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Abstract. We present a novel enhancement method that addresses the
problem of corrupted edge information in depth maps. Corrupted depth
information manifests itself in zigzag edges instead of straight ones. We
extract the depth information from an associated color stream and use
this information to enhance the original depth map. Besides the visual
results, a quantitative analysis is conducted to prove the capabilities of
our approach.

1 Introduction

Video-plus-depth is an important 3D scene representation format [1]. It consists of
a color stream describing the texture of the scene and an associated depth stream
describing for each pixel its distance to the camera. From this representation,
arbitrary new views can be generated to enable stereo [1, 2], multi view [3] or
free viewpoint video [4].

An important presumption for high quality rendering is a high quality depth
map. However, there exists at the moment no depth map generation technique
that is able to produce a perfect depth map, i.e., a depth map that is free of
artifacts, holes, which is temporally stable and has video resolution all together.

Different depth map enhancement methods have evolved to address differ-
ent aspects of depth map corruption [5–9] . In this paper, we propose a novel
enhancement algorithm that takes associated color information into account to
enhance the quality of edges in a depth map. We use depth maps generated by
the Microsoft Kinect depth camera for our approach, though our algorithm is
not restricted to depth maps generated with this camera. The Kinect camera is
a structured light depth sensor which suffers from quite poor edge reproduction.
Figure 1 shows an example. We use edge information found in the corresponding
color stream via a superpixel segmentation and compute a new representative
depth map Dr which stores robust edge information corresponding to the color
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Fig. 1. (a) Example color image. (b) Associated depth map. (c) Magnification of (a).
(d) Magnification of (b). (e) The green line marks the edge from the color stream. (f)
Result of our approach.

stream. Dr is then used to enhance the source depth map D. A quantitative anal-
ysis shows that our method outperforms common depth enhancement algorithms
in terms of edge restoration.

The rest of our paper is organized as follows. Section 2 discusses previous
work in this field. We describe our algorithm in Section 3 and present some
results in Section 4. Section 5 concludes this paper.

2 Related Work

There exist several methods that enhance depth maps. In [5], depth maps are
filtered using a temporal median filter. Holes are filled using a spatial median.
The work reported in [6] addresses special issues of the Microsoft Kinect depth
camera. Holes that occur due to the offset between color and depth camera are
closed by background extraction and other holes by row-wise linear interpolation.
No temporal processing is applied.

In [7], the authors port simple filters like Gaussian-weighted hole filling and
temporal smoothing as well as edge-preserving denoising on the GPU and achieve
very high framerates of 100fps. The framework is modal and not dependent on a
certain depth camera technology. The method looks promising and is said to be
applicable to dynamic scenes although no special evaluation was given in this
case.
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3 Our Method

In our algorithm we address the common problem of corrupted edge information
in depth images. Figure 1 shows an example. In the color image, the edge of
the foreground object (the shelf) is a straight line, whereas it is corrupted in
the depth stream. The corrupted edges in the depth image do not correspond
with the edges of actual objects. When using this depth map for view synthesis
(e.g. Depth Image Based Rendering [1]), artifacts will occur. Therefore, it is
important to have edges in the depth map that correspond closely to the edges
of the objects in the scene.

Our method works for scenes in the video-plus-depth format. We assume the
depth stream to have the same resolution as the video stream. Depth upsampling
[10], which is another field of depth video enhancement, can be applied as a
preprocessing step if necessary.

There are two kinds of possible edge defects in a depth map. First, the edge
is not straight but rather forms a zigzag line or consists of other visible steps.
This can happen through the nature of the sensor (like the Kinect sensor) or
through inadequate depth upsampling. The second defect is global misalignment,
i.e. the complete edge of the depth map is shifted with respect to the edge in the
color image. This defect can arise from insufficient registration between video
camera and depth camera.

Let I be a frame of the video sequence and D the corresponding depth map.
Our goal is to process D in a way that the edges in D align with the edges (of
objects) in I.

As a first step, we perform normalized convolution [9] to fill holes in the
depth map. A hole pixel x is filled with a weighted sum of the depth values of its
non-hole neighboring pixels:

Dnc(x) =

∑
x′∈N∗x

D(x)g(x, x′)∑
x′∈N∗x

g(x, x′)
(1)

where N∗x is the set of neighboring pixels of x that have a valid depth value and
g(x, x′) a Gaussian function with parameter σ:

g(x, x′) = exp

(
−||x− x

′||2

σ2

)
. (2)

In the next step, we identify edges in the color image. Instead of finding edges
directly with common methods like the Canny operator, we use the implicit edge
information given by a segmentation, more precisely, an over-segmentation of the
color image. While a normal segmentation divides the image into “meaningful”
areas (usually guided by edges), an over-segmentation further divides these
areas. Those areas can nevertheless be recovered by combining areas of the over-
segmentation. Particularly, the over-segmentation respects the edges of objects
in the color image.

With an over-segmentation of the depth map, we can compute representative
depth values for each segment, for example by taking the median or the average
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Fig. 2. (a) An example over-segmentation. (b) A representative depth map Dr with
marked magnification region. (c) Cutout of original depth with projected segmentation.
(d) Cutout of our method with projected segmentation: Depth and color edges align.

of all the depth values of pixels in this segment. These representative values are
more robust to noise than one single pixel. The representative depth map Dr will
be generated by filling each segment with its representative depth value. Since
the segmentation respects the color image edges, the edges in the representative
depth map will respect these edges, too. Using Dr, we can later discard pixels
as corrupted that are too dissimilar to the representative depth value of their
segment. See Figure 2(c) for an example: In the upper part of the main light
region, the dark depth region overlaps into the light region which means that
the depth edge and the color edge (i.e., the segment border) do not correspond.
Figure 2(d) shows the corrected edge produced by our algorithm.

We tried different superpixel-segmentation methods including Mean-Shift and
the method of [11] but in the end we used a simple watershed segmentation [12]
because it delivers sufficient results for our purpose at a very high speed (more
than 30fps at 640× 480 resolution. We also tried different marker distributions
for the watershed segmentation: randomly, on a regular grid, and skewed on a
regular grid (which means that the markers of two consecutive rows do not lie in
the same column but are slightly shifted). We tested these distributions with the
additional constraint that markers are not placed on edges in the color image.
The best results where obtained with the regular, skewed grid and no additional
constraint.
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Fig. 3. (a) Example frame of the unfiltered depth generated by the Kinect depth sensor.
(b) Frame filtered with method of Brednikov et al. [6]. (c) Frame filtered with method
of Wasza et al. [7]. (d) Our method.

Figure 2(a) shows an example segmentation. The quality of the segmentation
can be degraded by a high amount of image noise, so we first apply a bilateral
filter to reduce the noise while simultaneously protect edges in the color image.
The filtered color value I(p) of a pixel p is given by:

I(p) =

∑
q∈N Ks(||p− q||)Kc(||p− q||)I(q)∑

q∈N Ks(||p− q||)Kc(||p− q||)
(3)

with Ks and Kc being Kernel functions, typically Gaussian distributions.
The obtained over-segmentation is then projected into the depth stream. In

an ideal depth map, the edges of the over-segmentation would coincide with the
edges in the depth map. Figure 2(c) shows what happens in real world depth
maps (taken from a Kinect): Some areas overlap into neighboring segments.

Using a sufficient segment size, though, we can ensure that at least half of the
depth pixels in a segment have correct depth (this is clearly the case in Figure
2(c)). We build the representative depth map Dr from this segmentation by
computing for each segment the median depth value:

Dr(x, y) = {dk : (x, y) ∈ Sk, dk = median
(x′,y′)∈Sk

d(x′, y′)}
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Fig. 4. Sample color and depth frame from the edge test sequence.

where Sk is a segment in the color image. Figure 2(b) shows an example rep-
resentative depth map. This depth map corresponds very well with the edges
in the color image but suffers of course from the fact that it cannot represent
smooth depth transitions but rather consists of discrete patches.

The final filtered depth map Df uses the depth values of Dr only, if D exhibits
corrupted depth values. Df is obtained in the following way:

Df (x, y) =

{
Dr(x, y) if |D(x, y)−Dr(x, y)| > θ

D(x, y) otherwise
(4)

with θ being a threshold.

4 Experimental Results

4.1 Qualitative Results

Figure 3 shows some results of our method compared with other methods.
Berdnikov et al.[6] address special issues of the Microsoft Kinect depth camera.
Holes that occur due to the offset between color and depth camera are closed
by background extraction and other holes by row-wise linear interpolation. The
focus of Wasza et al.[7] lies on porting simple filters like Gaussian-weighted hole
filling [9] and temporal smoothing as well as edge-preserving denoising on the
GPU to achieve very high frame rates.

Our method closes all holes and in contrast to other method, it can restore
straight edges. This behavior can also be seen in Figure 2(c) and (d).

4.2 Quantitative Results

It is difficult to obtain quantitative quality results for depth filtering algorithms.
This is due to the fact that usually no ground truth depth map is available to
compare the filtered depth map with. However, we designed a test method to
assess the ability of our algorithm to restore edges.
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Fig. 5. Rand index values for different depth filtering algorithms. A value near to 1
means a very good correlation with the color stream.

Recall Figure 1(e) for an example of a corrupted edge in the original depth
map. We see that the edge does not correspond very well with the edge in the
color stream (green line). Our algorithm, see Figure 1(f), performs way better
and we want to quantify this result. To do this, we recorded a test sequence
edge test of 71 frames (color and depth, see Figure 4) with very simple geometry:
It depicts a homogeneous (in terms of depth values) foreground object with a
straight edge in front of a homogeneous background. The foreground object also
has different color texture than the background.

In this situation, we can define two clusterings that divide the scene into
foreground and background : CD is a 2-means clustering of the depth map and
CC is a 2-means clustering of the color stream. If the depth map is aligned with
the color stream and does not exhibit cracks or other corruption, then clustering
CD and CC should be the same.

To determine how similar the clustering CD and CC are, we compute the
Rand index[13]. The Rand index R(·, ·) ∈ [0, . . . 1] is a very popular measure to
describes how similar two clusterings are. A Rand index of 1 means they are
the same whereas 0 means they are completely different. In our situation a high
Rand index indicates a very good correlation between the color stream and the
(filtered) depth stream. Figure 5 shows the Rand indices for all frames of the test
sequence. We can see that our algorithm clearly outperforms all other algorithms.
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5 Conclusion

We have presented a method to increase the spatial accuracy of depth maps using
edge information of the associated color stream. Our method can reliably enhance
corrupted edges in the depth stream and outperforms common algorithms.

Future work aims at the inclusion of inter-frame information to enforce
time-consistency and further reduce edge artifacts.
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