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Abstract. We propose an optimal algorithm for solving correspondences
problem in one-shot depth acquisition using color stripe patterns com-
posed of pseudo-random sequence (PRS). Our algorithm solves one-
dimensional matching in a globally optimal manner, imposing the unique-
ness of subsequences in the PRS as a hard constraint. The proposed
algorithm has linear time complexity with respect to the size of image,
which is of the same order as conventional dynamic programming match-
ing. Experimental results are presented to demonstrate the performance
of the algorithm using real data, for several color stripes that have been
proposed in this field.

1 Introduction

Rapid depth acquisition is the fundamental task for many applications including
recognition, tracking, and geometric modeling. A number of different approaches
to this problem are proposed, such as, real-time laser scanning [1], time-of-flight
camera [2], and stereo vision systems [3]. Coded light is a variant of active stereo
methods where one of cameras is replaced by a projector, and has been widely
adopted in many practical applications for its accuracy and capability of rapid
depth acquisition.

When moving and/or deforming objects are captured, the speed of image
acquisition is crucial for active vision systems that use temporally-coded light.
Rusinkiewicz et al. proposed an interactive system for in-hand modeling of static
objects, using a synchronized pair of projector and camera [4]. Weise et al.
extended the system to a multiple camera setup [5]. For even faster objects,
Narasimhan et al. proposed a high-speed projector-camera system that acquires
images at more than 1kHz [6]. These high-performance systems have advantages
in accuracy and reliability. The special hardware requirements, however, restrict
the scope of the application.

Spatially-coded light is an alternative approach to rapid depth acquisition.
The spatial distribution of illumination intensities allows the algorithms to esti-
mate the correspondences from a small number of images, typically one. The il-
lumination patterns are designed so that, each point is uniquely colored [7], each
neighborhood has unique pattern [8–10], or the pattern has distinctive sparse



structures [11, 12]. To cope with the fundamental tradeoff between resolution
and robustness, the decoding algorithms involve with numerical optimization
techniques that are computationally expensive and unstable.

In this paper, we propose an algorithm of optimally decoding stripe pat-
terns generated from pseudo-random sequence (PRS) in a computationally ef-
ficient manner. PRS has the window uniqueness property — each subsequence
of a certain length occurs at most once — and therefore allows the algorithm
to determine the correspondences uniquely from its partial observations. Our
method can find the globally optimal correspondence, on a practical assumption
of the monotonicity of observed stripes along epipolar lines. The algorithm is
independent of the underlying PRS, and therefore can be applied to many dif-
ferent types of stripe patterns. To demonstrate the capability of this method, we
have recovered correspondences using several patterns generated from: de Bruijn,
XOR-ed de Bruijn, non-recurring de Bruijn, and Hamming color sequences. The
experiments show that our method achieves substantial improvements in recon-
struction accuracy and robustness.

2 Color Stripes for One-shot Depth Acquisition

The strategies of coded light are comprehensively surveyed and systematized
by Salvi et al.[13] Among other techniques of spatially-coded light for one-shot
depth acquisition, stripe-based approach has a great advantage that spatial res-
olution is lost in only one dimension. Due to the simple structure of the pattern,
the reconstruction algorithm can be simple; Near-realtime implementations have
also been possible [14, 15]. In this section, we briefly describes existing techniques
of spatially-coded light using stripe patterns generated from PRS.

2.1 Pseudo-Random Sequences

De Bruijn Sequence is a cyclic sequence for which every possible subsequence of
a certain length appears as a sequence of consecutive characters exactly once.
Hügli and Mâıtre propose sparse color stripes generated from the de Bruijn se-
quence of 3-bit alphabets [16]. Zhang et al. propose a method of encoding the
sequence into the transition of color stripes, allowing the detection algorithm to
localize the pattern with sub-pixel accuracy. In these methods, one-dimensional
correspondence problem is solved efficiently via one-dimensional pattern match-
ing by dynamic programming [8].

Robustness: De Bruijn sequence has several drawbacks for the use of coded
light. One of them is recurrence of sample alphabets, which makes it difficult to
detect individual stripes correctly. Pages et al. solved the problem by inserting
dark separators into every other stripes. Lim proposed non-recurring de Bruijn
sequence that can be embedded densely into a projection pattern for a stereo
system with active illumination [9]. Another issue of the robustness to imaging
error and occlusion is addressed by Yamazaki et al in [10]. They introduce a



variant of de Bruijn sequence that by construction does not yield fake colors
between adjacent stripes due to local color blending.
Error-correction: Forster proposes a color stripe pattern that has error detec-
tion and correction capabilities as well as window property [14]. He first define
a list of requirements that the code should satisfy, and generate one of such
sequences by a randomized algorithm. They also describe a technique of robust
stripe detection on colored surfaces, under unknown ambient illumination.

Our reconstruction algorithm is independent of the underlying PRS from
which color stripes are generated, and therefore can be used to decode the above-
mentioned patterns.

2.2 Decoding Algorithms

Semi-global methods try to solve the correspondence problem by iteratively
applying local optimization. Many existing techniques of one-shot depth acquisi-
tion rely on one-dimensional pattern matching by dynamic programming [16, 8,
10]. This method yields a globally optimal solution in a computationally efficient
manner, but often results in inconsistency between adjacent lines. To address the
problem, Forster proposes to propagate the result of adjacent reconstruction to
improve the coherence between lines [14]. Christoph and Angelopoulou propose
an incremental method where local reconstructions are iteratively concatenated,
and report that their semi-global method outperformed a global method due to
the high complexity of the problem [15].
Global methods: If the cost function is properly define, global optimization
methods may achieve the best reconstruction. Among many different techniques,
belief propagation [17], graph cut [15], and optimization via linear system [18]
have been effectively utilized. The drawback of these approaches is their high
computational cost. They typically take one to several seconds, making it difficult
to integrate the scanning component into interactive systems.

Our goal is to propose a new algorithm of optimally decoding existing color
stripe patterns and achieves reliable reconstruction without increasing compu-
tational cost.

3 Solving Optimal Correspondence

In the rest of this paper, we assume that the projector and camera are geometri-
cally calibrated and the images are rectified so that, each line of acquired images
has one-to-one correspond to a one-dimensional color stripe pattern.

3.1 Dynamic Programming Matching — Review

The problem of depth recovery for each image line is equivalent to a one-
dimensional matching between a stripe pattern and the line. And hence, it can be
solved efficiently by dynamic programming matching (DPM), on a practical as-
sumption of the monotonicity of observed stripes along epipolar lines. The corre-
spondence problem is solved independently for each line, using a two-dimensional
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Fig. 1. A diagram of dynamic programming matching (DPM) for a single image line. In
conventional DPM, the optimal correspondence at a grid point (a) is estimated from
the score at (a), and the previous results obtained at (b), (c), and (d). In our dual
DPM, the matching cost (b) is replaced with the optimal consecutive matches denoted
by (e), which is obtained by solving another DPM using a table denoted by (g).

table illustrated in Fig. 1. For the detail of DPM, please refer to prior work [19,
8].

DPM algorithm uses a two-dimensional table on which subproblems are
solved recursively. The horizontal and vertical axes respectively correspond pat-
tern coordinates (i ∈ [1, p]) and image line coordinates (j ∈ [1, w]). The matching
score c(i, j) of the matching between a pattern color at i and an image color at j
is stored at a grid point (i, j). The algorithm visits the grid points once for each,
proceeding from top-left to bottom-right. That is, the algorithm recursively solve
the correspondence by choosing the best solution to the previous subproblems:
M(i, j) = max{M1(i, j),M2(i, j),M3(i, j)} where

M1(i, j) = M(i− 1, j − 1) + c(i, j) (1)

M2(i, j) = M(i, j − 1) (2)

M3(i, j) = max
i′<i

M(i′, j) + εh (3)

εh is the penalty terms of skipping pattern stripes. In our experiments, εh = −1.1
is used when the score is defined as c ∈ [−1, 1]. The matching for the entire
sequences is obtained by backtracking the best path found at (p, w).

DPM has several advantages including linear time complexity and global
optimality. However, a näıve DPM algorithm tries to match as many pixels as
possible to obtain the highest matching score, resulting in discontinuous match-



ing that is unlikely correct correspondence. To penalize such undesirable results,
a variety of weighting schemes have been proposed. For instance, Mei et al. pro-
pose a real-time stereo algorithm using a semi-global optimization similar in
spirit to DPM, and demonstrated an efficient implementation on graphics pro-
cessing unit (GPU) [20]. In general, however, these weighting are unreliable, and
therefore we propose a more structured way to obtain likely correspondence.

3.2 Global Optimization with Window Uniqueness Constraint

We propose a variant of DPM for solving correspondences where the window
uniqueness property of a stripe pattern is considered as a hard constraint, with-
out losing the capability of global optimization and computational efficiency that
the original DPM holds. Specifically, we propose an algorithm that guarantees
the following properties in the solution:

– The solution is globally optimal with respect to a matching consistency.
– The matching consists of consecutive subsequences of at least length n in

the pattern coordinates.

n is the size of window uniqueness of the underlying PRS. The second property
is crucial for our algorithm, because otherwise the algorithm tries to maximize
the objective function by corresponding as many pairs as possible, potentially
resulting in numerous isolated correspondences. Since our pattern is ambiguous
if the length of subsequences is less than n, any matching that has less than n
correspondences shall be discarded.

3.3 Dual Dynamic Programming Matching

To guarantee the minimum length of consecutive matches, we propose a dual
dynamic programming matching (dual DPM) where an inner DPM is solved
for each to evaluate the accumulated scores for consecutive matches. In this
algorithm, we replace accumulated score of a single matching M1 with that of the
best n-consecutive matching M ′1 at each grid point (i, j). M ′1 is computed using
an internal DPM of size n×w, as shown in a dark color in Fig. 1. When solving the
inner DPM, skipping pattern pixel, or equivalently, vertical transition in the table
is prohibited to guarantee consecutive matching. Then, the best correspondence
is chosen among {M ′1,M2,M3} in the same manner as the conventional DPM.
The algorithm described above is summarized in Algorithm 1.

The computational complexity of the dual DPM is O(p2w) where p is the
length of a color pattern and w is the length of an image line. This complexity
is same as that of the conventional DPM with occlusion handling [19], despite
an inner DPM which requires an additional iteration for each column. The inner
DPM of size n × w is solved only once for each column, i.e., in O(nw) times,
where n is the size of window uniqueness of PRS, and much smaller than p. The
new consecutive match (e) in Fig. 1 at each grid point (i, j) is determined in a
constant time, by referring to the precomputed table for the inner DPM.



Algorithm 1 Dual Dynamic Programming Matching
input: Matching score c(i, j) for i ∈ [1, p] and j ∈ [1, w]

output: Optimal path L(1,1)→(p,w) ← argmax
L

∑
c(i, j)

1: foreach (i, j) : i ∈ [−1, n− 1] or j ← −1 /* initialize DPM */
2: M(i, j)← 0
3: foreach i ∈ [1, p]
4: foreach (i′, j′) : i′ ← i− n or j′ ← −1 /* initialize inner DPM */
5: N(i′, j′)←M(i′, j′)
6: foreach i′ ∈ [i− n+ 1, i− 1] /* solve inner DPM */
7: foreach j′ ∈ [1, w]
8: N(i′, j′)← max{N(i′ − 1, j′ − 1) + c(i′, j′), N(i′, j′ − 1)}
9: foreach j ∈ [1, w]

10: M ′1 ← N(i− 1, j − 1) + c(i, j) /* (1) n-consecutive match */
11: M2 ←M(i, j − 1) /* (2) image pixel skipped */
12: M3 ← max1≤i′<iM(i′, j) + εh /* (3) pattern pixel skipped */

13: M(i, j)← max{M ′1,M2,M3}
14: L← Backtrack(l, w) /* retrieve optimal correspondence */

4 Results

We have applied our method to four state-of-the-art techniques of color stripes:
De Bruijn Sequence B(5,3) with black separators [16], De Bruijn Sequence B(5,3)
encoded in color transition by XOR operator [8], Non-recurring De Bruijn Se-
quence NB(7,4) [9], Hamming Color Sequence H(4) [10]. The matching score
c(i, j) is defined in the same way as proposed in the original papers, and then
normalized into [−1, 1]. Fig. 2 summarizes the experiment results. The acquired
images are presented in (a). The correspondences recovered by conventional
DPM and our dual DPM are presented in respectively (b) and (c), where one-
dimensional coordinates are encoded in hue. The close-up of the differences be-
tween two results are presented in (d). The conventional DPM algorithm tends
to yield contiguous incorrect matches, as it attempts to maximize the number of
correspondence with non-negative consistencies. This issue can be successfully
resolved in our dual DPM algorithm where such incorrect matches are avoided
by enforcing window uniqueness constraint.

5 Conclusion

We have proposed the optimal method of solving correspondences between color
stripe patterns generated from maximum length sequence (MLS) and its partial
observation by dual DPM algorithm. The computational complexity of the pro-
posed algorithm is pseudo-linear, which is equivalent to that of the conventional
DPM and substantially lower than other global methods. Several existing stripe
patterns have been used in our experiments to demonstrate the performance of
our proposed method. The algorithm is easy to implement. The limitation of
our current technique is that the coherence between image lines are not con-
sidered. While the proposed DPM yields the globally optimal solution to the
correspondence for each image line, it is important to consider the coherence
between lines to obtain reliable correspondences. We are currently implement-
ing the dual DPM algorithm on graphics processing unit (GPU), based on our



De Bruijn Sequence [16]: B(5,3) + separator

De Bruijn Sequence [8]: B(5,3) + XOR

Non-recurring De Bruijn Sequence [9]: NB(7,4)

Hamming Color Sequence [10]: H(4)

(a) input (b) DPM (c) Dual DPM (d) close-up

Fig. 2. Results of correspondence recovery

previous work on parallel DPM on GPU [10], to achieve robust one-shot shape
recovery in real-time.
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