
Removing Moving Objects from Point Cloud Scenes

Krystof Litomisky and Bir Bhanu

University of California, Riverside

krystof@litomisky.com, bhanu@ee.ucr.edu

Abstract. Three-dimensional simultaneous localization and mapping is a topic

of significant interest in the research community, particularly so since the intro-

duction of cheap consumer RGB-D sensors such as the Microsoft Kinect. Cur-

rent algorithms are able to create rich, visually appealing maps of indoor envi-

ronments using such sensors. However, state-of-the-art systems are designed for

use in static environments, which severely limits the application space for such

systems. We present an algorithm to explicitly identify and remove moving ob-

jects from multiple views of a scene. We do this by finding corresponding ob-

jects in two views of a scene. If the position of an object with respect to the oth-

er objects changes between the two views, we conclude that the object is mov-

ing and should therefore be removed. After the algorithm is run, the two views

can be merged using any existing registration algorithm. We present results on

scenes collected around a university building.

Keywords: SLAM, 3D Mapping, RGB-D sensors, Kinect

1 Introduction

Although point clouds and sensors that provide point cloud data have been around for

several decades, the introduction in 2010 of the Microsoft Kinect RGB-D (RGB color

+ per-pixel depth) sensor reinvigorated the field. One popular area of research has

been using RGB-D sensors for Simultaneous Localization and Mapping (SLAM) in

primarily indoor environments. State of the art systems have achieved impressively

accurate results, producing visually-appealing maps of moderately-sized indoor envi-

ronments [1]. Such algorithms typically rely on the Iterative Closest Point (ICP) for

point cloud registration, and also incorporate loop-closing techniques to detect when

an agent has returned to a previously visited area [2].

In existing mapping applications, the maps are created in static environments: there

are no moving objects, and, in particular, no people walking around. In more dynamic

environments, not addressing moving objects can lead to maps that contain moving

objects as permanent features, inconsistent maps, or even registration failure. Our

work addresses this issue by introducing a novel preprocessing step to explicitly iden-

tify and remove moving objects from point cloud frames prior to registration. A sam-

ple result of our algorithm is in Fig. 1, and an overview of our approach is in Fig. 2.

To identify moving objects, we compare two frames with significant overlap. The

viewpoint between the two frames can change, and some amount of time must elapse

mailto:klitomis@cs.ucr.edu

before the second frame is captured so that the position of moving objects changes

between the frames. For each frame, we segment out individual clusters, and find

which cluster from the first frame corresponds to each cluster from the second. We

then analyze the spatial relationship of each cluster in a frame to all other clusters in

the frame. If this relationship changes from one frame to the next, we conclude that

the cluster in question must be moving and remove it. Having done this, we can apply

any existing registration algorithm to register, align, and merge the two clouds.

Fig. 1. A sample result of our algorithm. The top row shows two input point clouds. Our algo-

rithm identified the person as a moving object and removed him from each point cloud. We

then aligned and merged the clouds to produce the cloud in the bottom row.

2 Related Work

3D SLAM has been an area of immense research interest. Over the years, a number of

approaches using different technologies have been developed, including range scans

[3, 4], stereo cameras [5], monocular cameras [6], and recently also consumer RGB-D

cameras [1]. However, explicitly identifying and removing moving objects from point

cloud data has not been a topic of great interest in the research community.

In their RGB-D mapping work, Henry et al. [1] do not address moving objects, and

do not present any results from environments with moving objects. However, the use

of a surfel representation [7] allows them to deal with some instances of moving ob-

jects. Because surfels have an area, they permit reasoning about occlusion. This ulti-

mately enables this representation to remove moving objects by eliminating surfels

which occlude other surfels. However, this approach will fail to eliminate moving

objects when these objects do not occlude other known objects. Furthermore, convert-

ing all data to surfels is computationally inefficient.

Similarly, the Kinect Fusion work [8], which implements a real-time version of

ICP that runs on CUDA-enabled GPUs, deals with moving objects implicitly by using

a volumetric representation. Kinect Fusion is not primarily a SLAM algorithm; as a

result, the approach does not scale to larger environments. In particular, with current

GPUs, the approach cannot be used for environments larger than a moderately small

room (approximately a 5m x 5m x 5m volume).

Other volumetric approaches, such as the Octree-based OctoMap [4], also identify

moving objects only implicitly. The OctoMap’s probabilistic nature means that it may

require a substantial amount of measurements until a moving object is discarded.

Unlike previous work, which deals with moving objects in only an implicit and in-

complete way, this paper presents a focused and systematic approach for removing

moving objects from point cloud scenes captured from a moving platform. An ad-

vantage of our approach is that it deals directly with the point cloud data. This means

that after eliminating moving objects with our approach, any existing algorithm for

point cloud registration – or any other application – can be applied straightforwardly.

3 Technical Approach

A high-level overview of our approach is given in Fig. 2. For notational clarity, we

will refer to the first point cloud we process as the “source” cloud, and to the second

cloud we process as the “target” cloud. Our approach is symmetric, however, and

which cloud is designated as “source” does not affect our results. For some of the

point cloud manipulation tasks, we rely on the Point Cloud Library (PCL) [9].

Remove large
planes

Filter outliers Segment objects
Compute object

descriptors
Find

correspondences

Compute
displacement

matrix

Is most-displaced
object within

threshold?

Remove the most-
displaced object

Recreate clouds
from remaining

segments

Register, align, and
merge clouds

Preprocessing

Separate for each cloud

yes

no

Fig. 2. An overview of our system.

3.1 Preprocessing

Before identifying moving clusters, we temporarily remove large planes, filter outlier

points, and run segmentation to identify individual clusters.

We identify planes using a Random Sample Consensus (RANSAC) algorithm. The

reason for removing large planes is twofold: first, we can safely assume that large

planes are not parts of moving objects, so we do not need to consider them in subse-

quent steps of the algorithm. Second, removing large planes – in particular, the floor –

improves the performance of our segmentation algorithm. Having completed this step,

we filter out outlier points to remove artifacts due to sensor noise.

We now use a Euclidean Cluster Extraction algorithm to get individual clusters.

Due to quantization of the depth data, which is inevitable with consumer RGB-D

sensors, we need to use a somewhat large cluster tolerance value. We settled on 15

cm, meaning two points will be in the same cluster if they are less than 15 cm apart.

Each point cloud can now be represented as a set of clusters. Let

 be the source point cloud, and
 be the target point

cloud. Here, is the set of points representing the cluster in the source cloud, and

 is the set of points representing the cluster of the target cloud.

3.2 Cluster Descriptors and Identifying Correspondences

We use the Viewpoint Feature Histogram (VFH) proposed by Rusu et al. [10] as our

feature descriptor. The VFH has good object classification performance, outperform-

ing spin images for these tasks [10]. The VFH stores the relationships between the

pan, tilt, and yaw angles between pairs of normals in a cluster, as well as the relation-

ships between the viewpoint direction and the surface normals.

We now find cluster correspondences, or which cluster from the target cloud corre-

sponds to each cluster from the source cloud. We calculate the distance between a pair

of clusters in feature space in two ways and compare the performance in Section 4.

The first distance measure is the sum of absolute differences between two clusters’

VFH descriptors, while the second distance measure comes from an insight on the

ordering of the VFH: the bins for each angle “category” are consecutive. For example,

if the yaw angle between two points changed slightly, the pair would move from one

bin into a bin immediately next to it. As a result, small object deformations (such as a

person’s pose changing as he walks) as well as changes in sensor position cause non-

linear local deformations to the object’s histogram. Fig. 3 illustrates the local defor-

mations of a part of the VFH due to sensor motion.

Such issues have been addressed in the literature with Dynamic Time Warping

[11]. Dynamic time warping finds a nonlinear, monotonic mapping from one se-

quence to the other, allowing for small shifts and deformations between the series.

Fig. 3. Local deformations of the yaw component of the Viewpoint Feature Histogram of the

mannequin extracted from the two views above. Histogram for the mannequin on the left is

solid blue; right is dashed red. Dynamic Time Warping addresses such local deformations.

To extract correspondences, we iteratively identify the closest pair of clusters

() in feature space as corresponding to each other, until there are no clusters left

in at least one cloud. Due to sensor and/or object motion, there may be leftover ob-

jects, which we remove from their cloud. This may remove objects that could provide

useful data, but this is an acceptable tradeoff to ensure the removal of any moving

objects that appear in only one frame. This step leaves clusters for

each cloud. Before proceeding further, we reorder the clusters in such that cluster

 corresponds to cluster .

3.3 Identifying and Removing Moving Objects

We now calculate the Euclidean distance in world-coordinate space between each pair

of clusters for each cloud. Let
 be the world-coordinate-space Euclidean distance

between cluster and cluster in the source point cloud, and
 be the world-

coordinate-space distance between the corresponding clusters in the target cloud.

To get a measure of how the position of each cluster has changed from one cloud

to the next, we calculate the displacement vector []
 , where is the

displacement of cluster ,

 ∑|

 |

 (1)

In essence, is the sum of how much the distance of cluster to each other cluster

has changed from one cloud to the other cloud.

We now iteratively remove the cluster which has the greatest displacement value

as long as this value is above a threshold . After removing each cluster, we recalcu-

late . In order to find the optimal value of , we generated a ROC curve (Fig. 4). For

the ROC curve, a true positive is a moving object that was removed from the scene,

and a false positive is a static object that was removed from the scene. See Section 4

for details regarding the data used.

Fig. 4. Object removal threshold ROC curve. A true positive is a removed moving object, and a

false positive is a removed static object.

We ran our algorithm for different thresholds for both the histogram difference and

dynamic time warping distance measures, achieving better results with dynamic time

warping. In particular, we were able to correctly remove all moving objects with

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Tr
u

e
P

o
si

ti
ve

 R
at

e

False Positive Rate

Dynamic Time Warping

Histogram Difference

 meters when using dynamic time warping. We therefore use this value in our

experiments (Section 4).

Having removed all of the moving objects from and , we reconstruct each

cloud from its remaining clusters as well as the planes that had been removed from it.

After this, the clouds are in a standard point cloud format, and any existing registra-

tion, alignment, and merging algorithms can be used to concatenate the clouds. The

result of this operation is a point cloud model of the environment with no moving

objects in the point cloud, even though such objects might have been present in one or

both of the original clouds.

4 Experiments

We tested our algorithm on 14 scenes collected around a university building. Each

scene consists of two views, and each view has up to 2 moving people. Fig. 5 shows

some results, demonstrating several different scenarios our algorithm can deal with.

Fig. 5 (a) shows a scene with multiple moving people, as well as significant camera

motion between the two frames. As a result of this, we cannot find good correspond-

ences for some objects in the scene, such as the desk to the right of the second view.

Note that there is a third person in the scene, sitting at a desk in the background. This

person is put into the same cluster as the desk he is sitting at by our algorithm, and

since he is not moving he is included in the recreated cloud.

Fig. 5(b) shows scene where a person who is not present in one point cloud moves

into view by the time the second point cloud is captured. Our algorithm correctly

identifies that there is no equivalent object for the person in the other frame, and re-

moves the person from the point cloud.

Fig. 5(c) shows a scene where a walking person completely changes direction from

one frame to the next. Nevertheless, our algorithm matches the person in one frame to

the person in the next frame and correctly removes him from both clouds.

4.1 Quantitative Analysis

Fig. 4 shows the ROC curve obtained by running our algorithm on the dataset,

where a true positive is defined as a moving object that is removed from the scene and

a false positive is defined as a static object that was removed from the scene. We get

better results with the dynamic time warping distance measure than with the simple

histogram difference. In particular, for the object removal threshold , we cor-

rectly remove all moving objects while also removing 47% of the static objects. In a

SLAM scenario, we would keep a greater fraction of static objects, since objects that

are removed due to occlusion or sensor motion at first would likely be seen again at a

later time and thus ultimately kept.

We also evaluate what fraction of the total points that belong to stationary objects

we keep in the recreated clouds. For each scene, we calculate this number separately

for each of the two frames, and then report their mean and standard deviation. Fig. 6

shows the results. On average, we keep 85% of the static points in a scene.

5 Conclusions and future work

We introduce early work on an algorithm for identifying moving objects in point

cloud scenes. We can eliminate moving objects from scenes while retaining most of

the static objects. Thus, when used as a preprocessing step, our approach can com-

plement existing point cloud-based SLAM algorithms. This will allow existing SLAM

approaches to create consistent maps even in the presence of moving objects, making

the system applicable in more scenarios.

Fig. 5. Example results. (a) office scene with three people (two walking, one sitting). The top

two frames from columns (a) and (b) were merged together to produce the bottom point cloud.

(b) corridor scene where the person just entered the corridor through a doors on the right. (c) a

walking person changing direction.

In future work, we will consider different features for object correspondence iden-

tification, as well as different conditions for removing planes as well as moving ob-

jects. The running time of the algorithm is dominated by segmentation; ways to re-

duce this time should be considered in future work.

Fig. 6. Fraction of static points kept for each of the 14 scenes on which we evaluated our algo-

rithm. Numbers along the x-axis indicate which figure corresponds to the particular scene, if

applicable. The mean is 85% of static points retained.

References

1. P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D Mapping: Using depth cameras for

dense 3D modeling of indoor environments,” in the 12th International Symposium on Experimental

Robotics (ISER), 2010.

2. P. Newman, “SLAM-Loop Closing with Visually Salient Features,” in Proceedings of the 2005 IEEE

International Conference on Robotics and Automation, pp. 635-642.

3. S. May et al., “Three-dimensional mapping with time-of-flight cameras,” Journal of Field Robotics,

vol. 26, no. 11–12, pp. 934-965, Nov. 2009.

4. K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: A probabilistic,

flexible, and compact 3D map representation for robotic systems,” in Proc. of the ICRA 2010 Work-

shop on Best Practice in 3D Perception and Modeling for Mobile Manipulation, 2010.

5. T. Lemaire, C. Berger, I.-K. Jung, and S. Lacroix, “Vision-Based SLAM: Stereo and Monocular Ap-

proaches,” International Journal of Computer Vision, vol. 74, no. 3, pp. 343-364, Feb. 2007.

6. A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM: real-time single camera

SLAM.,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 6, Jun. 2007.

7. H. Pfister, M. Zwicker, J. Van Baar, and M. Gross, “Surfels: Surface elements as rendering primitives,”

in Proceedings of the 27th annual conference on Computer Graphics and Interactive Techniques,

2000, pp. 335–342.

8. R. Newcombe et al., “KinectFusion: Real-time dense surface mapping and tracking,” in 2011 10th

IEEE International Symposium on Mixed and Augmented Reality, 2011, pp. 127-136.

9. R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in Proceedings of the 2011 IEEE

International Conference on Robotics and Automation, Shanghai, China, 2011.

10. R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3D Recognition and Pose Using the Viewpoint

Feature Histogram,” in International Conference on Intelligent Robots and Systems, 2010.

11. D. Berndt and J. Clifford, “Using dynamic time warping to find patterns in time series,” in AAA1-94

Workshop on Knowledge Discovery in Databases, New York, 1994, vol. 398, pp. 359-370.

0.0

0.2

0.4

0.6

0.8

1.0

1 5c 5a 5b

