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Abstract. Since decades scene reconstruction from multiple images is a topic
in computer vision and photogrammetry communities. Typical applications re-
quire very precise reconstructions and are not bound to a limited computation
time. Techniques for those applications are based on complete sets of images to
compute the scene geometry. They require a huge amount of resources and com-
putation time before delivering results for visualization or further processing.
In the application of disaster management those approaches are not an option
since the reconstructed data has to be available as soon as possible. Especially,
when it comes to Miniature Unmanned Aerial Vehicles (MUAVs) sending aerial
images to a ground station wirelessly while flying, operators can use the 3D data
to explore the virtual world and to control the MUAVs.
In this paper an incremental approach for dense reconstructions from sparse data-
sets is presented. Instead of focussing on complete datasets and delivering results
at the end of the computation process, our incremental approach delivers reason-
able results while computing, for instance, to quickly visualize the virtual world
or to create obstacle maps.

1 Introduction

Scene reconstruction from multiple images is still a hot topic in computer vision and
photogrammetry community. Current approaches are focussing on accuracy while re-
quiring a lot of computational resources and computation time and delivering results at
the end of the computation process.

Since the 3D information is only available after complete computation there are
some use cases which are not suitable to use these approaches, e.g. disaster management
with a swarm of Miniature Unmanned Aerial Vehicles (MUAVs) delivering still images
over the air while flying. A quick visualization would help operators to get a better view
of the scene and to control the MUAVs (see Fig. 1). For that purpose, one can show the
3D points directly [1] or build up a 3D mesh from the points [2]. Another example
is the creation of obstacle maps for autonomous flights of those MUAVs. Therefore,
the denser the map of 3D points, the better obstacles are known and collisions can be
prevented.

A lot of research has been done on sparse incremental 3D reconstruction. Whereas
there are some algorithms to compute the sparse scene geometry and the camera posi-
tions at once [3], there are a lot of methods to compute this data incrementally one or a
few images after another [4].



Fig. 1: Operators controlling MUAVs in a simulated environment and exploring the
scene at a multi-touch wall.

Incremental approaches for dense reconstruction has not been covered a lot in liter-
ature. Current dense reconstruction approaches focus on very accurate 3D information
[5] but at the cost of long computation times to further process or directly visualize
the results. At the downside those dense reconstruction approaches are not designed to
work incrementally and thus, they are not suitable for all applications, e.g. the previ-
ously mentioned disaster management. Incremental dense reconstruction has also been
applied to live video streams [6]. Some of those approaches work with video data also
delivered by MUAVs [7].

In this paper we present an approach to incremental wide baseline dense recon-
struction from sparse 3D dataset computed from multiple still images. The main con-
tributions are (1) the reconstruction of reasonable points to get a quick denser overview
of the scene, (2) to get incremental supply of denser 3D data while the data is further
refined incrementally in the background and furthermore, (3) the approach we present
integrates a level-of-detail concept.

Our approach is presented in Section 2. In Section 3 we show some experiments
and results to evaluate our incremental dense reconstruction. We conclude this work in
Section 4.

2 Incremental Dense Reconstruction

For traditional approaches it does not matter in which order the 3D points of a scene
are computed as long as the final reconstruction is correct. In general, the approaches
compute dense reconstructions by searching point matches in the neighborhood around
already known scene points [5]. This technique has the advantage to get a consistency
between neighbored matches since they are very close to each other. Furthermore, this
consistency measure also detects larger discontinuities in the depth data, e.g. at the bor-
ders of objects. As a downside, these algorithms are not designed to work incrementally,
i.e. even if they may be adapted to work incrementally delivering results throughout the
computation the reconstructed information is not reasonable due to low visual entropy.
There is a very high density around the previously known points but the major ar-
eas between those points would not contain any information up to a later computation
progress.
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Fig. 2: Comparison of dense reconstruction methods. (a) Traditional approaches recon-
struct points in the neighborhood of already known points. (b) Our incremental ap-
proach firstly reconstructs the midpoints of given triangles.

Especially in disaster management with flying MUAVs the operator does not gain
much more information from a bunch of neighbored points as they may appear as one
point in the virtual world which the operator explores and in which he has to control the
MUAVs.

In our approach we try to create information in those major areas between known
points instead of only in their neighborhood. We propose a method for dense reconstruc-
tion from a given sparse reconstruction. Instead of computing the dense reconstruction
from all images at once using a lot of computation time before returning a result, our
approach computes the dense reconstruction incrementally two images at a time. To get
a reasonable incremental result we do not reconstruct the points in the neighborhood of
known sparse points but rather the midpoints of each triangle in a given triangulation of
the known points. These midpoints have the maximum distance to the three previously
known points. The reconstructed point therefore gives at once more information than
only neighbored points (see Fig. 2).

On the one hand the results can be visualized very quickly with good visual entropy
and can be used for further computations, e.g. incremental mesh computation. One the
other hand we have to deal with the problem of matching feature points without relying
on the consistency of neighbored points.

In the following we outline a short overview of our algorithm. These steps describe
one iteration for one image. In general, these steps have to be done for each image and
each iteration.

1. Compute Delaunay triangulation from known feature points (see Sec. 2.1).
2. For each triangle

(a) check triangle consistency (see Sec. 2.2),
(b) match midpoint of the triangle with a second image (see Sec. 2.3),
(c) triangulate match and verify the point with additional images (see Sec. 2.4).

The number of iterations needed for computing the dense reconstruction depends
on the required density, i.e. the best level of detail (see Sec. 2.2).

2.1 Delaunay triangulation

A triangulation method of the sparse 2D points is used to determine reasonable points
to reconstruct. The reconstruction is done for the midpoint of each triangle since it is



the point regarding to one camera that has the maximum distance to the triangle points
and thus, that are the points with maximum visual entropy for our purpose.

We use the Delaunay triangulation due to its ability to maximize the minimum angle
so that it is guaranteed that the minimum angle is at least as large as in any other
triangulation method. In Section 2.2 we will use a filter rule to reject triangles with
interior angles that are smaller than a specified threshold.

2.2 Triangle consistency
The feature matching is the most computational time consuming part of our approach.
The only valid constraint is the epipolar constraint. But using only this constraint the
search for matches on the whole epipolar line is a very computationally expensive task.

To save computational time, we have to bound the search region as much as possible.
We propose to search for feature matches only in the corresponding triangle in the
second image which is given by the previously known feature point matches of the first
image. This boundary combined with the epipolar constraint significantly limits the
search region.

This sort of boundaries has advantages and disadvantages. On the one hand, it re-
duces the number of points to search for a match and thus, reduces the computational
time. Furthermore, as long as the correct point match is inside the triangle the uncertain-
ties of the point matching are reduced since there may be a better match on remaining
region of the epipolar line. On the other hand, the point may be outside the triangle and
thus it cannot be matched correctly using this triangle constraint. This problem will be
discussed further in Section 2.3.

There is no guarantee that the correct feature point is really within such a triangle.
In fact, some of the triangles are more likely to contain the correct point and others
are more unlikely. We propose to filter out those triangles. In our approach we use the
following four filter rules.

1. Level of detail
Our level-of-detail concept is covered by this filter rule. A triangle which has a
smaller surface area than the specified threshold will be rejected. This threshold is
given by the best level of detail.

2. Interior angle limitation
A triangle that contains an interior angle less than 10 degrees will be rejected. This
rule is applied to the triangles in the first image and the corresponding triangles in
the second image which are deformed by another perspective.

3. Surface area ratio
The ratio between the surface area of the triangle in one image has to be between 2

3
and 3

2 . Thus, if the surface area of one triangle is larger than 1.5 times the surface
area of the other triangle it will be rejected.

4. Rotation of triangle points
A triangle is rejected if the rotation of the triangle points in the one image is clock-
wise and in the other counter clockwise or vice versa.

If a triangle is rejected the corresponding triangle in the other image is rejected as
well, since they are linked through the feature matches. The given thresholds have been
determined by experiments.



There are two ways to handle a rejected triangle. Firstly, the search region of a
rejected triangle is extended, for instance to the whole epipolar line. Secondly, the re-
jected triangle will not be handled further. Since our goal is to compute the first denser
reconstruction as fast as possible we have chosen the second way to handle rejected
triangles.

2.3 Point matching

To match a midpoint we compute its feature description in the first image. Thereafter,
we are searching for a match in the bounded region in the second image. Therefore, we
have to compute a feature descriptor for every pixel in this boundary. Depending on the
complexity of those descriptors this computation would require a lot of time.

One popular feature descriptor for dense feature matching has been presented by
Tola et. al. [8] and improved by Wan et. al. [9]. Although this descriptor shows good
performance in these early works we could not achieve a good matching rate in our
case.

Instead of using a dense feature descriptor our approach uses Fast Retinal Keypoints
(FREAK) [10] which has been designed for sparse features but shows very good per-
formance. Furthermore, its computation process is very simple and can be implemented
very efficiently on GPU.

The previously discussed problem of missing points due to matching boundaries
(see Sec. 2.2) can be handled in the same way occluded points or points which lie
outside the image boundary are handled. In both cases the point cannot be matched cor-
rectly. To remove possible false matches we do a thresholding operation on the feature
descriptor difference.

2.4 Triangulation and point verification

To triangulate the matched points and therefore retrieve the reconstructed 3D point we
use the normalized DLT algorithm due to its simplicity and accuracy for two view
reconstructions [11].

To verify the reconstructed point we project it onto two other images which also
contain the three matched points of the triangle and search for the feature point in a
small region around the projection. A feature point is rejected if non of the two images
is confirming the feature point at the projected position.

3 Experiments and Results

To evaluate our approach we have generated a ground truth dataset from the City of
Sights model [12] containing seven images (see Fig. 3). We have done that by rendering
the scene twice. Firstly, the model has been rendered photorealistically. Secondly, for
each photorealistic rendering we extracted a depth image which represents the ground
truth data. Furthermore, we stored the precise camera position and orientation for each
image.



Fig. 3: Three example photorealistic renderings of the ground truth dataset. The image
at the right shows a depth image corresponding to the third image.
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Fig. 4: Evaluation: (a) Relative histogram of reprojection errors with additional standard
deviation (gray area), (b) total computation time per iteration and (c) mean computation
time for each image and each iteration from the ground truth dataset.

Fig. 5: Example aerial images of a testing sequence with 7 images showing the front of
the castle of Münster.

(a) sparse data (b) iteration 2 (c) iteration 6

(d) sparse data (e) iteration 2 (f) iteration 6

Fig. 6: (a) - (c) Incremental dense reconstruction, (d) - (f) mesh reconstruction from the
incremental dense reconstructions.



For the evaluation the black areas around the scene are ignored since there is neither
correct image data nor depth data. We measure the accuracy, namely the reprojection
error, i.e. the Euclidean distance between the reprojected point and correct point which
is the projection of the ground truth 3D point onto the same image plane.

In comparison to the ground truth data we reach a mean accuracy of 1.499 pixels
and a median accuracy of 1.220 pixels. The histogram of reprojection errors related to
ground truth is shown in Figure 4(a). The standard deviation is presented by the gray
area and describes the deviation of single iterations.

Further results are given by a second scene which consists of 7 real aerial images
(see Fig. 5). The quality of our incremental dense reconstruction approach is shown in
Figure 6(a) - (c). There, the quality of different iterations are presented. Some areas
cannot be reconstructed more densely due to the triangle filters. In Figure 6(d) - (f) the
process of mesh reconstruction is shown on the incrementally dense reconstructed point
clouds.

Besides the accuracy we measured the computation time for each iteration. The first
incremental update of the 3D points is delivered in less than 4 seconds. For the ground
truth dataset the computation time for all images and one iteration is decreasing over
time (see Fig. 4(b)). Whereas in iteration 2 the number of triangles has increased the
number of triangles in each iteration afterwards is decreased mainly due to the level-of-
detail triangle filter, i.e. more and more triangles have reached the best level of detail.
Furthermore, some images have reached the best level of detail and do not need further
computations. In Figure 4(c) one can see a similar result for single images, except the
difference at the end of the reconstruction process. At the last iterations there is only
one image left which did not have reached the best level of detail.

4 Conclusion

In this paper we have presented an approach to computing a dense reconstruction in-
crementally from wide baseline images and previously known sparse geometry. There
are several applications for which our approach is applicable, especially, computation
of obstacle maps and quick 3D visualization of the captured scene. While other algo-
rithms require a lot of time to present the first result, our approach retrieves first results
within a few seconds.

Furthermore, our approach reconstructs the points in a reasonable order. Instead of
reconstructing neighbored points of already known scene points, the points which have
the maximum distance to its neighbors are reconstructed. Thus, the major empty areas
of the 3D scene gets filled earlier with information.

The feature descriptor is the most critical part in our approach since it decides
whether the midpoint of a triangle could be matched correctly or not. Thus, we will
concentrate on improving the used feature descriptor or on designing a new feature
descriptor with better matching performance and lower computational expense.

One of the problems with this approach are the borders of objects which are unlikely
to be reconstructed in general. Especially, with very wide baseline and thin objects
the borders of those objects are not be reconstructed very well. On that account we



will study a hybrid approach combining the proposed method and another method for
reconstructing the scene points near the borders.
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