Publikationen
- Juliano, L, und Thürigen, J. . „New Fixed Points from Melonic Interactions.“ Physics Letters B, Nr. 860: 139218. doi: 10.1016/j.physletb.2024.139218.
- Hock, Alexander, Shadrin, Sergey, und Wulkenhaar, Raimar. . „Symmetry of meromorphic differentials produced by involution identity, and relation to integer partitions.“ arXiv doi: 10.48550/arXiv.2501.00082.
- Hock, Alexander, Wulkenhaar, Raimar, und Dołega, Maciej (appendix). im Druck. „Blobbed topological recursion of the quartic Kontsevich model II: Genus=0.“ Annales de l’Institut Henri Poincaré D: Combinatorics, Physics and their Interactions, Nr. online first doi: 10.4171/AIHPD/198.
- Borot, Gaëtan, und Wulkenhaar, Raimar. . „A note on BKP for the Kontsevich matrix model with arbitrary potential.“ Symmetry, Integrability and Geometry: Methods and Applications, Nr. 20 050. doi: 10.3842/SIGMA.2024.050.
- Grosse, Harald, Kanomata, Naoyuki, Sako, Akifumi, und Wulkenhaar, Raimar. . „Real symmetric Φ^4-matrix model as Calogero-Moser model.“ Letters in Mathematical Physics, Nr. 114 25. doi: 10.1007/s11005-024-01772-5.
- Ben Geloun, J, Pithis, A, und Thürigen, J. . „QFT with Tensorial and Local Degrees of Freedom: Phase Structure from Functional Renormalization.“ Journal of Mathematical Physics, Nr. 65: 032302. doi: 10.1063/5.0158724.
- Hock, A, und Thürigen, J. . „Combinatorial Dyson-Schwinger Equations of Quartic Matrix Field Theory.“ arXiv
- Grosse, Harald, Kanomata, Naoyuki, Sako, Akifumi, und Wulkenhaar, Raimar. . „Relationship between Φ^4-matrix model and N-body harmonic oscillator or Calogero-Moser model.“ Beitrag präsentiert auf der The XXVIII International Conference on Integrable Systems and Quantum Symmetries (ISQS28), Prague doi: 10.1088/1742-6596/2912/1/012014.
- Melong, Fridolin, und Wulkenhaar, Raimar. . „Generalized Heisenberg-Virasoro algebra and matrix models from quantum algebra.“ Journal of Mathematical Physics, Nr. 64 (7) 073505. doi: 10.1063/5.0150975.
- Marchetti, L, Oriti, D, Pithis, A, und Thürigen, J. . „Mean-Field Phase Transitions in TGFT Quantum Gravity.“ Physical Review Letters, Nr. 130: 141501. doi: 10.1103/PhysRevLett.130.141501.
- Marchetti, L, Oriti, D, Pithis, A, und Thürigen, J. . „Phase transitions in TGFT: a Landau-Ginzburg analysis of Lorentzian quantum geometric models.“ Journal of High Energy Physics (JHEP), Nr. 02: 074. doi: 10.1007/JHEP02(2023)074.
- Jercher, A, Steinhaus, S, und Thürigen, J. . „Curvature effects in the spectral dimension of spin foams.“ Physical Review D (PRD), Nr. 108: 066011. doi: 10.1103/PhysRevD.108.066011.
- Hock, Alexander, und Wulkenhaar, Raimar. . „Blobbed topological recursion from extended loop equations.“ arXiv doi: 10.48550/arXiv.2301.04068.
- Grosse, Harald, Hock, Alexander, und Wulkenhaar, Raimar. . „A Laplacian to compute intersection numbers on M_{g,n} and correlation functions in NCQFT.“ Communications in Mathematical Physics, Nr. 399: 481–517. doi: 10.1007/s00220-022-04557-w.
- Schürmann, Jörg, und Wulkenhaar, Raimar. . „An algebraic approach to a quartic analogue of the Kontsevich model.“ Mathematical Proceedings, Nr. 174 (3): 471–495. doi: 10.1017/S0305004122000366.
- Branahl, Johannes, Grosse, Harald, Hock, Alexander, und Wulkenhaar, Raimar. . „From scalar fields on quantum spaces to blobbed topological recursion.“ Journal of Physics A: Mathematical and Theoretical, Nr. 55 (42) 423001. doi: 10.1088/1751-8121/ac9260.
- Brunekreef, J, Lionni, L, und Thürigen, J. . „One-matrix differential reformulation of two-matrix models.“ Reviews in Mathematical Physics, Nr. 34 (08): 2250026. doi: 10.1142/S0129055X2250026X.
- Branahl, Johannes, Hock, Alexander, und Wulkenhaar, Raimar. . „Blobbed topological recursion of the quartic Kontsevich model I: Loop equations and conjectures.“ Communications in Mathematical Physics, Nr. 393: 1529–1582. doi: 10.1007/s00220-022-04392-z.
- de Jong, Jins, Hock, Alexander, und Wulkenhaar, Raimar. . „Nested Catalan tables and a recurrence relation in noncommutative quantum field theory.“ Annales de l’Institut Henri Poincaré D: Combinatorics, Physics and their Interactions, Nr. 9 (1): 47–72. doi: 10.4171/AIHPD/113.
- Kohl, Finn Bjarne, und Wulkenhaar, Raimar. . „Intersection theory of the complex quartic Kontsevich model.“ arXiv doi: 10.48550/arXiv.2212.01359.
- Pascalie, Romain, Pérez-Sánchez, Carlos Ignacio, und Wulkenhaar, Raimar. . „Correlation functions of U(N)-tensor models and their Schwinger-Dyson equations.“ Annales de l’Institut Henri Poincaré D: Combinatorics, Physics and their Interactions, Nr. 8 (3): 377–458. doi: 10.4171/AIHPD/107.
- Branahl, Johannes, Hock, Alexander, und Wulkenhaar, Raimar. . „Perturbative and geometric analysis of the quartic Kontsevich model.“ Symmetry, Integrability and Geometry: Methods and Applications, Nr. 17: 085. doi: 10.3842/SIGMA.2021.085.
- Pithis, AG, und Thürigen, J. . „(No) phase transition in tensorial group field theory.“ Physics Letters B, Nr. 816: 136215. doi: 10.1016/j.physletb.2021.136215.
- Thürigen, J. . „Renormalization in Combinatorially Non-Local Field Theories: the BPHZ Momentum Scheme.“ Symmetry, Integrability and Geometry: Methods and Applications, Nr. 17: 094. doi: 10.3842/SIGMA.2021.094.
- Thürigen, J. . „Renormalization in combinatorially non-local field theories: the Hopf algebra of 2-graphs.“ Math. Phys. Anal. Geom., Nr. 24 (2): 19. doi: 10.1007/s11040-021-09390-6.
- Marchetti, L, Oriti, D, Pithis, A, und Thürigen, J. . „Phase transitions in tensorial group field theories: Landau-Ginzburg analysis of models with both local and non-local degrees of freedom.“ JHEP, Nr. 12 (2021): 201. doi: 10.1007/JHEP12(2021)201.
- Münster, Gernot, und Wulkenhaar, Raimar. . „The Leutwyler-Smilga relation on the lattice.“ Modern Physics Letters A, Nr. 35 (01): 1950346. doi: 10.1142/S0217732319503462.
- Thürigen, J. . „Functional renormalization group in TGFT - the cyclic-melonic potential approximation.“ Beitrag präsentiert auf der Quantum Spacetime and the Renormalization Group 2020, Odense, Dänemark
- Pithis, AG, und Thürigen, J. . „Phase transitions in TGFT: Functional renormalization group in the cyclic-melonic potential approximation and equivalence to O(N) models.“ JHEP, Nr. 12 (2020): 159. doi: 10.1007/JHEP12(2020)159.
- Hock, Alexander. . „Matrix Field Theory.“ Dissertationsschrift, Universität Münster.
- Grosse, Harald, Hock, Alexander, und Wulkenhaar, Raimar. . „Solution of the self-dual \Phi^4 QFT-model on four-dimensional Moyal space.“ Journal of High Energy Physics (JHEP), Nr. 01: 081. doi: 10.1007/JHEP01(2020)081.
- Panzer, Erik, und Wulkenhaar, Raimar. . „Lambert-W solves the noncommutative ϕ4-model.“ Communications in Mathematical Physics, Nr. 374: 1935–1961. doi: 10.1007/s00220-019-03592-4.
- de Jong, Jins, und Wulkenhaar, Raimar. . „Nonperturbative evaluation of the partition function for the real scalar quartic QFT on the Moyal plane at weak coupling.“ Journal of Mathematical Physics, Nr. 60 (8) 083504. doi: 10.1063/1.5063293.
- Pascalie, Romain, Pérez-Sánchez, Carlos Ignacio, Tanasa, Adrian, und Wulkenhaar, Raimar. . „On the large N limit of the Schwinger-Dyson equation of rank-3 tensor field theory.“ Journal of Mathematical Physics, Nr. 60 (7) 073502. doi: 10.1063/1.5080306.
- Grosse, Harald, Hock, Alexander, und Wulkenhaar, Raimar. . „Solution of all quartic matrix models.“ arXiv doi: 10.48550/arXiv.1906.04600.
- Wulkenhaar, Raimar. . „Quantum field theory on noncommutative spaces.“ In Advances in Noncommutative Geometry, herausgegeben von Ali Chamseddine, Caterina Consani, Nigel Higson, Masoud Khalkhali, Henri Moscovici und Guoliang Yu. Basel: Springer International Publishing. doi: 10.1007/978-3-030-29597-4_11.
- Lionni, L, und Thürigen, J. . „Multi-critical behaviour of 4-dimensional tensor models up to order 6.“ Nuclear Physics B, Nr. 941: 600–635. doi: 10.1016/j.nuclphysb.2019.02.026.
- Thürigen, Johannes. . „Ansätze zur Quantengravitation - fundamentale Physik am Rande des Begriffs der Naturwissenschaft.“ Briefe zur Interdisziplinarität, Nr. 23: 26–36.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Integrability and positivity in quantum field theory on noncommutative geometry.“ Journal of Geometry and Physics, Nr. 134: 249–262. doi: 10.1016/j.geomphys.2018.08.001.
- Grosse, Harald, und Wulkenhaar, Raimar. . „How Prof. Zeidler supported our research on exact solution of quantum field theory toy models.“ Vietnam Journal of Mathematics, Nr. 47: 93–112. doi: 10.1007/s10013-018-0302-2.
- Hock, Alexander, und Wulkenhaar, Raimar. . „Noncommutative 3-colour scalar quantum field theory model in 2D.“ The European Physical Journal C, Nr. 78 580. doi: 10.1140/epjc/s10052-018-6042-3.
- Pérez-Sánchez, CI. . „The full Ward-Takahashi Identity for colored tensor models.“ Communications in Mathematical Physics, Nr. 358 (2): 589–632. doi: 10.1007/s00220-018-3103-2.
- Pithis, A, und Thürigen, J. . „Phase transitions in group field theory: The Landau perspective.“ Physical Review D - Particles, Fields, Gravitation, and Cosmology, Nr. 98: 126006. doi: 10.1103/PhysRevD.98.126006.
- Wulkenhaar, Raimar. . „Lambert-W solves the noncommutative \Phi^4-model.“ In Bd. 15 aus Oberwolfach Reports doi: 10.4171/OWR/2018/32.
- Steinhaus, S, und Thürigen, J. . „Emergence of Spacetime in a restricted Spin-foam model.“ Physical Review D - Particles, Fields, Gravitation, and Cosmology, Nr. 98: 026013. doi: 10.1103/PhysRevD.98.026013.
- Grosse, Harald, Sako, Akifumi, und Wulkenhaar, Raimar. . „The \Phi^3_4 and \Phi^3_6 matricial QFT models have reflection positive two-point function.“ Nuclear Physics B, Nr. 926: 20–48. doi: 10.1016/j.nuclphysb.2017.10.022.
- Grosse, Harald, Sako, Akifumi, und Wulkenhaar, Raimar. . „Exact solution of matricial \Phi^3_2 quantum field theory.“ Nuclear Physics B, Nr. 925: 319–347. doi: 10.1016/j.nuclphysb.2017.10.010.
- Pérez-Sánchez, CI. . „Surgery in colored tensor models.“ Journal of Geometry and Physics, Nr. 120: 262–289. doi: 10.1016/j.geomphys.2017.06.009.
- de Jong, Jins, und Wulkenhaar, Raimar. . „The asymptotic volume of diagonal subpolytopes of symmetric stochastic matrices.“ arXiv.org doi: 10.48550/arXiv.1701.07719.
- Wulkenhaar, Raimar. . „Reflection positivity in large-deformation limits of noncommutative field theories.“ In Bd. 14 aus Oberwolfach Reports doi: 10.4171/OWR/2017/55.
- Wulkenhaar, Raimar. . „Integrability in a 4D QFT model.“ In Bd. 13 aus Oberwolfach Reports 13 doi: 10.4171/OWR/2016/36.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Construction of a quantum field theory in four dimensions.“ PoS - Proceedings of Science, Nr. 224 151. doi: 10.22323/1.224.0151.
- Lechner, Gandalf, und Schlemmer, Jan. . „Thermal Equilibrium States for Quantum Fields on Non-commutative Spacetimes.“ In Quantum Mathematical Physics , herausgegeben von Felix Finster, Johannes Kleiner, Christian Röken und Jürgen Tolksdorf. Basel: Birkhäuser Verlag. doi: 10.1007/978-3-319-26902-3.
- Grosse, Harald, und Wulkenhaar, Raimar. . „A solvable four-dimensional QFT.“ In Quantum Mathematical Physics - A Bridge between Mathematics and Physics, herausgegeben von F Finster, J Kleiner, C Röken und J Tolksdorf. Basel: Springer International Publishing. doi: 10.1007/978-3-319-26902-3_8.
- Eckstein, Michał, Sitarz, Andrzej, und Wulkenhaar, Raimar. . „The Moyal sphere.“ Journal of Mathematical Physics, Nr. 2016 (57) 112301. doi: 10.1063/1.4965446.
- Thürigen, J. . „Group field theories generating polyhedral complexes.“ PoS - Proceedings of Science, Nr. FFP14: 177. doi: 10.22323/1.224.0177.
- Grosse, Harald, und Wulkenhaar, Raimar. . „On the fixed point equation of a solvable 4D QFT model.“ Vietnam Journal of Mathematics, Nr. 2016 (44): 153–180. doi: 10.1007/s10013-015-0174-7.
- Ousmane Samary, Dine, Pérez-Sánchez, Carlos Ignacio, Vignes-Tourneret, Fabien, und Wulkenhaar, Raimar. . „Correlation functions of a just renormalizable tensorial group field theory: the melonic approximation.“ Classical and Quantum Gravity, Nr. 32 (17): 175012. doi: 10.1088/0264-9381/32/17/175012.
- Thürigen, J. . „Discrete quantum geometries and their effective dimension.“ Dissertationsschrift, Humboldt Universität zu Berlin. doi: 10.18452/17309.
- Thürigen, J. . „Fields and Laplacians on Quantum Geometries.“ In Proceedings, 13th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG13): Stockholm, Sweden, July 1-7, 2012 doi: 10.1142/9789814623995_0388.
- Calcagni, G, Oriti, D, und Thürigen, J. . „Dimensional flow in discrete quantum geometries.“ Physical Review D - Particles, Fields, Gravitation, and Cosmology, Nr. 91 (8): 084047. doi: 10.1103/PhysRevD.91.084047.
- Oriti, D, Ryan, JP, und Thürigen, J. . „Group field theories for all loop quantum gravity.“ New Journal of Physics, Nr. 17: 023042. doi: 10.1088/1367-2630/17/2/023042.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Towards a construction of a quantum field theory in four dimensions.“ In Mathematical Structures of the Universe, herausgegeben von M Eckstein, M Heller und S Szybka. Krakau: Copernicus Center Press.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Noncommutative quantum field theory.“ Fortschritte der Physik, Nr. 62 (9-10): 797–811. doi: 10.1002/prop.201400020.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity.“ arXiv doi: 10.48550/arXiv.1406.7755.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Self-dual noncommutative ϕ4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory.“ Communications in Mathematical Physics, Nr. 329 (3): 1069–1130. doi: 10.1007/s00220-014-1906-3.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Construction of the \Phi^4_4-quantum field theory on noncommutative Moyal space.“ RIMS Kôkyûroku, Nr. 2014 (1904): 67–104.
- Calcagni, G, Oriti, D, und Thürigen, J. . „Spectral dimension of quantum geometries.“ Class. Quant. Grav., Nr. 31: 135014. doi: 10.1088/0264-9381/31/13/135014.
- Gayral, Victor, und Wulkenhaar, Raimar. . „Spectral geometry of the Moyal plane with harmonic propagation.“ Journal of Noncommutative Geometry, Nr. 7 (4): 939–979. doi: 10.4171/JNCG/140.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Construction and properties of noncommutative quantum fields.“ In XVIIth International Congress on Mathematical Physics, herausgegeben von A Jensen. Singapore: World Scientific Publishing. doi: 10.1142/9789814449243_0066.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Solvable limits of a 4D noncommutative QFT.“ arXiv doi: 10.48550/arXiv.1306.2816.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Construction of a Noncommutative Quantum Field Theory.“ In Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy's 60th Birthday, Bd. 87 aus Proceedings of Symposia in Pure Mathematics, herausgegeben von H Holden, B Simon und G Teschl. Providence, RI: American Mathematical Society. doi: 10.1090/pspum/087/01442.
- Calcagni, G, Oriti, D, und Thurigen, J. . „Laplacians on discrete and quantum geometries.“ Class. Quant. Grav., Nr. 30: 125006. doi: 10.1088/0264-9381/30/12/125006.
- Spisso, Bernardino, und Wulkenhaar, Raimar. . „A numerical approach to harmonic non-commutative spectral field theory.“ International Journal of Modern Physics A, Nr. 27 (14) 1250075. doi: 10.1142/S0217751X12500753.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Renormalization of a noncommutative field theory.“ International Journal of Modern Physics A, Nr. 27 (12) 1250067. doi: 10.1142/S0217751X12500674.
- Grosse, Harald, und Wulkenhaar, Raimar. . „8D-spectral triple on 4D-Moyal space and the vacuum of noncommutative gauge theory.“ Journal of Geometry and Physics, Nr. 62 (7): 1583–1599. doi: 10.1016/j.geomphys.2012.03.005.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Renormalization of a noncommutative field theory.“ International Journal of Modern Physics: Conference Series, Nr. 13: 108–117. doi: 10.1142/S2010194512006770.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Renormalizable noncommutative quantum field theory.“ Journal of Physics: Conference Series, Nr. 343 012043. doi: 10.1088/1742-6596/343/1/012043.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Renormalisation of the Grosse-Wulkenhaar model.“ PoS - Proceedings of Science, Nr. QGQGS (2011) 011.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Renormalizable noncommutative quantum field theory.“ General Relativity and Gravitation, Nr. 43: 2491–2498. doi: 10.1007/s10714-010-1065-6.
- Wulkenhaar, Raimar. . „Quantum field theory on noncommutative geometries.“ In Bd. 7 aus Oberwolfach Reports doi: 10.4171/OWR/2010/09.
- Wulkenhaar, Raimar. . „Non-compact spectral triples with finite volume.“ In Quanta of Maths, Bd. 11 aus Clay Math. Proc., herausgegeben von E Blanchard, D Ellwood, M Khalkhali, M Marcolli, H Moscovici und S Popa. Providence, RI: American Mathematical Society.
- Wulkenhaar, Raimar. . „Progress in solving a noncommutative QFT in four dimensions.“ In Bd. 6 aus Oberwolfach Reports doi: 10.4171/OWR/2009/41.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Progress in solving a noncommutative quantum field theory in four dimensions.“ arXiv doi: 10.48550/arXiv.0909.1389.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Renormalization of noncommutative quantum field theory.“ In An invitation to noncommutative geometry, herausgegeben von M Khalkhali und M Marcolli. Singapore: World Scientific Publishing. doi: 10.1142/9789812814333_0002.
- Marcillaud, de Goursac A, Wallet, JC, und Wulkenhaar, R. . „On the vacuum states for non-commutative gauge theory.“ European Physical Journal C: Particles and Fields, Nr. 56 (2): 293–304. doi: 10.1140/epjc/s10052-008-0652-0.
- Gayral, Victor, Jureit, Jan-Hendrik, Krajewski, Thomas, und Wulkenhaar, Raimar. . „Quantum field theory on projective modules.“ Journal of Noncommutative Geometry, Nr. 1 (4): 431–496. doi: 10.4171/JNCG/13.
- Marcillaud de Goursac, Axel, Jean-Christophe, Wallet, und Wulkenhaar, Raimar. . „Noncommutative induced gauge theory.“ European Physical Journal C: Particles and Fields, Nr. 51 (4): 977–987. doi: 10.1140/epjc/s10052-007-0335-2.
- Wulkenhaar, Raimar. . „The harmonic oscillator, its noncommutative dimension and the vacuum of noncommutative gauge theory.“ In Bd. 4 aus Oberwolfach Reports doi: 10.4171/OWR/2007/43.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Noncommutative QFT and renormalization.“ In Quantum Gravity - Mathematical Models and Experimental Bounds, herausgegeben von B Fauser, J Tolksdorf und E Zeidler. Basel: Birkhäuser Verlag. doi: 10.1007/978-3-7643-7978-0_16.
- Wulkenhaar, Raimar. . „Renormalisation scalar quantum field theory on 4D-Moyal plane.“ In Bd. 3 aus Oberwolfach Reports doi: 10.4171/OWR/2006/17.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Noncommutative QFT and renormalization.“ Fortschritte der Physik, Nr. 54 (2-3): 116–123. doi: 10.1002/prop.200510260.
- Grosse, Harald, und Wulkenhaar, Raimar. . „Noncommutative QFT and renormalization.“ Bulgarian Journal of Physics, Nr. 33 (s1): 215–225.
- Rivasseau, Vincent, Vignes-Tourneret, Fabien, und Wulkenhaar, Raimar. . „Renormalisation of noncommutative ϕ4-theory by multi-scale analysis.“ Communications in Mathematical Physics, Nr. 262 (3): 565–594. doi: 10.1007/s00220-005-1440-4.