from the range image by
mean-shift segmentation

I moving and static objects may be merged into the
same blob

I Foreground detection in the spatial 3D domain
I only bounding boxes → insufficient for activity

recognition (e.g. skeleton fitting)
I MRF techniques based on 3D spatial point

neighborhoods → low accuracy for small
neighborhoods, high computational complexity for
large ones

I Proposed model: a hybrid approach
I MRF filtering in the 2D range image domain
I 3D point classification to handle 2D ambiguities
I spatial foreground model to eliminate background motion
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Problem definition and notations
I Pointcloud at time t : Lt = {pt

1, . . . ,p
t
l t}, l t = R · ct

I R number of vertically aligned sensors,
I ct : number of point columns at t

I Point attributes for p ∈ Lt :
I sensor distance d(p) ∈ [0,Dmax], pitch index ϑ̂(p) ∈ {1, . . . ,R} and

yaw angle ϕ(p) ∈ [0, 360◦]

I Point labeling: ω(p) ∈ {fg, bg}
I Range image formation:

I Cylinder projection using a R × SW sized 2D pixel lattice S.
s = [ys, xs]: given pixel in S

I P : Lt → S point mapping operator:

s def
= P(p) iff ys = ϑ̂(p), xs = round

(

ϕ(p) ·
SW

360◦

)
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Background model
I ∀s ∈ S: Mixture of Gaussians approximation of the d(s) range

history
I fixed K number of components (here K = 5)
I background: ks largest weighted components

∑ks
i=1 w i

s > Tbg

I fbg(s): background fitness term of pixel s

fbg(s) =
ks∑

i=1

w i
s · η

(

d(s), µi
s, σ

i
s

)

.

I Noisy result - errors in textured or dynamic background
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Foreground model

Local range values in motion-regions

I Foreground class: non-parametric kernel density model
I in the neighborhood of foreground pixels, we should find foreground

pixels with similar range values

ffg(s) =
∑

r∈Ns

(
1 − ζ(fbg(r), τfg,m?)

)
· k

(
d t

s − d t
r

h

)

I h: kernel bandwidth, ζ : R → [0, 1] sigmoid function
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Dynamic MRF Model

I 2-D pixel lattice → graph: S = {s}
I Nodes: image points (s is a pixel)
I Edges: interactions → cliques

I intra-frame edges: spatial smoothness
I inter-frame edges: temporal smoothness

I MRF energy function

E =
∑

s∈S

VD(d
t
s|ω

t
s)

︸ ︷︷ ︸

Dataterm

+
∑

s∈S

∑

r∈Ns

α · 1{ωt
s 6= ωt−1

r }

︸ ︷︷ ︸

temporal smoothness

+
∑

s∈S

∑

r∈Ns

β · 1{ωt
s 6= ωt

r}

︸ ︷︷ ︸

spatial smoothness

,

I Energy optimization
I Graph cut based method (real time)
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Dynamic MRF Model: data terms

I ζ(x , τ,m) sigmoid function: soft thresholding
I τ : soft threshold, m: steepness

I The data terms are derived from the data energies by sigmoid
mapping:

VD(d
t
s|ω

t
s = bg) = ζ(− log(f t

bg(s)), τbg,mbg)

VD(d
t
s|ω

t
s = fg) =

{

1 if d t
s > max{i=1...ks} µ

i ,t
s + ε

ζ(− log(f t
fg(s)), τfg,mfg) otherwise.

I Setting sigmoid parameters τfg, τbg, mfg, mbg: Maximum Likelihood
learning, based on training samples
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Label backprojection

I Point cloud labeling based on the segmented range image
I Problems due to angle quantization for the discrete pixel lattice
I Misclassified points near object edges and,‘shadow’ edges
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Final point cloud classification
I Classification of the point of the cloud based on the segmented

range image
I ω(p): point cloud label
I ωs: range image label of pixel corresponding to point p
I handling the ambiguous point (p) - pixel (s) assignments

• ω(p) = fg, iff one of the following two conditions holds:
◦ ωs = fg and distance of p matches to the background range

image value in s
◦ ωs = bg and we find a neighbor r of pixel s, where ωr = fg and the

distance of p matches to the background range image value in r

• ω(p) = bg: otherwise.
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Test datasets

I Two LIDAR sequences: Courtyard (video surveillance) and Traffic
(traffic monitoring)

I Sensor: Velodyne HDL 64E S2 camera, R = 64 beams
I Courtyard : 2500 frames, four pedestrians, 20 Hz recording
I Traffic: 160 frames, >20 objects (cars), 5 Hz recording

I Reference techniques:
I Basic MoG on the range image
I uniMRF : uniform foreground model for range image segmentation

in the DMRF framework.
I 3D-MRF MRF model in the 3D point cloud space

I Quantitative analysis:
I 3D point cloud annotation tool - manual Ground Truth (GT)

generation
I Point level F-measure of foreground detection
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Qualitative results
Courtyard scenario

Basic MoG Proposed DMRF
Traffic scenario

Basic MoG Proposed DMRF
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Qualitative results
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Quantitative evaluation

Sequence Prop. MoG uniMRF 3D-MRF DMRF
Det. Courtyard 4 obj/fr. 55.7 81.0 88.1 95.1
rate Traffic 20 obj/fr. 70.4 68.3 76.2 74.0

Speed Courtyard 65Kpt/fr 120 fps 18 fps 7 fps 16 fps
(fps) Traffic 260Kpt/fr 120 fps 18 fps 2 fps 16 fps
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Application: multiple pedestrian detection & tracking

I Object detection: ground projection of foreground points + blob
detection

I Tracking: based on Kalman filter and Hungarian matching
algorithm
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Application: multiple pedestrian detection & tracking
Online demo available at our laboratory
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Application: towards dynamic scene reconstruction
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