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Abstract. Optical strain maps calculated during a facial expression describe a 

bio-mechanical property of facial skin tissue, and are derived from the non-rigid 

motion incurred during facial expressions. In this paper, we propose a method 

for accurately estimating and modeling the three-dimensional strain impacted 

onto the face using standard optical flow techniques and a dynamic depth map. 

We demonstrate the robustness of this approach at different depth resolutions 

and views. Experimental results are given for a publically available dataset that 

contains high depth resolutions of facial expressions, as well as a new dataset 

collected using the Microsoft Kinect synchronized with two HD webcams. 
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1 Introduction 

Two-dimensional optical strain has been shown to be an effective feature for sev-

eral applications such as expression spotting [1], biometrics [2], as well as medical 

analysis [3]. Due to the recent releases of several feasible solutions for real-time 

three-dimensional imaging, successfully recovering the three-dimensional elastic 

properties of the face is now practical and could potentially lead to improvements in 

each of these areas. In this work, we demonstrate a method for calculating the 3-D 

strain incurred on a subject’s face based on the non-rigid facial motion observed dur-

ing a facial expression.  

Some key advantages of this method over traditional two-dimensional strain meth-

ods are the following: (i) horizontal motions that occur along the sides of the face are 

often projected as smaller displacements due to parallax projection. Our method of 

calculating three-dimensional strain has the advantage of reconstructing these vectors 

in order to represent a more accurate displacement; (ii) motion perpendicular to the 

camera axis is not factored in to two-dimensional strain maps, however this is cap-

tured with three-dimensional strain as an additional normal strain component. 

The method is based on the observation that the captured depth images of the sur-

face of the face exhibit 2-manifold qualities, i.e., local regions of the surface can be 

accurately estimated using two dimensional planar equations. Hence, we take ad-



vantage of this by estimating the three-dimensional correspondences using established 

two-dimensional optical flow methods. 

Methods for calculating non-rigid three-dimensional disparity has found extensive 

application in the entertainment industry, where they are used to animate faces of 

humanoid avatars in movies and games. Most current systems require special makeup 

or markers [4-6] due to low texture variability of the skin. Such markers, however, 

provide only a limited number of anchor points and are not sufficient to capture fine 

expression details at all points on the face. Other approaches [7] use direct intensity of 

the skin to track the displacements between the frames by imposing constraints on 

non-rigid motion.  Approaches for 3D reconstruction of the scene itself can be broad-

ly categorized into three groups.  The first group, motion stereo, requires a multi-view 

camera setup of a single scene, where 3D information is obtained through triangula-

tion of 3D points from multiple views [7-10]. Most of the prior work for estimation of 

non-rigid 3-D disparity falls into this category. The second category, called monocu-

lar sequence, uses a single-camera setups, but exploits a priori knowledge about the 

reconstructed scene by developing a model that constrains and develops the observed 

2D motion [11]. The last category, referred to as a dynamic depth map approach 

[12,13], assumes a monocular setup for both depth and color information using inex-

pensive sensors such as Microsoft Kinect. Our approach for 3D optical strain estima-

tion is based on the monocular setup and direct intensity skin tracking with a dynamic 

depth map. 

 

2 3-D Optical Strain 

2.1 Optical Flow 

Optical Flow is a well-known motion estimation technique that has two constraints: 

(i) the smoothness constraint, i.e., points within a small region move at some level of 

uniformity, and (ii) the brightness constraint, i.e. the intensity of a point in the image 

does not change over time. Optical flow is typically represented by the following 

equation. 

         = 0,                          (1) 

 

where I(x,y,t) is the image intensity as a spatial and temporal function, x and y are 

the image coordinates and t is time.     and    are the spatial and temporal gradients 

of the intensity function. p = [  
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denotes horizontal and vertical motion. 

 After experimenting with several versions of optical flow, we decided to use 

an implementation of the Horn-Schunck [14] method found in the computer vision 

toolbox for Matlab 2012.  The Horn-Schunk method consists of re-writing equation 

(1) as a global energy function that is constrained by a smoothness parameter   
     , and is optimized over k iterations. In general a lower alpha allows for less 

smooth flow fields (good for small motion), while a larger alpha restricts neighboring 



motions to be more uniform (good for large motions). For our experiments we used a 

low value for the smoothness constraint (       to allow for the small, non-rigid 

motion inherent with facial expressions, and chose an iteration count of k=200.  

2.2 Optical Strain 

Considering a three dimensional surface of a deformable object, its motion can be 

described by a three-dimensional displacement vector             .  Next, if we 

assume both a small region and small motion for a point P, we can define the strain 

tensor: 
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or in an expanded form: 
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Where             ) are normal strain components,             ) are shear 

strain components, and u,v,w are the displacements in the x,y,z directions. 

 Since strain is defined with respect to the displacement vector (u,v,w) in con-

tinuous space, we make the following 2-D approximation from the optical flow data 

(p,q): 
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where    is the elapsed time between two image frames.  

 

 If we compute the optical flow and strain using a fixed frame interval 

throughout a particular video sequence, we can treat    as a constant and estimate the 

partial derivatives as follows: 
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After the initial flow estimates are updated, we then take the spatial derivative in 

each direction. We chose the central difference method due to its accuracy and effi-

ciency [2]. Hence, 
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where (          are preset distances of 2-3 pixels. 

 

 Assuming a uniform stress across the face, elastorgrams based on the abso-

lute strain value or relative strain ratio can be used to reveal underlying elastic proper-

ty changes and the strain magnitude can be calculated as follows: 
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Lastly, for visualization, we normalize the strain magnitudes to [0,1] and illustrate 

the strain map with a color bar (see Fig. 1).  

3 Results 

3.1 Feasibility at Multiple depth resolutions 

In order to test the feasibility of using multiple depth resolutions, we developed an 

experiment that subsamples high resolution depth data at different rates. This was 

done on a publically available 3D dataset released from Binghamton University [15]. 

Fig. 1 contains an example subject from this dataset.  

 

 



 
 

   

Fig. 1. Example data from BU dataset showing face image and corresponding depth map 

(red=closest, blue = farthest). Eyes masked for privacy concerns. 
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Fig. 2. Example normalized 3-D strain maps calculated for two subjects corresponding to the 

surprise and smile expressions (each row). Depths were sub-sampled at ratios of (a) 1:1, (b) 

1:2, (c) 1:3, and (d) 1:4 (each row) resulting in depth resolutions of approximately 200x200, 

100x100, 66x66 and 50x50. Regions around eyes / mouth are masked due to noise, as in [2]. 

We selected 20 subjects performing two expressions (smile, surprise) for a total of 

40 sequences. The cropped face resolutions are approximately 700 x 700 pixels in 

dimension, with approximately every 3x3 pixel window containing a single depth 

value. We sampled the depth values at a 1:1, 1:2, 1:3, and 1:4 ratio and then used 

bilinear interpolation to scale the values back up to 700x700. Fig. 2 Contains some 

example strain maps calculated at each scale. 

In order to measure the similarity between strain maps calculated at several differ-

ent depth resolutions, the correlation coefficient was used (Table 1). Several observa-



tions can be made. First, at least an 80% similarity is maintained for both expressions 

even when using approximately 70x70 of 200x200 (a third) of available depth points. 

Table 1. Correlation coefficients for 40 expression (20 smile, 20 surprise) after subsampling at 

the given ratios and compared with a 1:1 sampling ratio. 

Exp. / Ratio 1:2 1:3 1:4 

Smile .90±.11 .80±.12 .69±.18 

Surprise .95±.02 .89±.05 .79±.15 

Both .93±.08 .85±.10 .74±.17 

3.2 View Invariance 

 

To demonstrate the view invariance of the method and give further evidence of the 

methods stability at low resolutions, we collected several subjects using the Microsoft 

Kinect sensor that was synchronized with an additional two additional HD webcams 

at approximately 30 degree angles to the face. We then registered each webcam to the 

automatically calibrated image provided by the Kinect using manually labeled eye 

coordinates. The Kinect sensor provides depth imaging at an image resolution of 

640x480 and a depth resolution of 320x280. However, due to mechanical restrictions 

on the minimum distance allowed to the sensor (roughly 3 feet), the face image is 

typically 175x175 in image resolution with a depth resolution of roughly 90 x 90. 

Some examples images and depth maps for this dataset can be found in Figure 3. 

       

       

Fig. 3.  Example images captured from approx. 30 degree angles with depth map (blue=closest, 

red = farthest) captured from Kinect synchronized with two webcams. Eyes masked for privacy 

concerns. 



Due to the amount of noise in the depth values provided by the Kinect, smoothing 

was required as pre-processing step. It is worth noting that we tested several kernel 

sizes and standard deviations, and a 3x3 Gaussian kernel with a standard deviation of 

.1 led to the best trade-off between keeping the three-dimensional structure of the face 

intact and minimizing erroneous noisy depth gradients. Some example 3-D strain 

maps can be found in Figure 4 for two different views that demonstrate the view-

invariance of the method.  

 

 

    
 

    

 

Fig. 4. Example strain maps calculated at two views roughly 45 degrees apart, for two subjects 

(each row). The first two pairs of columns are for the smile expression, the second pair of col-

umns are for the surprise expression. Regions around eyes / mouth are masked due to noise, as 

in [2]. 

4 Conclusions 

Optical strain maps calculated during facial expression are a bio-mechanical fea-

ture that has been shown to have broad significance in facial motion analysis. In this 

paper, we propose a method for calculating view-invariant three-dimensional strain 

maps based on 2-D optical flow correspondences over a dynamic depth map. We have 

demonstrated that the method is robust at several different depth resolutions and 

views by first giving results on the high resolution BU dataset sampled at different 

resolutions, as well as a low-resolution Kinect that was synchronized with two HD 

webcams at different angles. 
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