Non-negatively curved torus manifolds

Michael Wiemeler

Karlsruhe Institute of Technology

michael.wiemeler@kit.edu

Mathematical Congress of the Americas 2013

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Non-negative curvature and torus manifolds Main results Applications

Outline

- Definitions
- Previous Work

2 Main results

- Main results
- Structure Results for torus manifolds
- Proof of the main result

3 Applications

3

・ 「「」 ・ ・ 三 ト ・ 三 ト ・

Torus manifolds and non-negative curvature

- A torus manifold is a 2n-dimensional orientable connected manifold M together with a action of an n-dimensional torus such that M^T ≠ Ø.
- A Riemannian manifold *M* is non-negatively curved if all triangles in *M* are not "thinner" than a triangle in the Euclidean plane

Non-negative curvature and torus manifolds

Main results Applications Definitions Previous Work

Goal

Classify torus manifolds which admit an invariant metric of non-negative curvature.

イロト 不得 とくほ とくほ とう

∃ 9900

Non-negative curvature and torus manifolds Main results Applications

Definitions Previous Work

Previous Results

Theorem (Grove and Searle (1994))

A simply connected torus manifold with an invariant metric of positive sectional curvature is diffeomorphic to S^{2n} or $\mathbb{C}P^n$.

Theorem (Hsiang and Kleiner (1989))

A 4-dimensional simply connected Riemannian manifold with positive sectional curvature and an isometric S^1 -action is homeomorphic to S^4 or $\mathbb{C}P^2$.

ヘロト 人間 ト ヘヨト ヘヨト

Non-negative curvature and torus manifolds Main results Applications

Definitions Previous Work

Previous Results

Theorem (Grove and Searle (1994))

A simply connected torus manifold with an invariant metric of positive sectional curvature is diffeomorphic to S^{2n} or $\mathbb{C}P^n$.

Theorem (Hsiang and Kleiner (1989))

A 4-dimensional simply connected Riemannian manifold with positive sectional curvature and an isometric S^1 -action is homeomorphic to S^4 or $\mathbb{C}P^2$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Theorem (Kleiner (1990) and Searle and Yang (1994))

A 4-dimensional simply connected Riemannian manifold with non-negative sectional curvature and an isometric S^1 -action is homeomorphic to S^4 , $\mathbb{C}P^2$, $\mathbb{C}P^2 \# \pm \mathbb{C}P^2$ or $S^2 \times S^2$.

- Grove and Wilking (2013) classified 4-dimensional simply connected Riemannian manifolds with non-negative curvature and isometric *S*¹-action up to equivariant diffeomorphism.
- In particular, a 4-dimensional simply connected non-negatively curved torus manifold has at most four fixed points.

ヘロア 人間 アメヨア 人口 ア

Theorem (Kleiner (1990) and Searle and Yang (1994))

A 4-dimensional simply connected Riemannian manifold with non-negative sectional curvature and an isometric S^1 -action is homeomorphic to S^4 , $\mathbb{C}P^2$, $\mathbb{C}P^2 \# \pm \mathbb{C}P^2$ or $S^2 \times S^2$.

- Grove and Wilking (2013) classified 4-dimensional simply connected Riemannian manifolds with non-negative curvature and isometric S¹-action up to equivariant diffeomorphism.
- In particular, a 4-dimensional simply connected non-negatively curved torus manifold has at most four fixed points.

・ロト ・ 理 ト ・ ヨ ト ・

Theorem (Kleiner (1990) and Searle and Yang (1994))

A 4-dimensional simply connected Riemannian manifold with non-negative sectional curvature and an isometric S^1 -action is homeomorphic to S^4 , $\mathbb{C}P^2$, $\mathbb{C}P^2 \# \pm \mathbb{C}P^2$ or $S^2 \times S^2$.

- Grove and Wilking (2013) classified 4-dimensional simply connected Riemannian manifolds with non-negative curvature and isometric S¹-action up to equivariant diffeomorphism.
- In particular, a 4-dimensional simply connected non-negatively curved torus manifold has at most four fixed points.

・ロト ・ 理 ト ・ ヨ ト ・

1

Main Theorem

Theorem (W.)

Let *M* be a simply connected torus manifold with $H^{odd}(M; \mathbb{Q}) = 0$ such that one of the following two conditions holds:

- *M* admits an invariant metric of non-negative sectional curvature.
- M is rationally elliptic.

Then M has the same rational cohomology as a quotient of a free linear torus action on a product of spheres. If, moreover, $H^*(M; \mathbb{Z})$ is torsion-free or $H^{odd}(M; \mathbb{Z}) = 0$, then M is homeomorphic to such a quotient.

ヘロト ヘワト ヘビト ヘビト

Main Theorem

Theorem (W.)

Let *M* be a simply connected torus manifold with $H^{odd}(M; \mathbb{Q}) = 0$ such that one of the following two conditions holds:

- *M* admits an invariant metric of non-negative sectional curvature.
- M is rationally elliptic.

Then M has the same rational cohomology as a quotient of a free linear torus action on a product of spheres. If, moreover, $H^*(M; \mathbb{Z})$ is torsion-free or $H^{odd}(M; \mathbb{Z}) = 0$, then M is homeomorphic to such a quotient.

くロト (過) (目) (日)

Main Theorem

Theorem (W.)

Let *M* be a simply connected torus manifold with $H^{odd}(M; \mathbb{Q}) = 0$ such that one of the following two conditions holds:

- M admits an invariant metric of non-negative sectional curvature.
- M is rationally elliptic.

Then M has the same rational cohomology as a quotient of a free linear torus action on a product of spheres. If, moreover, $H^*(M; \mathbb{Z})$ is torsion-free or $H^{odd}(M; \mathbb{Z}) = 0$, then M is homeomorphic to such a quotient.

Main Theorem

Theorem (W.)

Let M be a simply connected torus manifold with $H^{odd}(M; \mathbb{Q}) = 0$ such that one of the following two conditions holds:

- *M* admits an invariant metric of non-negative sectional curvature.
- M is rationally elliptic.

Then M has the same rational cohomology as a quotient of a free linear torus action on a product of spheres. If, moreover, $H^*(M; \mathbb{Z})$ is torsion-free or $H^{odd}(M; \mathbb{Z}) = 0$, then M is homeomorphic to such a quotient.

ヘロト 人間 ト ヘヨト ヘヨト

Main Theorem

Theorem (W.)

Let *M* be a simply connected torus manifold with $H^{odd}(M; \mathbb{Q}) = 0$ such that one of the following two conditions holds:

- *M* admits an invariant metric of non-negative sectional curvature.
- M is rationally elliptic.

Then M has the same rational cohomology as a quotient of a free linear torus action on a product of spheres. If, moreover, $H^*(M; \mathbb{Z})$ is torsion-free or $H^{odd}(M; \mathbb{Z}) = 0$, then M is homeomorphic to such a quotient.

くロト (過) (目) (日)

Discusssion of assumptions

Definition

A simply connected topological space *X* is called rationally elliptic, if

$$\sum_{i=0}^{\infty}\dim H^i(X;\mathbb{Q})<\infty \quad \text{ and } \quad \sum_{i=0}^{\infty}\dim \pi_i(X)\otimes\mathbb{Q}<\infty.$$

Conjecture (Bott)

A non-negatively curved manifold is rationally elliptic.

Theorem (Spindeler (2013))

A simply connected non-negatively curved torus manifold is rationally elliptic.

Discusssion of assumptions

Definition

A simply connected topological space *X* is called rationally elliptic, if

$$\sum_{i=0}^{\infty} \dim H^i(X;\mathbb{Q}) < \infty$$
 and $\sum_{i=0}^{\infty} \dim \pi_i(X) \otimes \mathbb{Q} < \infty.$

Conjecture (Bott)

A non-negatively curved manifold is rationally elliptic.

Theorem (Spindeler (2013))

A simply connected non-negatively curved torus manifold is rationally elliptic.

Discusssion of assumptions

Definition

A simply connected topological space *X* is called rationally elliptic, if

$$\sum_{i=0}^{\infty} \dim H^i(X;\mathbb{Q}) < \infty$$
 and $\sum_{i=0}^{\infty} \dim \pi_i(X) \otimes \mathbb{Q} < \infty.$

Conjecture (Bott)

A non-negatively curved manifold is rationally elliptic.

Theorem (Spindeler (2013))

A simply connected non-negatively curved torus manifold is rationally elliptic.

Non-negative curvature and torus manifolds Main results Applications Main results Structure Results for torus manifolds Proof of the main result

Discussion of assumptions

A rationally elliptic torus manifold *M* has *χ*(*M*) = *χ*(*M*^T) > 0 and therefore *H*^{odd}(*M*; Q) = 0.

• Hence, the assumption on the cohomology is not necessary in the main theorem.

Conjecture

A simply connected non-negatively curved torus manifold is homeomorphic to a quotient of a free torus action on a product of spheres.

Non-negative curvature and torus manifolds Main results Applications Main results Structure Results for torus manifolds Proof of the main result

Discussion of assumptions

- A rationally elliptic torus manifold *M* has *χ*(*M*) = *χ*(*M*^T) > 0 and therefore *H*^{odd}(*M*; Q) = 0.
- Hence, the assumption on the cohomology is not necessary in the main theorem.

Conjecture

A simply connected non-negatively curved torus manifold is homeomorphic to a quotient of a free torus action on a product of spheres.

Discussion of assumptions

- A rationally elliptic torus manifold *M* has *χ*(*M*) = *χ*(*M*^T) > 0 and therefore *H*^{odd}(*M*; Q) = 0.
- Hence, the assumption on the cohomology is not necessary in the main theorem.

Conjecture

A simply connected non-negatively curved torus manifold is homeomorphic to a quotient of a free torus action on a product of spheres.

Towards a proof of the conjecture

Theorem

The conjecture holds for locally standard torus manifolds M which satisfy

- The intersection of any collection of facets of M/T is connected or empty, or
- dim M = 6.

Proof.

- We first use the geometry of M/T to show that all faces are contractible.
- Results of Masuda and Panov imply that $H^{\text{odd}}(M; \mathbb{Z}) = 0$.
- Hence, the statement follows from the main theorem.

Towards a proof of the conjecture

Theorem

The conjecture holds for locally standard torus manifolds M which satisfy

- The intersection of any collection of facets of M/T is connected or empty, or
- dim M = 6.

Proof.

- We first use the geometry of M/T to show that all faces are contractible.
- Results of Masuda and Panov imply that $H^{\text{odd}}(M; \mathbb{Z}) = 0$.
- Hence, the statement follows from the main theorem.

Masuda and Panov (2006) proved the following structure results for torus manifolds *M* with $H^{\text{odd}}(M; \mathbb{Z}) = 0$:

- The torus action is locally standard, i.e. each p ∈ M has an invariant neighborhood which is equivariantly diffeomorphic to an open subset of Cⁿ.
- M/T is a manifold with corners.
- All faces *F* of *M*/*T* are acyclic, i.e. $\tilde{H}^*(F) = 0$. Therefore all *F* are homology discs.

イロン 不良 とくほう 不良 とうほ

Masuda and Panov (2006) proved the following structure results for torus manifolds *M* with $H^{\text{odd}}(M; \mathbb{Z}) = 0$:

- The torus action is locally standard, i.e. each p ∈ M has an invariant neighborhood which is equivariantly diffeomorphic to an open subset of Cⁿ.
- M/T is a manifold with corners.
- All faces *F* of *M*/*T* are acyclic, i.e. $\tilde{H}^*(F) = 0$. Therefore all *F* are homology discs.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Masuda and Panov (2006) proved the following structure results for torus manifolds *M* with $H^{\text{odd}}(M; \mathbb{Z}) = 0$:

- The torus action is locally standard, i.e. each p ∈ M has an invariant neighborhood which is equivariantly diffeomorphic to an open subset of Cⁿ.
- M/T is a manifold with corners.
- All faces *F* of *M*/*T* are acyclic, i.e. $\tilde{H}^*(F) = 0$. Therefore all *F* are homology discs.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Masuda and Panov (2006) proved the following structure results for torus manifolds *M* with $H^{\text{odd}}(M; \mathbb{Z}) = 0$:

- The torus action is locally standard, i.e. each p ∈ M has an invariant neighborhood which is equivariantly diffeomorphic to an open subset of Cⁿ.
- M/T is a manifold with corners.
- All faces F of M/T are acyclic, i.e. H
 ^{*}(F) = 0. Therefore all F are homology discs.

・ロト ・ 理 ト ・ ヨ ト ・

Canonical models

Denote by λ(F) the isotropy group of a generic orbit in F.

• There is an equivariant homeomorphism

 $(M/T \times T)/ \sim \to M,$

where $(x_1, t_1) \sim (x_2, t_2) \Leftrightarrow x_1 = x_2 \land t_1^{-1} t_2 \in \lambda(F(x_1))$

• Therefore there is a principal torus bundle $Z_{M/T} \rightarrow M$, where $Z_{M/T}$ is the moment angle complex associated to M/T:

$$Z_{M/T} = (M/T \times T^{\mathfrak{F}})/\sim,$$

where $(x_1, t_1) \sim (x_2, t_2) \Leftrightarrow x_1 = x_2 \land t_1^{-1} t_2 \in T^{\mathfrak{F}(F(x_1))}$ with $\mathfrak{F}(F) =$ set of facets containing *F*.

・ロト ・ 理 ト ・ ヨ ト ・

Canonical models

- Denote by λ(F) the isotropy group of a generic orbit in F.
- There is an equivariant homeomorphism

 $(M/T \times T)/ \sim \to M,$

where $(x_1, t_1) \sim (x_2, t_2) \Leftrightarrow x_1 = x_2 \land t_1^{-1} t_2 \in \lambda(F(x_1))$

• Therefore there is a principal torus bundle $Z_{M/T} \rightarrow M$, where $Z_{M/T}$ is the moment angle complex associated to M/T:

$$Z_{M/T} = (M/T \times T^{\mathfrak{F}})/\sim,$$

where $(x_1, t_1) \sim (x_2, t_2) \Leftrightarrow x_1 = x_2 \wedge t_1^{-1} t_2 \in T^{\mathfrak{F}(F(x_1))}$ with $\mathfrak{F}(F) =$ set of facets containing F.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Canonical models

- Denote by λ(F) the isotropy group of a generic orbit in F.
- There is an equivariant homeomorphism

$$(M/T \times T)/ \sim \to M,$$

where $(x_1, t_1) \sim (x_2, t_2) \Leftrightarrow x_1 = x_2 \land t_1^{-1} t_2 \in \lambda(F(x_1))$

• Therefore there is a principal torus bundle $Z_{M/T} \rightarrow M$, where $Z_{M/T}$ is the moment angle complex associated to M/T:

$$Z_{M/T} = (M/T \times T^{\mathfrak{F}})/\sim,$$

where $(x_1, t_1) \sim (x_2, t_2) \Leftrightarrow x_1 = x_2 \land t_1^{-1} t_2 \in T^{\mathfrak{F}(F(x_1))}$ with $\mathfrak{F}(F) =$ set of facets containing *F*.

・ロト ・ 理 ト ・ ヨ ト ・

• The face poset $\mathcal{P}(M/T)$ is defined to be the set of all faces of M/T together with the ordering given by inclusion.

Theorem (W.)

Let M_1 and M_2 be two simply connected torus manifolds with $H^{odd}(M_i, \mathbb{Z}) = 0$. Then M_1 and M_2 are homeomorphic if $(\mathcal{P}(M_1/T), \lambda_1)$ and $(\mathcal{P}(M_2/T), \lambda_2)$ are isomorphic.

ヘロト ヘアト ヘビト ヘビト

Proof.

- If all faces of M_i/T, i = 1,2 are contractible, then the statement follows, because every homeomophism of the boundary of a contractible manifold extends to a homeomorphism of the contractible manifold.
- If not all faces are contractible, then one can change the torus action on *M_i* in such a way that all faces become contractible without effecting (*P*(*M_i*/*T*), λ_i).

Corollary

Let M be a torus manifold homotopy equivalent to $\mathbb{C}P^n$. Then M is homeomorphic to $\mathbb{C}P^n$.

Proof.

- If all faces of M_i/T, i = 1,2 are contractible, then the statement follows, because every homeomophism of the boundary of a contractible manifold extends to a homeomorphism of the contractible manifold.
- If not all faces are contractible, then one can change the torus action on *M_i* in such a way that all faces become contractible without effecting (*P*(*M_i*/*T*), *λ_i*).

Corollary

Let M be a torus manifold homotopy equivalent to $\mathbb{C}P^n$. Then M is homeomorphic to $\mathbb{C}P^n$.

Non-negative curvature and torus manifolds	
Main results	Structure Results for torus manifolds
Applications	Proof of the main result

By the structure results for torus manifolds, for the proof of the main theorem it is sufficient to determine the combinatorial type of M/T and then to realize these combinatorial types by a simply connected torus manifold.

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Lemma

Let *M* be a torus manifold with $H^{odd}(M; \mathbb{Q}) = 0$ such that

- M admits an invariant metric of non-negative sectional curvature, or
- M is rationally elliptic.

Then all two-dimensional faces of M/T have at most four vertices.

Lemma

Let *M* be a torus manifold with $H^{odd}(M; \mathbb{Q}) = 0$ such that all two-dimensional faces of *M*/*T* have at most four vertices. Then *M*/*T* is combinatorially equivalent to a product $\prod_i \Sigma^{n_i} \times \prod_i \Delta^{n_i}$, where

• Δ^{n_i} is an n_i -dimensional simplex and Σ^{n_i} is S^{2n_i}/T .

• Note that $Z_{\Sigma^n} = S^{2n}$ and $Z_{\Delta^n} = S^{2n+1}$ and $Z_{Q_1 \times Q_2} = Z_{Q_1} \times Z_{Q_2}$.

• Therefore the theorem follows.

イロン 不良 とくほう 不良 とうほ

Lemma

Let *M* be a torus manifold with $H^{odd}(M; \mathbb{Q}) = 0$ such that all two-dimensional faces of *M*/*T* have at most four vertices. Then *M*/*T* is combinatorially equivalent to a product $\prod_i \Sigma^{n_i} \times \prod_i \Delta^{n_i}$, where

• Δ^{n_i} is an n_i -dimensional simplex and Σ^{n_i} is S^{2n_i}/T .

• Note that $Z_{\Sigma^n} = S^{2n}$ and $Z_{\Delta^n} = S^{2n+1}$ and $Z_{Q_1 \times Q_2} = Z_{Q_1} \times Z_{Q_2}$.

Therefore the theorem follows.

<ロ> (四) (四) (三) (三) (三)

Lemma

Let *M* be a torus manifold with $H^{odd}(M; \mathbb{Q}) = 0$ such that all two-dimensional faces of *M*/*T* have at most four vertices. Then *M*/*T* is combinatorially equivalent to a product $\prod_i \Sigma^{n_i} \times \prod_i \Delta^{n_i}$, where

• Δ^{n_i} is an n_i -dimensional simplex and Σ^{n_i} is S^{2n_i}/T .

- Note that $Z_{\Sigma^n} = S^{2n}$ and $Z_{\Delta^n} = S^{2n+1}$ and $Z_{Q_1 \times Q_2} = Z_{Q_1} \times Z_{Q_2}$.
- Therefore the theorem follows.

イロン 不良 とくほう 不良 とうほ

Non-negative curvature and torus manifolds Main results Main results Structure Results for torus manifolds Proof of the main result

Orbit spaces in dimension 6.

Non-negative curvature and torus manifolds Main results Applications

Rigidity problem

Definition

A polytope *P* is called rigid if the following holds:

- There is a quasitoric manifold M_1 with $M_1/T = P$.
- If M_2 is another quasitoric manifold with $H^*(M_2) \cong H^*(M_1)$ and $M_2/T = Q$, then *P* and *Q* are combinatorially equivalent.

Theorem (Choi, Panov and Suh (2010)) $P = \prod_i \Delta^{n_i}$ is rigid.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Non-negative curvature and torus manifolds Main results Applications

Rigidity problem

Definition

A polytope *P* is called rigid if the following holds:

- There is a quasitoric manifold M_1 with $M_1/T = P$.
- If M_2 is another quasitoric manifold with $H^*(M_2) \cong H^*(M_1)$ and $M_2/T = Q$, then *P* and *Q* are combinatorially equivalent.

Theorem (Choi, Panov and Suh (2010))

 $P = \prod_i \Delta^{n_i}$ is rigid.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Applications

$\prod_i \Sigma^{n_i} \times \prod_i \Delta^{n_i}$ is rigid in the following sense:

Theorem

Let M_1 and M_2 be two simply connected torus manifolds with $H^{odd}(M_i, \mathbb{Z}) = 0$. If M_1 is rationally elliptic and M_2 is rationally homotopy equivalent to M_1 , then $\mathcal{P}(M_1/T)$ and $\mathcal{P}(M_2/T)$ are isomorphic.

Corollary

Let M be a torus manifold homotopy equivalent to $\prod_i \mathbb{C}P^{n_i}$, $n_i > 1$. Then M is homeomorphic to $\prod_i \mathbb{C}P^{n_i}$.

イロン 不得 とくほ とくほ とうほ

Applications

$\prod_i \Sigma^{n_i} \times \prod_i \Delta^{n_i}$ is rigid in the following sense:

Theorem

Let M_1 and M_2 be two simply connected torus manifolds with $H^{odd}(M_i, \mathbb{Z}) = 0$. If M_1 is rationally elliptic and M_2 is rationally homotopy equivalent to M_1 , then $\mathcal{P}(M_1/T)$ and $\mathcal{P}(M_2/T)$ are isomorphic.

Corollary

Let *M* be a torus manifold homotopy equivalent to $\prod_i \mathbb{C}P^{n_i}$, $n_i > 1$. Then *M* is homeomorphic to $\prod_i \mathbb{C}P^{n_i}$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Non-negative curvature and torus manifolds Main results Applications

Thank you!

Michael Wiemeler Non-negatively curved torus manifolds

ヘロト 人間 とくほとくほとう

æ