Registration
The course is limited to a maximum of 30 participants. If more than 30 people want to attend the course, the course leaders will make a selection. Interested students have to upload a current CV, a short letter of motivation and a transcript of records (documents can be in English or German) on the respective application website. We have extended the application deadline to November 23rd (23:59). In case students have not performed any examinations during their master studies so far, they are invited to send their bachelor transcript. Students for whom the course is mandatory will be preferred. This applies in particular to master students in Information Systems with the selection of the Track Marketing, for whom up to 15 places are reserved.
Content and learning objectives
The module covers aspects for developing and designing value-adding relationships between customers and companies. Thereby, conceptual and methodical basics of customer relationship management (CRM/Customer Management) and direct marketing (DiMa) are presented. During the course students deal with current topics, concepts, and instruments of customer management and work on those in detail in a group assignment, which they present in front of the class and an expert panel. The participants receive a comprehensive overview of the planning, management, implementation, and controlling of customer relationship and direct marketing activities. In addition, the participants acquire knowledge, experience, and impulses in the three key competencies for successful CRM and DiMa: Expertise, statistics competence, and IT/data competence. The module consists of three teaching and learning formats (lectures, speed research, case study) and follows an interactive approach.
The following topics are, among others, covered in the course:
- Introduction, overview, basics, and methods of CRM and DiMa
- Concepts and tools of CRM and DiMa (customer experience management, journey mapping, lift, RFM, CLV, campaign control, personas, segmentation, CHAID etc.)
- Interaction of customer management and direct marketing
- Scope, management and controlling in CRM and DiMa
The aim of the course is to give students a profound and progressive understanding of customer relationship management and direct marketing. Thereby, it focuses on opportunities and challenges in data-driven companies.
Acquired skills
Professional skills:
- Students are able to evaluate customers using a variety of methods (customer lifetime value (CLV), recency, frequency, monetary value (RFM)).
- Students are able to plan and conduct direct marketing campaigns.
- Students learn how to handle data available in companies (legal, methodical, strategic).
Soft skills and key qualifications:
- Cooperation and collaboration: Some of the tasks consist of group work.
- Presentation techniques: the tasks must be presented in front of the course.
- Communication skills: fast capturing, processing, and preparing of content as well as the ad hoc presentation and discussion of it within the scope of the Speed Research Day.
- Analytical skills: understanding and deriving key insights as well as strategies from a Business Case.
Module Prerequisites
Students are recommended to have basic knowledge in Data Science and the use of statistical methods, such as regression analysis. In addition, the ability to use SPSS, R or Python is beneficial. If the given recommendations are not met prior to the attendance of the course, they can be obtained during the semester via self-study (see recommended books).
We suggest Information Systems students to take the course ”Data Analytics 2” before this module.
Recommended readings:
- Hair, Joseph F., William C. Black, Barry J. Babin, and Rolph E. Anderson (2006), Multivariate data analysis, Eight edition, Pearson new international edition. Upper Saddle River, N.J.: Pearson Education.
- Hayes, Andrew F. (2018), Introduction to mediation, moderation, and conditional process analysis. A regression-based approach. Methodology in the social sciences, Second edition. New York, London: The Guilford Press.
Students who can speak German may as well refer to Backhaus et al. (2018, 2015) instead of Hair et al. (2006).
- Backhaus, Klaus, Bernd Erichson, Wulff Plinke, and Rolf Weiber (2018), Multivariate Analysemethoden. Eine anwendungsorientierte Einführung, 15., überarbeitete und aktualisierte Auflage. Berlin, Heidelberg: Springer Gabler.
- ———, ———, and Rolf Weiber (2015), Fortgeschrittene Multivariate Analysemethoden. Eine anwendungsorientierte Einführung, 3., überarbeitete und aktualisierte Auflage. Berlin, Heidelberg: Springer Gabler.
Anmeldung
Der Kurs ist auf eine maximale Teilnehmeranzahl von 30 Personen begrenzt. Sollten mehr als 30 Personen an dem Kurs teilnehmen wollen, werden die Kursverantwortlichen eine Auswahl vornehmen. Für eine Berücksichtigung müssen ein aktueller Lebenslauf, ein kurzes Motivationsschreiben sowie ein aktueller Notenauszug (Dokumente können auf Englisch oder Deutsch sein) auf der entsprechenden Bewerbungsseite hochgeladen werden. Die Bewerbungsfrist wurde bis zum 23. November 2021 (23:59) verlängert. Studierende, die noch keine Masterprüfung absolviert haben, sind dazu angehalten, ihr Bachelorzeugnis einzureichen. Alle Studierende, für die der Kurs verpflichtend ist, werden bevorzugt. Dies trifft insbesondere auf Studierende des Masters in Information Systems mit Auswahl des Domain Tracks Marketing zu, für die bis zu 15 Plätze reserviert sind.
Inhalte und Lernziele
Dieses Modul behandelt Aspekte zur Entwicklung und Gestaltung wertschöpfender Beziehungen zwischen Kunden und Unternehmen. Dabei werden konzeptionelle und methodische Grundlagen des Customer Relationship Management (CRM/Kundenmanagement) und des Direktmarketing (DiMa) vorgestellt. Des Weiteren werden ausgewählte aktuelle Themen, Konzepte und Instrumente vertiefend behandelt und in Gruppenarbeit eine Fallstudie bearbeitet sowie vor dem Kurs und einem Expertengremium vorgestellt. Die Teilnehmer erhalten einen umfassender Überblick über die Planung, das Management, die Implementierung und das Controlling von Kundenbeziehungen und Direktmarketingaktivitäten. Darüber hinaus erwerben die Teilnehmer Wissen, Erfahrung und Impulse in den drei Schlüsselkompetenzen für erfolgreiches CRM und DiMa: Fachkompetenz, Statistikkompetenz und IT/Data-Kompetenz. Das Modul besteht aus drei Lehr- und Lernformaten (Vorträge; Speed Research; Fallstudie) und verfolgt einen interaktiven Ansatz.
Folgende Themen werden unter anderem im Rahmen des Kurses behandelt:
- Einführung, Überblick, Grundlagen und Methoden des CRM und des DiMa
- Konzepte und Instrumente des CRM und im DiMa (Customer Experience Management, Journey Mapping, Lift, RFM, CLV, Kampagnensteuerung, Personas, Segmentierung, CHAID etc.)
- Zusammenspiel von Kundenmanagement und Direktmarketing
- Rahmen, Management und Controlling im CRM und DiMa
Ziel des Kurses ist es, Studierenden ein tiefgreifendes und fortschrittliches Verständnis von Kundenbeziehungsmanagement und Direktmarketing zu vermitteln. Dabei werden Chancen und Herausforderungen in datengetriebenen Unternehmen fokussiert.
Erworbene Kompetenzen
Fachliche Kompetenzen:
- Studenten sind in der Lage Kunden anhand verschiedener Methoden zu bewerten (Customer Lifetime Value (CLV), Recency, Frequency, Monetary Value (RFM))
- Studenten sind in der Lage Direktmarketing-Kampagnen zu planen und durchzuführen.
- Studenten erlernen den Umgang mit in Unternehmen verfügbaren Daten (rechtlich, methodisch, strategisch).
Soft Skills und Schlüsselqualifikationen:
- Kooperation und Zusammenarbeit: ein Teil der Aufgaben besteht aus Gruppenarbeit.
- Präsentationstechniken: die Aufgaben müssen vor dem Kurs präsentiert werden.
- Kommunikationsfähigkeit: schnelles erfassen, verarbeiten und aufarbeiten von Inhalten sowie das ad hoc vortragen und diskutieren derselben im Rahmen des Speed Research Days.
- Analysefähigkeit: Verstehen und Ableiten wichtiger Erkenntnisse sowie Strategien aus einem Business Case.
Modulbezogene Teilnahmevoraussetzungen:
Studierenden, die den Kurs besuchen möchten, empfehlen wir Grundkenntnisse in Data Science und in der Anwendung statistischer Methoden (wie z.B. Regressionsanalysen). Darüber hinaus sind Kenntnisse in der Anwendung von SPSS, R oder Python von Vorteil. Sollten die genannten Empfehlungen vor dem Besuch der Lehrveranstaltung nicht erfüllt sein, können die Studierenden diese während des Semesters im Selbststudium nacharbeiten (siehe empfohlene Literatur).
Wir empfehlen Studierenden der Wirtschaftsinformatik vor dem Besuch dieser Veranstaltung das Modul „Data Analytics 2” zu belegen.
Empfohlene Literatur:
- Hair, Joseph F., William C. Black, Barry J. Babin, and Rolph E. Anderson (2006), Multivariate data analysis, Eight edition, Pearson new international edition. Upper Saddle River, N.J.: Pearson Education.
- Hayes, Andrew F. (2018), Introduction to mediation, moderation, and conditional process analysis. A regression-based approach. Methodology in the social sciences, Second edition. New York, London: The Guilford Press.
- Backhaus, Klaus, Bernd Erichson, Wulff Plinke, and Rolf Weiber (2018), Multivariate Analysemethoden. Eine anwendungsorientierte Einführung, 15., überarbeitete und aktualisierte Auflage. Berlin, Heidelberg: Springer Gabler.
- ———, ———, and Rolf Weiber (2015), Fortgeschrittene Multivariate Analysemethoden. Eine anwendungsorientierte Einführung, 3., überarbeitete und aktualisierte Auflage. Berlin, Heidelberg: Springer Gabler.
- Lehrende/r: Michael Gerke
- Lehrende/r: Lena Kamp
- Lehrende/r: Christina Okoutsidou