• Publications

    • , , , , , , , , and . . “Interphase design of LiNi0.6Mn0.2Co0.2O2 as positive active material for lithium ion batteries via Al2O3 coatings using magnetron sputtering for improved performance and stability.Batteries & Supercaps, Early View: e2023005. doi: 10.1002/batt.202300580.
    • . . “Fluoroethylene Carbonate: Bis(2,2,2,) Trifluoroethyl Carbonate as High Performance Electrolyte Solvent Blend for High Voltage Application in NMC811|| Silicon Oxide-Graphite Lithium Ion Cells.Small Methods, online first 2400063. doi: 10.1002/sstr.202400063.
    • , , , , , , , , , , and . . “Lithium-ion battery cell formation: status and future directions towards a knowledge-based process design.Energy and Environmental Science, 17 (8): 26862733. doi: 10.1039/D3EE03559J.
    • , , , , , , , , , , , , and . . “Sulfonyl diimidazole to stabilize fluoroethylene carbonate-based SEI in high-voltage Li ion cells with a SiOx containing negative electrode.Energy Storage Materials, 72: 103735103735. doi: 10.1016/j.ensm.2024.103735.

    • , , , , , , , , and . . “Al‐doped ZnO‐Coated LiNi1/3Mn1/3Co1/3O2 Powder Electrodes: The Effect of a Coating Layer on The Structural and Chemical Stability of The Electrode / Electrolyte Interface.Advanced Materials Interfaces, 11 (2) doi: 10.1002/admi.202300668.
    • , , , , , and . . “Suppressing gas evolution in Li4Ti5O12 -based pouch cells by high temperature formation.Journal of Power Sources, 575 doi: 10.1016/j.jpowsour.2023.233207.
    • , , , , and . . “Arylazopyrazole-Modified Thiolactone Acrylate Copolymer Brushes for Tuneable and Photoresponsive Wettability of Glass Surfaces.Langmuir, 39: 53425351. doi: 10.1021/acs.langmuir.2c03400.
    • , , , , , and . . “Determining the Origin of Lithium Inventory Loss in NMC622|| Graphite Lithium Ion Cells Using an LiPF6-Based Electrolyte.Journal of The Electrochemical Society, 170 (1) 010530. doi: 10.1149/1945-7111/acb401.

    • , , , , , , and . . “Opportunities and Challenges of Li2C4O4 as Pre-Lithiation Additive for the Positive Electrode in NMC622||Silicon/Graphite Lithium Ion Cells.Advanced Science, 9 (24) 2201742. doi: 10.1002/advs.202201742.
    • , , , , and . . “Comparative X-ray Photoelectron Spectroscopy Study of the SEI and CEI in Three Different Lithium Ion Cell Formats.Journal of The Electrochemical Society, 169 (3): 30533. doi: 10.1149/1945-7111/ac5c08.

    • , , , , , , , , , , , , and . . “Understanding the Role of Commercial Separators and their Reactivity towards LiPF6 on the Failure Mechanism of High-Voltage NCM523 || Graphite Lithium Ion Cells.Advanced Energy Materials, 12 (2): 2102599. doi: 10.1002/aenm.202102599.
    • , , , , , , , , , and . . “Cover Picture "Li‐Ion Batteries: Understanding the Outstanding High‐Voltage Performance of NCM523||Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte (Adv. Energy Mater. 14/2021)".Advanced Energy Materials, 11 (14): 2170053. doi: 10.1002/aenm.202170053.
    • , , , , , , , , , , , and . . “Back Cover "Graphite Lithium‐Ion Cells: On the Beneficial Impact of Li2CO3 as Electrolyte Additive in NCM523 ∥ Graphite Lithium Ion Cells Under High‐Voltage Conditions (Adv. Energy Mater. 10/2021)".Advanced Energy Materials, 11: 2170039. doi: 10.1002/aenm.202170039.
    • , , , , , , , , , and . . “Understanding the Outstanding High-Voltage Performance of NCM523 || Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte.Advanced Energy Materials, 11 (14): 2003738. doi: 10.1002/aenm.202003738.
    • , , , , , , , , , , , and . . “On the Beneficial Impact of Li2CO3 as Electrolyte Additive in NCM523 ∥ Graphite Lithium Ion Cells Under High-Voltage Conditions.Advanced Energy Materials, 11 (10): 2003756. doi: 10.1002/aenm.202003756.
    • , , , , , and . . “Enabling Aqueous Processing for LiNi0.5Mn1.5O4-Based Positive Electrodes in Lithium-Ion Batteries by Applying Lithium-Based Processing Additives.Advanced Energy and Sustainability Research, 1: 2100075. doi: 10.1002/aesr.202100075.
    • , , , and . . “Quantitative determination of solid electrolyte interphase and cathode electrolyte interphase homogeneity in multi-layer lithium ion cells.Journal of Energy Storage, 44: 103208. doi: 10.1016/J.EST.2021.103208.
    • , , , , , , , , and . . “Al2O3 protective coating on silicon thin film electrodes and its effect on the aging mechanisms of lithium metal and lithium ion cells.Journal of Energy Storage, 44: 103479. doi: 10.1016/J.EST.2021.103479.
    • , , , , and . . “Understanding the Effectiveness of Phospholane Electrolyte Additives in Lithium-Ion Batteries under High-Voltage Conditions.ChemElectroChem, 8 (5): 972982. doi: 10.1002/celc.202100107.

    • , , , , , and . . “Three-Component, Interrupted Radical Heck/Allylic Substitution Cascade Involving Unactivated Alkyl Bromides.Journal of the American Chemical Society, 142 (22): 1017310183. doi: 10.1021/jacs.0c03239.

    • , , , , and . . “Unraveling Charge/Discharge and Capacity Fading Mechanisms in Dual-Graphite Battery Cells using an Electron Inventory Model.Energy Storage Materials, 21: 414426. doi: 10.1016/j.ensm.2019.05.031.
    • , , , , and . . “Systematic Optimization of the Electrolyte Composition – Towards High Temperature Lithium Ion Batteries.” contributed to the 11. Kraftwerk Batterie Fachtagung, Aachen