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Abstract. We analyze the strong approximation of the Cox-Ingersoll-Ross (CIR)
process in the regime where the process does not hit zero by a positivity preserving
drift-implicit Euler-type method. As an error criterion we use the p-th mean of the
maximum distance between the CIR process and its approximation on a finite time
interval. We show that under mild assumptions on the parameters of the CIR process
the proposed method attains, up to a logarithmic term, the convergence of order 1/2.
This agrees with the standard rate of the strong convergence for global approximations
of stochastic differential equations (SDEs) with Lipschitz coefficients – despite the fact
that the CIR process has a non-Lipschitz diffusion coefficient.
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1. Introduction and Main Result

In computational finance a lot of effort has been given to the so called Cox-Ingersoll-
Ross process (CIR) recently. The CIR process under consideration has the following
form

dXt = κ(λ−Xt) dt+ θ
√
Xt dWt, X0 = x0, t ≥ 0. (1)

Here W = (Wt)t≥0, is a one-dimensional Brownian motion, κ, λ ≥ 0, θ > 0 and x0 > 0.
It is well known that equation (1) admits a unique strong solution which is non-negative,
see e.g. Chapter 5 in [24]. The CIR process was originally proposed by Cox et al. [9] in
1985 as a model for short-term interest rates. Nowadays, this model is widely used in
financial modeling, e.g. as volatility process in the Heston model [18].

One of the main objectives in mathematical finance is the pricing of (path-dependent)
derivatives. If the asset prices or the interest rates dynamics are modeled by a d-
dimensional SDE with solution (St)t∈[0,T ], then this corresponds to the quadrature prob-
lem

p = EF (S)

where F : C([0, T ],Rd)→ R is the discounted payoff of the derivative. Typically, explicit
formulae for such quantities are unknown and have to be approximated by Monte Carlo
methods that are based on approximate solutions of the stochastic differential equation
on [0, T ]. Here, the knowledge of the global strong convergence rate of the approximation
is important, in particular if the efficient Multi-level Monte-Carlo method [12, 13] is to
be used.
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The strong global approximation of equation (1) has been studied in several articles.
Strong convergence (without a rate or with a logarithmic rate) of several discretization
schemes has been shown in [2, 7, 10, 17, 19]. In [2], a general framework for the analysis
of strong approximation of the CIR process is presented along with extensive simulation
studies. Moreover, the strong approximation of more general Ait-Sahalia-type interest
rate models is analyzed in [21]. However, only in [4] non-logarithmic convergence rates
are obtained. In [4] it is shown that a symmetrized Euler method has strong convergence
order 1/2 under restrictive assumptions on the parameters of the equation, see Section 2.
The difficulties to obtain strong convergence rates for the approximations of the CIR
process are due to its square-root coefficient. Thus the standard theory which relies on
the global Lipschitz assumption does not apply [25, 26].

In this article we focus on the regime where the CIR process does not hit zero, i.e.
where

P(Xt > 0 for t ≥ 0) = 1

an assumption which is often fulfilled in interest rate models. By the Feller test, it is true
if and only if 2κλ ≥ θ2, see e.g. Chapter 5 in [24]. We will not directly do a numerical
analysis for the CIR process, but for a coordinate transformation thereof. We consider
the process Yt =

√
X t, which by Itô’s formula satisfies

dYt =
α

Yt
dt+ βYt dt+ γ dWt, t ≥ 0, Y0 =

√
x0, (2)

with

α =
4κλ− θ2

8
, β = −κ

2
, γ =

θ

2
.

This transformation, known as Lamperti transformation, allows us to shift the non-
linearity from the diffusion coefficient into the drift coefficient. Note that the drift

f(x) =
α

x
+ βx, x > 0,

satisfies for α > 0, β ∈ R the one-sided Lipschitz condition

(x− y)(f(x)− f(y)) ≤ β(x− y)2, x, y > 0.

This property is crucial to control the error propagation of drift-implicit Euler schemes,
see [20, 21].

The drift-implicit Euler method with stepsize ∆ > 0 for equation (2) leads to the
numerical scheme

yk+1 = yk +

(
α

yk+1

+ βyk+1

)
∆ + γ∆kW, k = 0, 1, . . . (3)

with y0 =
√
x0 and

∆kW = W(k+1)∆ −Wk∆, k = 0, 1, . . . .

Recalling that α, γ > 0 and β < 0, equation (3) has the unique positive solution

yk+1 =
yk + γ∆kW

2(1− β∆)
+

√
(yk + γ∆kW )2

4(1− β∆)2
+

α∆

1− β∆
,

which we call drift-implicit square-root Euler method. Transforming back, i.e.

xk = y2
k, k = 0, 1, . . . ,
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gives a strictly positive approximation of the original CIR process. This scheme has
already been suggested in [2], but convergence results have not been established. Using
piecewise linear interpolation, i.e.

xt =

(
k + 1− t

∆

)
xk +

(
t

∆
− k
)
xk+1, t ∈ [k∆, (k + 1)∆],

we obtain a global approximation (xt)t∈[0,T ] of the CIR process on [0, T ]. Exploiting the
structure of SDE (2) we establish the following theorem.

Theorem 1.1. Let 2κλ > θ2, x0 > 0 and T > 0. Then, for all

1 ≤ p <
2κλ

θ2

there exists a constant Kp > 0 such that(
E max
t∈[0,T ]

|Xt − xt|p
)1/p

≤ Kp ·
√
| log(∆)| ·

√
∆,

for all ∆ ∈ (0, 1/2].

Hence we obtain the optimal strong convergence rate for the approximation of SDEs
with Lipschitz coefficients, see [27]. The only price to be paid is the restriction on p that
arises from the need to control the inverse p-th moments of the CIR process, which are
infinite for p ≥ 2κλ

θ2
.

The remainder of this article is structured as follows: In the next section we give a short
overview on discretization schemes for the CIR process, while the proof of Theorem 1.1
is given in Section 3.

2. Numerical Methods for the CIR Process

Discretization schemes for the CIR process were proposed in numerous articles, among
these are [2, 3, 4, 7, 10, 15, 17, 19, 23, 28]. In this short summary we mainly focus on
Euler-type methods.

In [4] the authors study a symmetrized Euler method for the approximation of equa-
tion (1), i.e.

xk+1 = |xk + κ(λ− xk)∆ + θ
√
xk ∆kW | (4)

for k = 0, 1, . . . . Under the assumption

2κλ

θ2
> 1 +

√
8 max

{√
κ

θ

√
16p− 1, 16p− 2

}
they found that

E max
k=0,...,dT/∆e

|Xk∆ − xk|2p ≤ Cp ·∆p,

where the constant Cp > 0 depends only p, κ, λ, θ, x0 and T . As a consequence of Lemma
3.5 in Section 3 the piecewise linear interpolation of this scheme satisfies the same error
estimate with respect to the p-th mean maximum distance as our drift-implicit square-
root Euler scheme. However for the symmetrized Euler scheme the assumptions on the
parameters of the CIR process are clearly more restrictive. Moreover, it is shown in [7]
that the symmetrized Euler scheme converges weakly with rate 1 if 2κλ ≥ 2θ2.
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The truncated Euler scheme

xk+1 = xk + κ(λ− xk) ∆ + θ
√
x+
k ∆kW, k = 0, 1, . . . (5)

was analyzed in [10], while the scheme

xk+1 = xk + κ(λ− xk)∆ + θ
√
|xk|∆kW, k = 0, 1, . . . (6)

was studied in [19]. Both schemes do not preserve positivity, but satisfy

E max
k=0,...,dT/∆e

|Xk∆ − xk|2 −→ 0

for ∆→ 0 without further restrictions on the parameters of the equation. In particular
an application of Theorem 3.1 in [17] yields a logarithmic convergence rate for the Euler
schemes (5) and (6). Moreover, if 2κλ ≥ θ2 it follows from [16] that the Euler schemes
(4) – (6) have a pathwise convergence rate of 1/2− ε for all ε > 0, i.e. we have

1

∆1/2−ε · max
k=0,...,dT/∆e

|Xk∆ − xk| −→ 0 P− a.s.

for ∆→ 0. The asymptotic error distribution of these schemes can be deduced from [29]:
For 2κλ ≥ θ2 it holds that

1√
∆
· max
k=0,...,dT/∆e

|Xk∆ − xk|
L−→ max

t∈[0,T ]

∣∣∣∣ θ2

√
8

Φt

∫ t

0

1

Φs

dBs

∣∣∣∣
for ∆ → 0, where (Bt)t≥0 is a Brownian motion independent of (Wt)t≥0 and (Φt)t≥0 is
given by

Φt = exp

(
−κt− θ2

8

∫ t

0

1

Xs

ds+
θ

2

∫ t

0

1√
Xs

dWs

)
, t ≥ 0.

While no explicit solution of equation (1) is known, the finite dimensional distributions
can be characterized in terms of a non-central chi-square distribution, see e.g. [9]. Thus,
equation (1) can be simulated exactly at a finite number of time points using the Markov
property, see e.g. [8, 14].

However, the algorithms for the exact simulation of the CIR process are strongly prob-
lem dependent: The number of degrees of freedom of the non-central chi-square random
variable, which has to be simulated in each step, is 4κλ/θ2. Thus the computational
cost of the algorithms depends strongly on κ, λ and θ. The same problem, i.e. strong
dependence of the computational cost of the algorithm on the parameters of the equa-
tion, arises also for the exact sampling algorithm introduced in [5], which can be also
applied to equation (1), see [6].

While for the simulation of the CIR process at a single point the exact simulation
methods are useful, discretization schemes remain superior if a full sample path of the
CIR process has to be simulated or if the CIR process is part of a system of stochas-
tic differential equations, see e.g. [19]. Moreover, results on strong convergence rates
for approximations of equation (1) have an interest of its own, since it is one of the
most prominent examples for a stochastic differential equation, whose coefficients do
not satisfy the standard global Lipschitz assumption.
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3. Proof of Theorem 1.1

In the following we will denote by c constants regardless of their value.

3.1. Preliminaries. For our error analysis we need to control the inverse moments of
the CIR process. Since Xt follows a non-central chi-square distribution, we have

EXp
t = (x0 exp(−κt))p

(
2κ

θ2

x0

exp(κt)− 1

)−p
×

Γ(2κλ
θ2

+ p)

Γ(2κλ
θ2

)
1F1

(
−p, 2κλ

θ2
,−2κ

θ2

x0

exp(κt)− 1

)
for p > −2κλ

θ2
, where 1F1 denotes the confluent hypergeometric function, and

EXp
t =∞

else, see e.g. Theorem 3.1 in [22]. Since

1F1(a, b, z) =
Γ(b)

Γ(b− a)
|z|−a(1 +O(|z|−1)), z → −∞,

see formula 13.1.5 on page 504 in [1], it follows for p > −2κλ
θ2

that t 7→ EXp
t is bounded

on [0, T ], i.e.

sup
t∈[0,T ]

EXp
t <∞ for p > −2κλ

θ2
. (7)

Moreover, from Theorem 3.1 [22] or Lemma A.2 in [7] we also have

E exp

(
ε

∫ T

0

X−1
s ds

)
<∞

if and only if 0 ≤ ε ≤ θ2

8

(
2κλ
θ2
− 1
)2
. In general, one can estimate polynomial moments

against exponential moments, since for q, ε > 0 there exists c > 0 such that xq ≤ ceεx

for x ≥ 0. Hence we arrive at

Lemma 3.1. Let 2κλ > θ2, T > 0 and q ≥ 0. It holds

E

(∫ T

0

X−1
s ds

)q
<∞.

Further we need a smoothness result for equation (2):

Lemma 3.2. Let 2κλ > θ2 and T > 0. Then, for all q ≥ 1 we have

E
∣∣Yt − Ys∣∣q ≤ c · |t− s|q/2, for s, t ∈ [0, T ],

E sup
0≤s<t≤T, |t−s|≤∆

|Yt − Ys|q ≤ c · (| log(∆)|∆)q/2 , for ∆ ∈ (0, 1/2],

and

E sup
t∈[0,T ]

|Yt|q <∞.



6 STEFFEN DEREICH, ANDREAS NEUENKIRCH AND LUKASZ SZPRUCH

Proof. For 0 ≤ s ≤ t, we have

Yt − Ys =

∫ t

s

α

Yu
du+

∫ t

s

βYu du+ γ (Wt −Ws).

By the Cauchy-Schwarz inequality one has

|Yt − Ys| ≤ γ|Wt −Ws|+ |t− s|1/2
(∫ T

0

α2

Y 2
u

du

)1/2

+ |t− s|1/2
(∫ T

0

β2Y 2
u du

)1/2

.

Since Yu =
√
Xu the first assertion follows now from (7), Lemma 3.1, Minkowski’s

inequality and the smoothness of Brownian motion in the q-th mean. For the second
assertion in addition we use the well known fact that the modulus of continuity of
Brownian motion satisfies

E sup
0≤s<t≤T, |t−s|≤∆

|Wt −Ws|q ≤ c (| log(∆)|∆)q/2

for ∆ ∈ (0, 1/2], see e.g. [11]. The third assertion follows from

|Yt| ≤ y0 + γ|Wt|+ t1/2
(∫ T

0

α2

Y 2
u

du

)1/2

+ t1/2
(∫ T

0

β2Y 2
u du

)1/2

and
E sup
t∈[0,T ]

|Wt|q <∞.

�

3.2. Error Bound for the implicit Euler Scheme for Y .

Proposition 3.3. Let 2κλ > θ2. For T > 0 and 1 ≤ p < 2κλ
θ2

, there exists c > 0 such
that (

E sup
k=0,...,dT/∆e

|Yk∆ − yk|p
)1/p

≤ c ·
√

∆,

for ∆ ∈ (0, 1/2].

Proof. Without loss of generality we assume that ∆ < T . For the error

ek = Yk∆ − yk
at time point k∆ we have the recursion

e0 = 0

ek+1 = ek +
(
f(Y(k+1)∆)− f(yk+1)

)
∆ + rk

with

rk = −
∫ (k+1)∆

k∆

(f(Y(k+1)∆)− f(Yt)) dt.

Multiplying both sides with ek+1 we obtain

e2
k+1 ≤

1

2
e2
k +

1

2
e2
k+1 + ek+1

(
f(Y(k+1)∆)− f(yk+1)

)
∆ + ek+1rk.

Since
ek+1

(
f(Y(k+1)∆)− f(yk+1)

)
∆ ≤ βe2

k+1∆ ≤ 0
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we have

0 ≤ e2
n ≤ 2

n−1∑
k=0

ek+1rk, n = 1, 2, . . .

and it follows that

sup
k=0,...,dT/∆e

|ek| ≤ 2

dT/∆e−1∑
k=0

|rk|. (8)

Now, it remains to analyze the local error

|rk| =

∣∣∣∣∣
∫ (k+1)∆

k∆

(f(Y(k+1)∆)− f(Yt)) dt

∣∣∣∣∣ .
Note that

f(a)− f(b) = β(a− b) +
α

ab
(b− a)

for a, b > 0. Thus

|f(a)− f(b)| ≤ c

(
1 +

1

ab

)
|a− b|

and we obtain

|rk| ≤ c

∫ (k+1)∆

k∆

(
1 +

1

YtY(k+1)∆

)
|Y(k+1)∆ − Yt| dt.

An application of Hölder’s and Minkowski’s inequality yields(
E|rk|p

)1/p ≤ c

∫ (k+1)∆

k∆

(
1 +

(
E

1

|YtY(k+1)∆|pq
) 1

pq

)(
E|Y(k+1)∆ − Yt|pq

′) 1
pq′ dt

for q, q′ > 1 with 1
q

+ 1
q′

= 1. Now, Lemma 3.2 gives

(E|rk|p)1/p ≤ c ·
√

∆ ·
∫ (k+1)∆

k∆

(
1 +

(
E

1

|YtY(k+1)∆|pq
) 1

pq

)
dt, (9)

for all q > 1. Since

E
1

|YtY(k+1)∆|pq
≤ E

1

|Yt|2pq
+ E

1

|Y(k+1)∆|2pq
,

applying (7) with q > 1 such that pq < 2κλ
θ2

yields

(E|rk|p)1/p ≤ c ·∆3/2, for p <
2κλ

θ2

and using (8) completes the proof of the Proposition. �
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3.3. Moment Bounds for the implicit Euler Scheme for Y . Now we show that
all moments of the approximation scheme are uniformly bounded. Multiplying (3) with
yk+1 yields

y2
k+1 = (α + βy2

k+1)∆ + yk+1(yk + γ∆kW ).

It follows

y2
k+1 ≤ (2α + γ2)∆ + y2

k +Mk (10)

with

Mk = 2γyk∆kW + γ2(∆kW
2 −∆), (11)

and we obtain by induction that

Ey2
k+1 ≤ y2

0 + (2α + γ2)(k + 1)∆ (12)

for all k = 0, 1, . . . , dT/∆e. This allows us to show:

Lemma 3.4. Let 2κλ ≥ θ2 and ∆ > 0, T > 0. Then for all p ≥ 1 we have

E sup
k=0,...,dT/∆e

|yk|p <∞.

Proof. From (10) and (11) we obtain that

sup
k=0,...,dT/∆e

|yk|2 ≤ c+ c sup
k=0,...,dT/∆e

∣∣∣∣∫ k∆

0

mt dWt

∣∣∣∣ (13)

with

mt = 2γy` + 2γ2(Wt −W`∆), t ∈ [`∆, (`+ 1)∆).

Since

sup
t∈[0,dT/∆e∆]

E|mt|p ≤ c+ c sup
`=0,...,dT/∆e

E|y`|p

the Burkholder-Davis-Gundy inequality, i.e.

E sup
s∈[0,t]

∣∣∣∣∫ s

0

mτ dWτ

∣∣∣∣p ≤ c · E
∣∣∣∣∫ t

0

m2
τ dτ

∣∣∣∣p/2 ,
Jensen’s inequality and (13) give that

E sup
k=0,...,dT/∆e

|yk|2p ≤ c+ c sup
`=0,...,dT/∆e

E|y`|p.

So (12) now yields

E sup
k=0,...,dT/∆e

|yk|4 <∞

and the assertion follows from an induction procedure in p. �
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3.4. Error Bound for the drift-implicit square-root Euler Scheme. Now denote
by X the piecewise linear interpolation of the CIR process with stepsize ∆ > 0, i.e.

X t =

(
k + 1− t

∆

)
Xk∆ +

(
t

∆
− k
)
X(k+1)∆, t ∈ [k∆, (k + 1)∆].

Lemma 3.5. Let 2κλ > θ2, T > 0 and ∆ ∈ (0, 1/2]. Then, for all q ≥ 1 we have

E max
t∈[0,T ]

|Xt −X t|q ≤ c · (| log(∆)|∆)q/2 .

Proof. Combining the equality

Xt −Xs = (Yt + Ys)(Yt − Ys)

with the Cauchy-Schwarz inequality and Lemma 3.2 we get

E sup
0≤s<t≤T, |t−s|≤∆

|Xt −Xs|q ≤ c (| log(∆)|∆)q/2 .

Now the assertion follows from

sup
t∈[0,T ]

|Xt −X t| ≤ sup
0≤s<t≤T, |t−s|≤∆

|Xt −Xs|.

�

Due to

sup
t∈[0,T ]

|Xt − xt| ≤ sup
t∈[0,T ]

|Xt −X t|+ sup
k=0,...,dT/∆e

|Xk∆ − y2
k|

and the above Lemma it only remains to control(
E sup
k=0,...,dT/∆e

|Xk∆ − y2
k|p
)1/p

.

Since

E sup
k=0,...,dT/∆e

|Xk∆ − y2
k|p ≤ E

(
sup

k=0,...,dT/∆e
|Yk∆ + yk|p · sup

k=0,...,dT/∆e
|Yk∆ − yk|p

)
,

an application of Hölder’s inequality with ε > 0 such that (1 + ε)p < 2κλ
θ2

and Proposi-
tion 3.3 give

E sup
k=0,...,dT/∆e

|Xk∆ − y2
k|p ≤

(
E sup
k=0,...,dT/∆e

|Yk∆ + yk|p
1+ε
ε

) ε
1+ε ·∆p/2.

It remains to apply Lemma 3.2 and Lemma 3.4 to finish the proof of Theorem 1.1.
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