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Abstract. In this paper, we propose a probabilistic approach for fore-
ground segmentation in 360◦-view-angle range data sequences, recorded
by a rotating multi-beam Lidar sensor, which monitors the scene from
a fixed position. To ensure real-time operation, we project the irregu-
lar point cloud obtained by the Lidar, to a cylinder surface yielding a
depth image on a regular lattice, and perform the segmentation in the 2D
image domain. Spurious effects resulted by quantification error of the dis-
cretized view angle, non-linear position corrections of sensor calibration,
and background flickering, in particularly due to motion of vegetation,
are significantly decreased by a dynamic MRF model, which describes
the background and foreground classes by both spatial and temporal fea-
tures. Evaluation is performed on real Lidar sequences concerning both
video surveillance and traffic monitoring scenarios.
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1 Introduction

Foreground detection and segmentation are a key issues in automatic visual
surveillance. Foreground areas usually contain the regions of interest, moreover,
an accurate object-silhouette mask can directly provide useful information for,
among others, people or vehicle detection, tracking or activity analysis.

Range image sequences offer significant advantages versus conventional video
flows for scene segmentation, since geometrical information is directly available
[1, 2], which can provide more reliable features than intensity, color or texture
values [3, 4]. Using Time-of-Light (ToF) cameras [1] or scanning Lidar sensors
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[5] enable recording range images independently of the outside illumination con-
ditions and we can also avoid artifacts of stereo vision techniques. From the
point of view of data analysis, ToF cameras record depth image sequences over
a regular 2D pixel lattice, where established image processing approaches, such
as Markov Random Fields (MRFs) can be adopted for smooth and observation
consistent segmentation [4]. However, such cameras have a limited Field of View
(FoV), which can be a drawback for surveillance and monitoring applications.

Rotating multi-beam Lidar systems (RMB-Lidar) provide a 360◦ FoV of the
scene, with a vertical resolution equal to the number of the sensors, while the
horizontal angle resolution depends on the speed of rotation. For efficient data
processing, the 3-D RMB-Lidar points are often projected onto a cylinder shaped
range image [5, 6]. However, this mapping is usually ambiguous: On one hand,
several laser beams with slight orientation differences are assigned to the same
pixel, although they may return from different surfaces. As a consequence, a
given pixel of the range image may represent different background objects at the
consecutive time steps. This ambiguity can be moderately handled by applying
multi-modal distributions in each pixel for the observed background-range values
[5], but the errors quickly aggregate in case of dense background motion, which
can be caused e.g. by moving vegetation. On the other hand, due to physical
considerations, the raw data of distance, pitch and angle provided by the RMB-
Lidar sensor must undergo a strongly non-linear calibration step to obtain the
Euclidean point coordinates [7], therefore, the density of the points mapped to
the regular lattice of the cylinder surface may be inhomogeneous. To avoid the
above artifacts of background modeling, [6] has directly extracted the foreground
objects from the range image by mean-shift segmentation and blob detection.
However, we have experienced that if the scene has simultaneously several mov-
ing and static objects in a wide distance range, the moving pedestrians are often
merged into the same blob with neighboring scene elements.

Instead of projecting the points to a range image, another way is to solve
the foreground detection problem in the spatial 3D domain. However, 3D object
level techniques principally aim to extract the bounding boxes of the pedestrians
[8], instead of labeling each foreground point of the input cloud, which may be
necessary for activity recognition by e.g. skeleton fitting to the silhouettes. MRF
techniques based on 3D spatial point neighborhoods are frequently applied in
remote sensing [9], however the accuracy is low in case of small neighborhoods,
otherwise the computational complexity rapidly increases.

In this paper, we propose a hybrid approach for dense foreground-background
point labeling in a point cloud obtained by a RMB-Lidar system, which monitors
the scene from a fixed position. Our method solves the computationally critical
spatial filtering steps in the 2D range image domain by an MRF model, however,
ambiguities of discretization are handled by joint consideration of the true 3D
positions and the 2D labels. Using a spatial foreground model, we significantly
decrease the spurious effects of irrelevant background motion, which is mainly
caused by moving tree crowns. We provide evaluation versus three reference
methods using our new 3D point cloud Ground Truth (GT) annotation tool.
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2 Problem formulation and data mapping

Assume that the RMB-Lidar system contains R vertically aligned sensors, and
rotates around a fixed axis with a possibly varying speed3. The output of the Li-
dar within a time frame t is a point cloud of lt = R ·ct points: Lt = {pt1, . . . , p

t
lt}.

Here ct is the number of point columns obtained at t, where a given column con-
tains R concurrent measurements of the R sensors, thus ct depends on the rota-
tion speed. Each point, p ∈ Lt, is associated to sensor distance d(p) ∈ [0, Dmax],

pitch index ϑ̂(p) ∈ {1, . . . , R} and yaw angle ϕ(p) ∈ [0, 360◦] parameters. d(p)

and ϑ̂(p) are directly obtained from the Lidar’s data flow, by taking the mea-
sured distance and sensor index values corresponding to p. Yaw angle ϕ(p) is
calculated from the Euclidean coordinates of p projected to the ground plane,
since the R sensors have different horizontal view angles, and the angle correction
of calibration may also be significant [7].

The goal of the proposed method is at a given time frame t to assign each
point p ∈ Lt to a label ω(p) ∈ {fg, bg} corresponding to the moving object (i.e.
foreground, fg) or background classes (bg), respectively.

For efficient data manipulation, we also introduce a range image mapping of
the obtained 3D data. We project the point cloud to a cylinder, whose central
basis point is the ground position of the RMB-Lidar and the axis is prependicular
to the ground plane. Note that slightly differently from [6], this mapping is also
efficiently suited to configurations, where the Lidar axis is tilted do increase the
vertical Field of View. Then we stretch a SH × SW sized 2D pixel lattice S on
the cylinder surface, whose height SH is equal to the R sensor number, and
the width SW determines the fineness of discretization of the yaw angle. Let us
denote by s a given pixel of S, with [ys, xs] coordinates. Finally, we define the
P : Lt → S point mapping operator, so that ys is equal to the pitch index of the
point and xs is set by dividing the [0, 360◦] domain of the yaw angle into SW

bins:

s
def
= P(p) iff ys = ϑ̂(p), xs = round

(

ϕ(p) ·
SW

360◦

)

(1)

3 Background model

The background modeling step assigns a fitness term fbg(p) to each p ∈ Lt point
of the cloud, which evaluates the hypothesis that p belongs to the background.
The process starts with a cylinder mapping of the points based on (1), where

we use a R×Sbg
W pixel lattice Sbg (R is the sensor number). Similarly to [5], for

each s cell of Sbg, we maintain a Mixture of Gaussians (MoG) approximation
of the d(p) distance histogram of p points being projected to s. Following the
approach of [10], we use a fixed K number of components (here K = 5) with
weight wi

s, mean µi
s and standard deviation σi

s parameters, i = 1 . . .K. Then we

3 The speed of rotation can often be controlled by software, but even in case of constant
control signal, we must expect minor fluctuations in the measured angle-velocity,
which may result in different number of points for different 360◦ scans in time.
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(a) Range image part (90◦ horiz. view) (b) Basic MoG [5, 10]

(c) uniMRF [3] (d) Proposed DMRF segmentation

Fig. 1. Foreground segmentation in a range image part with three different methods

sort the weights in decreasing order, and determine the minimal ks integer which
satisfies

∑ks

i=1 w
i
s > Tbg(we used here Tbg = 0.89). We consider the components

with the ks largest weights as the background components. Thereafter, denoting
by η() a Gaussian density function, and by Pbg the projection transform onto
Sbg, the fbg(p) background evidence term is obtained as:

fbg(p) =

ks∑

i=1

wi
s · η

(
d(p), µi

s, σ
i
s

)
, where s = Pbg(p). (2)

The Gaussian mixture parameters are set and updated based on [10], while

we used Sbg
W = 2000 angle resolution, which provided the most efficient de-

tection rates in our experiments. By thresholding fbg(p), we can get a dense
foreground/background labeling of the point cloud [5, 10] (referred later as Ba-
sic MoG method), but as shown in Fig. 2(a),(c), this classification is notably
noisy in scenarios recorded in large outdoor scenes.

4 DMRF approach on foreground segmentation

In this section, we propose a Dynamic Markov Random Field (DMRF) model to
obtain smooth, noiseless and observation consistent segmentation of the point
cloud sequence. Since MRF optimization is computationally intensive [11], we
define the DMRF model in the range image space, and 2D image segmentation is
followed by a point classification step to handle ambiguities of the mapping. As
defined by (1) in Sec. 2, we use a P cylinder projection transform to obtain the

range image, with a SW = min(ĉ, Sbg
W /2) grid with, where ĉ denotes the expected

number of point columns of the point sequence in a time frame. By assuming
that the rotation speed is slightly fluctuating, this selected resolution provides
a dense range image. Let us denote by Ps ⊂ Lt the set of points projected to
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pixel s. For a given direction, foreground points are expected being closer to the
sensor than the estimated mean background range value. Thus, for each pixel s
we select the closest projected point pts = argminp∈Ps

d(p), and assign to pixel
s of the range image the dts = d(pts) distance value. For pixels with undefined
range values (Ps = ∅), we interpolate the dts distance from the neighborhood.
For spatial filtering, we use an eight-neighborhood system in S, and denote by
Ns ⊂ S the neighbors of pixel s.

Next, we assign to each s ∈ S foreground and background energy (i.e. nega-
tive fitness) terms, which describe the class memberships based on the observed
d(s) values. The background energies are directly derived from the parametric
MoG probabilities using (2):

εtbg(s) = − log
(
fbg(p

t
s)
)
.

For description of the foreground, using a constant εfg could be a straightfor-
ward choice [3] (we call this approach uniMRF ), but this uniform model results
in several false alarms due to background motion and quantitization artifacts.
Instead of temporal statistics, we use spatial distance similarity information to
overcome this problem by using the following assumption: whenever s is a fore-
ground pixel, we should find foreground pixels with similar range values in the
neighborhood. For this reason, we use a non-parametric kernel density model for
the foreground class:

εtfg(s) =
∑

r∈Ns

ζ(εtbg(r), τfg,m⋆) · k

(
dts − dtr

h

)

,

where h is the kernel bandwidth and ζ : R → [0, 1] is a sigmoid function:

ζ(x, τ,m) =
1

1 + exp(−m · (x− τ))
.

We use here a uniform kernel: k(x) = 1{|x| ≤ 1}, where 1{.} ∈ {0, 1} is the
binary indicator function of a given event.

To formally define the range image segmentation task, to each pixel s ∈ S,
we assign a ωt

s ∈ {fg, bg} class label so that we aim to minimize the following
energy function:

E =
∑

s∈S

VD(dts|ω
t
s) +

∑

s∈S

∑

r∈Ns

α · 1{ωt
s 6= ωt−1

r }

︸ ︷︷ ︸

ξt
s

+
∑

s∈S

∑

r∈Ns

β · 1{ωt
s 6= ωt

r}

︸ ︷︷ ︸

χt
s

, (3)

where VD(dts|ω
t
s) denotes the data term, while ξts and χt

s are the temporal and
spatial smoothness terms, respectively, with α > 0 and β > 0 constants. Let
us observe, that although the model is dynamic due to dependencies between
different time frames (see the ξts term), to enable real time operation, we develop
a causal system, i.e. labels from the past are not updated based on labels from
the future.
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The data terms are derived from the data energies by sigmoid mapping:

VD(dts|ω
t
s = bg) = ζ(εtbg(s), τbg,mbg)

VD(dts|ω
t
s = fg) =

{
1 if dts > max{i=1...ks} µ

i,t
s + ǫ

ζ(εtfg(s), τfg,mfg) otherwise.

The sigmoid parameters τfg, τbg,mfg,mbg andm⋆ can be estimated by Maximum
Likelihood strategies based on a few manually annotated training images. As for
the smoothing factors, we use α = 0.2 and β = 1.0 (i.e. the spatial constraint
is much stronger), while the kernel bandwidth is set to h = 30cm. The MRF
energy (3) is minimized via the fast graph-cut based optimization algorithm [11].

The result of the DMRF optimization is a binary foreground mask on the
discrete S lattice. The final step of the method is the classification of the points
of the original L cloud, considering that the projection may be ambiguous, i.e.
multiple points with different true class labels can be projected to the same pixel
of the segmented range image. With denoting by s = P(p) for time frame t:

• ω(p) = fg, iff one of the following two conditions holds:
◦ ωt

s = fg and d(p) < dts + 2 · h (a)
◦ ωt

s = bg and ∃r ∈ Nr : {ωt
r = fg, |dtr − d(p)| < h} (b)

• ω(p) = bg: otherwise.

The above constraints eliminate several (a) false positive and (b) false negative
foreground points, projected to pixels of the range image near the object edges.

5 Evaluation

We have tested our method in real Lidar sequences concerning both video surveil-
lance (Courtyard) and traffic monitoring (Traffic) scenarios (see Fig. 2). The
data flows have been recorded by a Velodyne HDL 64E S2 camera, which op-
erates with R = 64 vertically aligned beams. The Courtyard sequence contains
2500 frames with four people walking in a 25m2 area in 1-5m distances from
the Lidar, with crossing trajectories. The rotation speed was set to 20Hz. In
the background, heavy motion of the vegetations make the accurate classifica-
tion challenging. The Traffic sequence was recorded with 5Hz from the top of a
car waiting at a traffic light in a crowded crossroad. The adaptive background
model was automatically built up within a few seconds, then 160 time frames
were available for traffic flow analysis. We have compared our DMRF model to
three reference solutions:

1. Basic MoG, introduced in Sec. 3, which is based on [5] with using on-line
K-means parameter update [10].

2. uniMRF, introduced in Sec. 4, which partially adopts the uniform foreground
model of [3] for range image segmentation in the DMRF framework.

3. 3D-MRF, which implements a MRF model in 3D, similarly to [9]. We define
here point neighborhoods in the original Lt clouds based on Euclidean dis-
tance, and use the background fitness values of (2) in the data model. The
graph-cut algorithm [11] is adopted again for MRF energy optimization.
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(a) Basic MoG, Courtyard sequence (b) Proposed DMRF, Courtyard sequence

(c) Basic MoG, Traffic sequence (d) Proposed DMRF, Traffic sequence

Fig. 2. Point cloud classification result on sample frames with the Basic MoG and the
proposed DMRF model: foreground points are displayed in blue (dark in gray print).

Qualitative results on two sample frames are shown in Fig. 2. For Ground
Truth (GT) generation, we have developed a 3D point cloud annotation tool,
which enables labeling the scene regions manually as foreground or background.
Next, we manually annotated 700 relevant frames of the Courtyard and 50 frames
of the Traffic sequence. For quantitative evaluation metric, we have chosen the
point level F-rate of foreground detection [4], which can be calculated as the
harmonic mean of precision and recall. We have also measured the processing
speed in frames per seconds (fps). The numerical performance analysis is given
in Table 1. The results confirm that the proposed model surpasses the Basic

MoG and uniMRF techniques in F-rate for both scenes, and the differences are
especially notable at the Courtyard. Compared to the 3D-MRF method, our
model provides similar detection accuracy, but the proposed DMRF method is
significantly quicker. Observe that differently from 3D-MRF, our range image
based technique is less influenced by the size of the point cloud. In the Traffic

sequence, which contains around 260000 points within a time frame, we measured
2fps processing speed with 3D-MRF and 16fps with the proposed DMRF model.

6 Conclusions

We have proposed a Dynamic MRF model for foreground segmentation in point
clouds obtained by a rotating multi-beam Lidar system. We have introduced
an efficient spatial foreground filter to decrease artifacts of angle quantitization
and background motion. The model has been quantitatively validated based on
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Aspect Sequence Seq. property Basic MoG uniMRF 3D-MRF DMRF

Detection rate Courtyard 4 obj/frame 55.7 81.0 88.1 95.1
(F-rate in %) Traffic 20 obj/frame 70.4 68.3 76.2 74.0

Processing speed Courtyard 65K pts/frame 120 fps 18 fps 7 fps 16 fps
(frames per sec) Traffic 260K pts/frame 120 fps 18 fps 2 fps 16 fps

Table 1. Numerical evaluation on the Courtyard and Traffic sequences: detection
accuracy (F-rate in %) and processing speed (fps, measured in a desktop computer)

Ground Truth data, and the advantages of the proposed solution versus three
reference methods have been demonstrated. The authors thank Miklós Homolya
for help in MRF code integration [11].
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