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Abstract. World Health Organization estimates that 80% of the world popula-
tion is affected of back pain during his life. Current practices to analyze back
problems are expensive, subjective, and invasive. In this work, we propose a novel
tool for posture and range of movement estimation based on the analysis of 3D
information from depth maps. Given a set of keypoints defined by the user, RGB
and depth data are aligned, depth surface is reconstructed, keypoints are match-
ing using a novel point-to-point fitting procedure, and accurate measurements
about posture, spinal curvature, and range of movement are computed. The sys-
tem shows high precision and reliable measurements, being useful for posture
reeducation purposes to prevent musculoskeletal disorders, such as back pain, as
well as tracking the posture evolution of patients in rehabilitation treatments.
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1 Introduction

World Health Organization has categorized disorders of the musculoskeletal system as
the main cause for absence from occupational work and one of the most important
causes of disability in elders in the form of rheumatoid arthritis or osteoporosis. It is es-
timated that 80% of world population will suffer from musculoskeletal disorders during
their life.

The body posture evaluation of a subject manifests, in different degrees, his level
of physic-anatomical health given the behavior of bone structures, and especially of the
dorsal spine. For instance, common musculoskeletal dysfunctions or disorders (MSDs)
such as scoliosis, kyphosis, lordosis, arthropathy, or spinal pain show some of their
symptoms through body posture. This requires the use of reliable, noninvasive, auto-
matic, and easy to use tools for supporting diagnostic. However, given the articulated
nature of the human body, the development of this kind of systems is still an open issue.

The solution more frequently applied to measure body posture consists of the syn-
chronization of multiple cameras, applying stereo vision techniques [3, 5]. This kind of
systems use to be expensive and invasive. Moreover, it uses to require specific and re-
stricted illumination conditions. The main alternative is accelerometers. These systems
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also use to be expensive, invasive, and inaccurate because of the spatial measurements
of multi-axial articulations. Most of these systems only treat specific areas of the body
with little configurability, which implies that therapists cannot use their own methods
of analysis. A recent alternative is the use of the depth maps provided by the Microsoft
Kinect device [1]. The Kinect camera uses a structured light technique to generate real-
time depth maps containing discrete range measurements of the physical scene [2].

In this work, we present a novel semi-automatic system that uses RGB-Depth infor-
mation to elaborate a clinical postural analysis through the examination of anthropomet-
ric values. Given a set of keypoints defined by the user, our proposed method performs
the following steps: a) RGB and depth data are aligned, b) noise is removed and depth
surface is reconstructed, c) user keypoints and predefined protocols are matched using a
novel point-to-point fitting procedure, d) static measurements about posture and spinal
curvature are accurately computed, and d) dynamic range of movement is robustly es-
timated. Compared to standard alternatives and supported by clinical specialists, the
system shows high precision and reliable measurements to be include in the clinical
routine.

The paper is organized as follows: Section 2 present the system for posture analysis
and range of movement estimation. Section 3 presents the validation of the proposal,
and finally, Section 4 concludes the paper.

2 Posture analysis system
We designed a full functional system devoted to help in the posture reeducation task
with the aim of preventing and correcting musculoskeletal disorders. The system is
composed by three main functionalities: a) static posture analysis (SPA), b) spine cur-
vature analysis (SCA), and c) range of movement analysis (RMA). The architecture
of the system is shown in Figure 1. First, a pre-processing step to remove noise and
reconstruct surfaces is performed. Next, we describe each of these stages.

2.1 Noise removal and surface reconstruction
After aligning RGB and depth data [7, 11], and even though the used depth information
is compelling it is still inherently noisy. Depth measurements often fluctuate and depth
maps contain numerous holes where no readings are obtained. In order to obtain a valid
and accurate depth map, we perform a depth preprocessing step to eliminate erroneous
information caused by noise and to reconstruct surfaces not well defined. We perform
the following methodology:

Noise removal: For each point we compute the mean distance from it to all its neigh-
bors. By assuming that the resulted distribution is Gaussian with a mean and a standard
deviation, all points whose mean distances are outside an interval defined by the global
distances mean and standard deviation are considered as outliers.

Surface reconstruction: We use a resampling algorithm [10], which attempts to
recreate the missing parts of the surface by higher order polynomial interpolation be-
tween the surrounding data points. By performing resampling, these small errors can be
corrected. Figure 2 shows an example of this process 1.

1 We experimentally found that our approach for noise removal and background reconstruction
obtained better results than standard approaches based on accumulating temporal images (e.g.
30 frames of a stationary subject) for noise reduction and hole filling.
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Fig. 1. Posture analysis system.

(a) (b)

Fig. 2. (a) Original depth map. (b) Filtered and resampled.

Once the system is calibrated, data is aligned, and depth maps are filtered, the user
can access to the three posture facilities.

2.2 Static posture analysis (SPA)

This module computes and associates a set of three-dimensional angles and distances
to keypoints defined by the user. These keypoints correspond to manual interactions of
the user with the RGB data displayed in the screen (which internally is aligned with
the corresponding depth data). The module also allows the therapist the possibility of
designing a protocol of analysis. That is, a predefined set of angular-distance measure-
ments among a set of body keypoints, all of them defined and saved by the user for
posterior automatic matching. Figure 3 shows an example of a predefined protocol (the
set of manual annotated keypoints together with the list of distance and angle relations
to be computed).

In order to obtain an intelligent and automatic estimation of posture measurements,
we define a correspondence procedure among manually placed virtual markers and
protocol markers. We formulate markers matching as an optimization problem. Sup-
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Fig. 3. Static posture analysis example.

pose a protocol analysis (template) T composed by N markers, T = {T1, T2, ..., TN},
Ti = (xi, yi, zi), and the current analysis C composed by the same number of mark-
ers, C = {C1, C2, ..., CN} (predefined template and current set of keypoints defined
by the user, respectively). Our goal is to make a one-to-one correspondence so that we
minimize the sum of least square distances among assignments as follows:

argminC′

N∑
i=1

∥C ′
i − Ti∥

2
, (1)

where C ′ is evaluated as each of the possible permutations of the elements of C. For
this task, first, we perform a soft pre-alignment between C and T using Iterative Closest
Point (ICP) [8], and then, we propose a sub-optimal approximation to the least-squares
minimization problem. ICP is based on the application of rigid transformations (transla-
tion and rotation) in order to align both sequences C and T . This attempts to minimize
the error of alignment E(.) between the two marker sequences as follows:

E(R, T ) =

N∑
i=1

N∑
j=1

wi,j∥Ti −R(Cj)− T ∥2, (2)

being R and T the rotation matrix and translation vector, respectively. wi,j is as-
signed 1 if the i-th point of T described the same point in space as the j-th point of C.
Otherwise wi,j = 0. Two things have to be calculated: First, the corresponding points,
and second, the transformation (R, T ) that minimizes E(R, T ) on the base of the cor-
responding points. For this task, we apply Singular Value decomposition (SVD). At the
end of the optimization, the new projection of the elements of C is considered for final
correspondence. Then, Eq. 1 is approximated as follows: Given the symmetric matrix
of distances M of size N×N which codifies the set of N ·(N−1)/2 possible distances
among all assignments between the elements of C and T , we set a distance threshold
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θM to define the adjacency matrix A:

A(i, j) =

{
1 if M(i, j) < θM

0, otherwise.
(3)

Then, instead of looking for the set of N ! possible assignments of elements of C and
T that minimizes Eq. 1, only the possible assignments (Ci, Tj) that satisfies A(i, j) = 1
are considered, dramatically reducing the complexity of the correspondence procedure2.

2.3 Spine curvature analysis (SCA)
The objective of this task is to evaluate sagittal spine curvatures (curves of the spine
projected on the sagittal plane) by noninvasive graphic estimations in kyphotic and lor-
dotic patients. Kyphosis and lordosis are, respectively, conditions of over-curvature of
the thoracic spine (upper back) and the lumbar spine (lower back). The methodology
proposed by Leroux et al [4] offers a three-dimensional analysis valid for clinical ex-
aminations of those conditions. In order to perform this analysis we proceed as follows.
First, the therapist places the markers on the spine. Then, a few markers are selected
and the 3D curve that represents the spine is reconstructed by linear interpolation (Fig-
ure 4(c)). Finally, the anthropometric kyphosis Ka and lordosis La are obtained.

The geometric model to compute Ka is represented in the Figure 4(a). F divides the
curve representing the thoracic spine in two asymmetric arcs with different radius. Note
that the F component begins at the farthest marker (apex, corresponding to T5) and it
ends at the intersection with the T2-to-T12 line. h1 and h2 are the distances from T2
to the intersection and the distance from the intersection to T12, respectively. Then, the
summation of two angles, φ1 and φ2, represents the kyphosis curve value, where:

φ1 = 180− 2 · arctan
(
h1

F

)
,

φ2 = 180− 2 · arctan
(
h2

F

)
.

(4)

La is calculated in a similar way, though the therapist should note the markers in
the lumbar spine region. The capacity analysis of the spine is reinforced by a three-
dimensional environment for a thorough examination by the therapist (Figure 4(d)).
An example of spine interaction and computation are shown in Figure 4(a) and (b),
respectively.

2.4 Range of movement analysis (RMA)
In order to complement the posture analysis procedure, we compute the range of move-
ment of different body articulations. For this purpose, we perform user detection using
the Random Forest approach with depth features of Shotton et al [9] and compute the
skeletal model. This process is performed computing random offsets of depth features
as follows:

fθ(D,x) = D(
x+ u

Dx

) −D(
x+ v

Dx

), (5)

where θ = (u,v), and u,v ∈ R2 is a pair of offsets, depth invariant. Thus, each θ
determines two new pixels relative to x, the depth difference of which accounts for the

2 We experimentally found that high values of θM obtain optimal results and reduces the com-
putational cost in comparison to other approaches, such as Shape Context [6].
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value of fθ(D,x). Using this set of random depth features, Random Forest is trained
for a set of trees, where each tree consists of split and leaf nodes (the root is also a
split node). Finally, we obtain a final pixel probability of body part membership li as
follows:

P (li|D,x) =
1

τ

τ∑
j=1

Pj (li|D,x) , (6)

where P (li|D,x) is the PDF stored at the leaf, reached by the pixel for classifica-
tion (D,x) and traced through the tree j, j ∈ τ . Computing the intersection borders
among mean shift clusters estimated after Random Forest procedure, we obtain a three-
dimensional skeletal model composed by nineteen joints. The physician then selects
joint articulations and automatically obtains their maximum opening and minimum
closing values measured in degrees for a certain period of time (Figure 4(e)).

3 Results
3.1 Software details
The video data uses a 8 bits VGA resolution at 30Hz, and we capture frames at 640×480
pixels, like the infrared camera. Regarding the implementation we used the Kinect SDK
framework. We also used the PCL-Library to treat cloud points, and to support a free
and three-dimensional visualization we used the VTK library. The user interface has
been developed in multi-platform Nokia Qt technology.

3.2 Data and validation
In order to measure the precision of the proposed methodology in the different modules
of the system, a battery of 500 simple tests has been labeled by three different observers,
with an inter observer correlation superior to 99% for all planes (X,Y, Z). Each test
contains a set of angles and distances in order to simulate an analysis protocol for the
study of posture, placing twelve infrared led markers on the body of the subject. A total
of 20 subjects participated in the validation of the method. In order to perform automatic
validation of the tests, infrared markers are detected by means of thresholding a HSV
infrared-filtered image.

Results for different distance of the device to the scene are shown in Table1. AAV
and ’◦’ correspond to the average absolute value and degree, respectively. This analysis
validates the accuracy of the SPA and RMA in millimeters and degrees, respectively.
Note the high precision in both tests. In addition, in order to validate the curvature
analysis of the spine (SCA), we used a group of 10 patients and performed the Ler-
oux protocol [4], placing nine markers over the spine. The relationship between lateral
radiographic and anthropometric measures was assessed with the mean difference. It
has used Cobb technique on the lateral radiograph in order to obtain the coefficients of
kyphosis and lordosis. The results of the SPA validation are shown in Table 3.2. More-
over, after discussing with specialists in physiotherapy they agreed that the accuracy of
the results is more than sufficient for diagnostic purposes.

4 Conclusion
We presented a system for semi-automatic posture analysis and range of movement
estimation using depth maps. The aim of the system is to assist in the posture reed-
ucation task to prevent and treat musculoskeletal disorders. Given a set of keypoints
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Distance subject-device (m) 1,3 1,9 2,2
AAV (◦ movement) 2,2 3,8 5,2
AAV (mm) 0,98 1,42 2,1
AAV (◦ angles) 0,51 1,04 1,24
AAV (%) 0,46 0,77 1,3
Standard Error (%) 1,01 1,18 1,71

Table 1. Pose and range of movement precision.

Khyposis range Lordosis range
AAV (◦) 5 6

Table 2. Validation of spinal analysis.

defined by the user, RGB and depth data are aligned, depth surface is reconstructed,
keypoints are matching using a novel point-to-point fitting procedure, and accurate
measurements about posture, spinal curvature, and range of movement are obtained.
The system showed high precision in terms of distance, degree, and range of move-
ment estimation. Supported by clinical specialists, the system shows high precision and
reliable measurements to be include in the clinical routine.
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(a) (b) (c)

(d)

(e)

Fig. 4. (a) Geometric model to obtain anthropometric kyphosis, and lordosis value. (b) Sample
of analysis. (c) Automatically reconstructed 3D spinal cloud. (d) Three-dimensional examination
environment. (e) Skeletal model and example of selected articulations with computed dynamic
range of movement.


