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Torus manifolds and non-negative curvature

A torus manifold is a 2n-dimensional orientable connected
manifold M together with a action of an n-dimensional
torus such that MT 6= ∅.
A Riemannian manifold M is non-negatively curved if all
triangles in M are not “thinner” than a triangle in the
Euclidean plane
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Goal

Goal
Classify torus manifolds which admit an invariant metric of
non-negative curvature.
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Previous Results

Theorem (Grove and Searle (1994))
A simply connected torus manifold with an invariant metric of
positive sectional curvature is diffeomorphic to S2n or CPn.

Theorem (Hsiang and Kleiner (1989))

A 4-dimensional simply connected Riemannian manifold with
positive sectional curvature and an isometric S1-action is
homeomorphic to S4 or CP2.
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Theorem (Kleiner (1990) and Searle and Yang (1994))

A 4-dimensional simply connected Riemannian manifold with
non-negative sectional curvature and an isometric S1-action is
homeomorphic to S4, CP2, CP2#± CP2 or S2 × S2.

Grove and Wilking (2013) classified 4-dimensional simply
connected Riemannian manifolds with non-negative
curvature and isometric S1-action up to equivariant
diffeomorphism.
In particular, a 4-dimensional simply connected
non-negatively curved torus manifold has at most four fixed
points.
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Main Theorem

Theorem (W.)
Let M be a simply connected torus manifold with
Hodd(M;Q) = 0 such that one of the following two conditions
holds:

M admits an invariant metric of non-negative sectional
curvature.
M is rationally elliptic.

Then M has the same rational cohomology as a quotient of a
free linear torus action on a product of spheres.If, moreover,
H∗(M;Z) is torsion-free or Hodd(M;Z) = 0, then M is
homeomorphic to such a quotient.
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Discusssion of assumptions

Definition
A simply connected topological space X is called rationally
elliptic, if

∞∑
i=0

dim H i(X ;Q) <∞ and
∞∑

i=0

dimπi(X )⊗Q <∞.

Conjecture (Bott)
A non-negatively curved manifold is rationally elliptic.

Theorem (Spindeler (2013))
A simply connected non-negatively curved torus manifold is
rationally elliptic.
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Discussion of assumptions

A rationally elliptic torus manifold M has
χ(M) = χ(MT ) > 0 and therefore Hodd(M;Q) = 0.
Hence, the assumption on the cohomology is not
necessary in the main theorem.

Conjecture
A simply connected non-negatively curved torus manifold is
homeomorphic to a quotient of a free torus action on a product
of spheres.
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Towards a proof of the conjecture

Theorem
The conjecture holds for locally standard torus manifolds M
which satisfy

The intersection of any collection of facets of M/T is
connected or empty, or
dim M = 6.

Proof.
We first use the geometry of M/T to show that all faces
are contractible.
Results of Masuda and Panov imply that Hodd(M;Z) = 0.
Hence, the statement follows from the main theorem.
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Strucure results for torus manifolds

Masuda and Panov (2006) proved the following structure
results for torus manifolds M with Hodd(M;Z) = 0:

The torus action is locally standard, i.e. each p ∈ M has an
invariant neighborhood which is equivariantly
diffeomorphic to an open subset of Cn.
M/T is a manifold with corners.
All faces F of M/T are acyclic, i.e. H̃∗(F ) = 0. Therefore
all F are homology discs.
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Canonical models

Denote by λ(F ) the isotropy group of a generic orbit in F .
There is an equivariant homeomorphism

(M/T × T )/ ∼→ M,

where (x1, t1) ∼ (x2, t2)⇔ x1 = x2 ∧ t−1
1 t2 ∈ λ(F (x1))

Therefore there is a principal torus bundle ZM/T → M,
where ZM/T is the moment angle complex associated to
M/T :

ZM/T = (M/T × T F)/ ∼,

where (x1, t1) ∼ (x2, t2)⇔ x1 = x2 ∧ t−1
1 t2 ∈ T F(F (x1)) with

F(F ) = set of facets containing F .
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Structure results for torus manifolds

The face poset P(M/T ) is defined to be the set of all faces
of M/T together with the ordering given by inclusion.

Theorem (W.)
Let M1 and M2 be two simply connected torus manifolds with
Hodd(Mi ,Z) = 0. Then M1 and M2 are homeomorphic if
(P(M1/T ), λ1) and (P(M2/T ), λ2) are isomorphic.
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Structure results for torus manifolds

Proof.
If all faces of Mi/T , i = 1,2 are contractible, then the
statement follows, because every homeomophism of the
boundary of a contractible manifold extends to a
homeomorphism of the contractible manifold.
If not all faces are contractible, then one can change the
torus action on Mi in such a way that all faces become
contractible without effecting (P(Mi/T ), λi).

Corollary

Let M be a torus manifold homotopy equivalent to CPn. Then
M is homeomorphic to CPn.
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Strategy

By the structure results for torus manifolds, for the proof of the
main theorem it is sufficient to determine the combinatorial type
of M/T and then to realize these combinatorial types by a
simply connected torus manifold.
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Lemmas needed for the proof of the main result.

Lemma

Let M be a torus manifold with Hodd (M;Q) = 0 such that
M admits an invariant metric of non-negative sectional
curvature, or
M is rationally elliptic.

Then all two-dimensional faces of M/T have at most four
vertices.
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Lemmas needed for the proof of the main result.

Lemma

Let M be a torus manifold with Hodd (M;Q) = 0 such that all
two-dimensional faces of M/T have at most four vertices. Then
M/T is combinatorially equivalent to a product

∏
i Σni ×

∏
i ∆ni ,

where
∆ni is an ni -dimensional simplex and Σni is S2ni/T .

Note that ZΣn = S2n and Z∆n = S2n+1 and
ZQ1×Q2 = ZQ1 × ZQ2 .
Therefore the theorem follows.
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Orbit spaces in dimension 6.
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Rigidity problem

Definition
A polytope P is called rigid if the following holds:

There is a quasitoric manifold M1 with M1/T = P.
If M2 is another quasitoric manifold with H∗(M2) ∼= H∗(M1)
and M2/T = Q, then P and Q are combinatorially
equivalent.

Theorem (Choi, Panov and Suh (2010))

P =
∏

i ∆ni is rigid.
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∏
i Σni ×

∏
i ∆ni is rigid in the following sense:

Theorem
Let M1 and M2 be two simply connected torus manifolds with
Hodd(Mi ,Z) = 0. If M1 is rationally elliptic and M2 is rationally
homotopy equivalent to M1, then P(M1/T ) and P(M2/T ) are
isomorphic.

Corollary

Let M be a torus manifold homotopy equivalent to
∏

i CPni ,
ni > 1. Then M is homeomorphic to

∏
i CPni .
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Thank you!

Michael Wiemeler Non-negatively curved torus manifolds


	Non-negative curvature and torus manifolds
	Definitions
	Previous Work

	Main results
	Main results
	Structure Results for torus manifolds
	Proof of the main result

	Applications

