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tually, the problem is solved of finding, for a given particular solution of the gravity-
Maxwell equations, the exact form of the corresponding nonlinear constitutive equations.
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1. Introduction

Over the past decade, a description of nonlinear classical electrodynamics and
Yang–Mills theory has been considered in the literature [1–3], with the hope of
being able to extend it to a broader framework, including gauge theories of grav-
ity [4] and quantum gravity [5].

1450004-1

In
t. 

J.
 G

eo
m

. M
et

ho
ds

 M
od

. P
hy

s.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 S

te
ve

n 
D

up
lij

 o
n 

10
/0

4/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S0219887814500042


3rd Reading

July 12, 2013 16:15 WSPC/S0219-8878 IJGMMP-J043 1450004

S. Duplij et al.

However, no explicit calculation had been performed, and the formulation
remained too general for the physics community to be able to appreciate its poten-
tialities. For this purpose, as a first step, we here consider the gravitoelectromag-
netism in the weak-field approximation (following, e.g. [6]). Recall the standard
Maxwell equations in SI units [7]

curlE = −∂B
∂t

, div B = 0,

curlH =
∂D
∂t

+ j, div D = ρ,

(1.1)

where E is the electric field, B is the magnetic field, ρ is charge density, j is electric
current density. In the linear case

B = µ0H, D = ε0E. (1.2)

In the nonlinear case these equations can be presented in the form [8]

D = M(I1, I2)B +
1
c2

N(I1, I2)E,

H = N(I1, I2)B − M(I1, I2)E,

(1.3)

where the invariants are (Fµν being the electromagnetic field tensor, with Hodge
dual ∗Fµν)

I1 =
1
2
FµνFµν = B2 − 1

c2
E2, I2 = − c

4
Fµν

∗Fµν = B ·E. (1.4)

Their gravitational analogues in SI are

curlEg = −∂Bg

∂t
, div Bg = 0, (1.5)

curlBg =
1
c2

∂Eg

∂t
+

1
εgc2

jg, div Eg =
1
εg

ρg, (1.6)

where Eg is the static gravitational field (conventional gravity, also called grav-
itoelectric for the sake of analogy), Bg is the gravitomagnetic field, ρg is mass
density, jg is mass current density, G is the gravitational constant, εg is the gravity
permittivity (analog of ε0). Here

εg = − 1
4πG

, µg = −4πG

c2
, (1.7)

are the gravitational permittivity and permeability, respectively.
The main idea is to introduce analogues of H and D to write (1.5) and (1.6) in

the Maxwell form for four fields in SI as

curlEg = −∂Bg

∂t
, div Bg = 0, (1.8)

curlHg =
∂Dg

∂t
+ jg, div Dg = ρg. (1.9)
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In the linear-gravity case

Dg = εgEg, (1.10)

Bg = µgHg, (1.11)

εgµg =
1
c2

. (1.12)

Note now that the linear-gravity case (1.10)–(1.12) corresponds to weak approxi-
mation and some special case of gravitational field configuration. We generalize it
to nonlinear case which can describe other configurations and non-weak fields, as
in (1.3), by

Dg = Mg(Ig1, Ig2)Bg +
1
c2

Ng(Ig1, Ig2)Eg, (1.13)

Hg = Ng(Ig1, Ig2)Bg − Mg(Ig1, Ig2)Eg, (1.14)

where the invariants are

Ig1 = B2
g − 1

c2
E2

g, Ig2 = Bg · Eg. (1.15)

The gravity-Maxwell equations (1.8) and (1.9) together with the nonlinear
gravity-constitutive equations (1.13) and (1.14) can give a nonlinear electrodynam-
ics formulation of gravity (or at least some particular instances of this construction).

2. Linear Gravitoelectromagnetic Waves

The gravity-Maxwell equations for gravitoelectromagnetic waves (far from sources)
are

curlEg = −∂Bg

∂t
, div Bg = 0, (2.1)

curlHg =
∂Dg

∂t
, div Dg = 0, (2.2)

with generic values of permittivity and permeability (1.7). Then

curlEg = −µg
∂Hg

∂t
, div Hg = 0,

curlHg = εg
∂Eg

∂t
, div Eg = 0.

(2.3)

We differentiate the first equation with respect to time: curl ∂
∂tEg = −µg

∂2Hg

∂t2 ⇒
1
εg

curl(curlHg) = −µg
∂2Hg

∂t2 . Since curl(curlHg) = grad(div Hg) − ∆Hg = −∆Hg,

then

∆Hg = εgµg
∂2Hg

∂t2
. (2.4)
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By analogy, from the second equation curl ∂
∂tHg = εg

∂2Eg

∂t2 ⇒ −1
µg

curl(curlEg) =

εg
∂2Eg

∂t2 . Hence we get the wave equation for Eg,

∆Eg = εgµg
∂2Eg

∂t2
. (2.5)

3. Nonlinear Gravitoelectromagnetic Waves

The differences begin with the constitutive equations (1.13) and (1.14). For sim-
plicity put first Mg = 0. Then

Dg =
N

c2
Eg, (3.1)

Bg =
1
N

Hg, (3.2)

where N ≡ Ng(Ig1, Ig2). The Maxwell equations become (hereafter the dots denote
time derivatives)

curlEg = −
(

1
N

)·
Hg − 1

N

∂Hg

∂t
, (3.3)

div
(

1
N

Hg

)
= Hg grad

(
1
N

)
+

1
N

div(Hg) = 0, (3.4)

curlHg =
Ṅ

c2
Eg +

N

c2

∂Eg

∂t
, (3.5)

div
(

N

c2
Eg

)
= Eg grad

(
N

c2

)
+

N

c2
div(Eg) = 0. (3.6)

Take derivative of (3.3) with respect to time and get

curl
∂

∂t
Eg = −

(
1
N

)··
Hg − 2

(
1
N

)·
∂Hg

∂t
− 1

N

∂2Hg

∂t2
. (3.7)

From (3.5), it follows ∂Eg

∂t = c2

N curlHg − Ṅ
N Eg. Then we get

curl

(
c2

N
curlHg − Ṅ

N
Eg

)
= −

(
1
N

)··
Hg − 2

(
1
N

)·
∂Hg

∂t
− 1

N

∂2Hg

∂t2
. (3.8)

The left-hand side here is

curl

(
c2

N
curlHg − Ṅ

N
Eg

)
= grad

c2

N
× curlHg +

c2

N
grad divHg − c2

N
∆Hg

− Ṅ

N
curlEg − grad

Ṅ

N
× Eg. (3.9)
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From (3.4), we get div(Hg) = −NHg grad( 1
N ) �= 0. Thus, the nonlinear analogue

of the wave equation is

grad
c2

N
× curlHg +

c2

N
grad divHg − c2

N
∆Hg − Ṅ

N
curlEg − grad

Ṅ

N
× Eg

= −
(

1
N

)··
Hg − 2

(
1
N

)·
∂Hg

∂t
− 1

N

∂2Hg

∂t2
. (3.10)

Note that if N = const., then we obtain the usual wave equation

∆Hg =
1
c2

∂2Hg

∂t2
. (3.11)

Take now the constitutive equations in the form

Dg = MBg +
N

c2
Eg, (3.12)

Hg = NBg − MEg, (3.13)

where N, M are constants. In absence of sources, the Maxwell equations become

curlEg = −∂Bg

∂t
, div Bg = 0, (3.14)

curlHg =
∂Dg

∂t
, div Dg = 0. (3.15)

If we express the Maxwell equations through Eg and Bg, the second pair of equa-
tions become

curlHg =
∂Dg

∂t
⇒ N curlBg − M curlEg = M

∂Bg

∂t
+

N

c2

∂Eg

∂t
. (3.16)

Since curlEg = −∂Bg

∂t , we get

curlBg =
1
c2

∂Eg

∂t
. (3.17)

The second equation, div Dg = 0, reduces to M div Bg + N
c2 div Eg = 0. Since

div Bg = 0, we get

div Eg = 0. (3.18)

Thus, using constitutive equations with constant M and N we have Maxwell equa-
tions in terms of Bg and Eg, i.e.

curlEg = −∂Bg

∂t
, div Bg = 0, (3.19)

curlBg =
1
c2

∂Eg

∂t
, div Eg = 0. (3.20)

At this stage, we get the wave equations in the standard way. The time derivative
of the first equation yields curl ∂

∂tEg = −∂2Bg

∂t2 ⇒ c2 curl(curlBg) = −∂2Bg

∂t2 . Since
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curl(curlBg) = grad(div Bg) − ∆Bg = −∆Bg, then

∆Bg =
1
c2

∂2Bg

∂t2
. (3.21)

By analogy curl ∂
∂tBg = 1

c2
∂2Eg

∂t2 ⇒ −curl(curlEg) = 1
c2

∂2Eg

∂t2 , and we get the wave
equation for Eg,

∆Eg =
1
c2

∂2Eg

∂t2
. (3.22)

Thus, the gravitoelectromagnetic waves Eg and Bg have speed c and do not depend
on the constants M and N .

4. Waves and Constitutive Equations for Linear
Constitutive Functions

Let us consider the constitutive equations (1.13) and (1.14) as linear functions of
the invariants, i.e.

M = Mg(Ig1, Ig2) = amIg1 + bmIg2, (4.1)

N = Ng(Ig1, Ig2) = c2εg + anIg1 + bnIg2, (4.2)

am, bm, an, bn being some constants. From all the Maxwell equations in material
media, and in the absence of sources one finds curlHg = ∂Dg

∂t , curl(NBg −MEg) =
∂
∂t (MBg + N

c2 Eg), and N curlBg − M curlEg = M
∂Bg

∂t + N
c2

∂Eg

∂t . Since curlEg =

−∂Bg

∂t , from the last equation one gets

curlBg =
1
c2

∂Eg

∂t
. (4.3)

The second equation, div Dg = 0, reduces to div(MBg + N
c2 Eg) = 0, or M div Bg +

N
c2 div Eg = 0. Since div Bg = 0, one gets

div Eg = 0. (4.4)

5. Inverse Problem of Nonlinear Gravitoelectromagnetism

In electrodynamics the direct solution of the Maxwell equations together with the
nonlinear constitutive equations is a non-trivial and complicated task even for sim-
ple systems [1, 2]. In previous sections we presented some very special cases of the
nonlinear functions N and M . Here we formulate the following inverse problem: if
we have some particular solution of the gravity-Maxwell equations (1.8) and (1.9),
can we then find the exact form of the corresponding nonlinear gravity-constitutive
equations (1.13) and (1.14)?

It is natural to consider the case of plane gravitational waves, when the fields
have only one space coordinate. We will show that even in this case one can have
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a non-trivial nonlinearity. Let us choose Eg and Bg mutually orthogonal and per-
pendicular to the direction of motion

Eg =




E

0

0


, Bg =




0

0

B


, (5.1)

where E ≡ E(t, y), B ≡ B(t, y). Now the invariants (1.15) become

Ig1 = B2 − 1
c2

E2 ≡ I, (5.2)

Ig2 = 0. (5.3)

The use of the nonlinear gravity-constitutive equations (1.13) and (1.14) gives for
the other fields

Dg =




1
c2

NE

0

MB


, Hg =



−ME

0

NB


, (5.4)

where N ≡ N(I), M ≡ M(I) are the sought for gravity-constitutive functions. They
depend on I only, because of Lorentz invariance (see [1, 2]). Inserting the fields (5.1)
and (5.4) into the gravity-Maxwell equations (1.8) and (1.9) without sources gives
us three equations (hereafter, a prime with the corresponding subscript denotes
the first partial derivative with respect to the variable in the subscript, while dot
denotes time derivative)

E′
y = Ḃ, (5.5)

(NB)′y =
1
c2

(NE )·, (5.6)

(ME )′y = (MB)·. (5.7)

Now we take into account that the gravity-constitutive functions N, M depend
only on the invariant I and present (5.6) and (5.7) as the differential equations for
them

N ′
I

(
BI ′

y − 1
c2

Eİ

)
+ N

(
B′

y − 1
c2

Ė

)
= 0, (5.8)

M ′
I

(
EI ′

y − Bİ
)

= 0, (5.9)

where we have exploited the identities

N ′
y = N ′

II
′
y, M ′

y = M ′
II

′
y ,

Ṅ = N ′
I İ , Ṁ = M ′

I İ .
(5.10)

The Eq. (5.9) can be immediately solved by

M(I) =

{
M0 = const., if EI ′

y �= Bİ,

arbitrary, if EI ′
y = Bİ.

(5.11)
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The Eq. (5.8) can be solved if

λ ≡ (B′
y − Ė

c2 )

(BI ′
y − Eİ

c2 )
, (5.12)

depends only on I, which is a very special case. One then has the differential
equation

N ′
I + λ(I)N = 0 (5.13)

and its solution is

N(I) = N0e−
R

λ(I)dI . (5.14)

Otherwise, by using the expressions for I ′y and İ from (5.2), i.e.

I ′y = 2BB ′
y − 2EE ′

y

c2
, İ = 2BḂ − 2EĖ

c2
, (5.15)

we obtain

2N ′
I

(
B2B′

y +
1
c4

E2Ė − 2
c2

EBE ′
y

)
+ N

(
B′

y − 1
c2

Ė

)
= 0, (5.16)

where the sum of terms in brackets is not a function of I, in general.
Usually, in the wave solutions the dependence of fields on frequency ω and wave

number k is the same, and therefore we can consider the concrete choice

E(t, y) = f(εωt + ky) ≡ f(X(t, y)), B(t, y) = g(εωt + ky) ≡ g(X(t, y)), (5.17)

where ε ≡ ±1, with f and g arbitrary smooth nonvanishing functions. Bearing in
mind that

E′
y = f ′

XX ′
y = kf ′

X , B′
y = g′XX ′

y = kg′X ,

Ė = f ′
XẊ = εωf ′

X , Ḃ = g′XẊ = εωg′X ,

our Eq. (5.5) yields

kf ′X = εωg′X . (5.18)

Therefore,

g(X) =
k

εω
f(X) + α, (5.19)

where α is a constant, so that both E and B can be expressed through one function
only, i.e. f , and the invariant I reads eventually as

I =
1
ω2

(
k2 − ω2

c2

)
f2 + 2

k

εω
αf + α2. (5.20)

The equations for the gravity-constitutive functions take therefore the form

N ′
I

[
2I

(
k2 − ω2

c2

)
+ 2

ω2

c2
α2

]
+ N

(
k2 − ω2

c2

)
= 0, (5.21)

M ′
If

′
X

[
2f

εω

(
k2 − ω2

c2

)
+ 2kα

]
α = 0, (5.22)
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having exploited the identities

gI ′
y − fİ

c2
=

(
gf ′

y − fḟ

c2

)[
2f

ω2

(
k2 − ω2

c2

)
+ 2

k

εω
α

]
, (5.23)

gf ′
y − fḟ

c2
=

f ′
X

εω

[
f

(
k2 − ω2

c2

)
+ kεωα

]
, (5.24)

and, after some cancellations,[
f

(
k2 − ω2

c2

)
+ kεωα

][
2f

ω2

(
k2 − ω2

c2

)
+ 2

k

εω
α

]

= 2
(

k2 − ω2

c2

)
I + 2

ω2

c2
α2, (5.25)

while

fI ′
y − gİ = (ff ′

y − gḟ)
[
2f

ω2

(
k2 − ω2

c2

)
+ 2

k

εω
α

]
, (5.26)

ff ′
y − gḟ = f ′

X(kf − εωg) = −εωf ′
Xα. (5.27)

The results of our analysis now depend on whether or not α vanishes. Indeed,
if α = 0, M is arbitrary and hence we obtain the equation(

k2 − ω2

c2

)
(2IN ′

I + N) = 0, (5.28)

which implies that either the dispersion relation

k2 − ω2

c2
= 0 (5.29)

holds, with N kept arbitrary, or such a dispersion relation is not fulfilled, while N

is found from the differential equation

2IN ′
I + N = 0, (5.30)

which is solved by

N(I) =
N0√

I
. (5.31)

By contrast, if α does not vanish, M equals a constant M0, while N solves the
more complicated Eq. (5.21). At this stage, to be consistent with the dependence
of N on I only, we have to require again that the dispersion relation (5.29) should
hold, jointly with N ′

I = 0, which implies the constancy of N : N = N0.
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6. Concluding Remarks

We have brought “down to earth” the general program of considering nonlinear con-
stitutive equations for gravitoelectromagnetism, by solving the problem of finding,
for a given solution of the gravity-Maxwell equations, the exact form of nonlinear
constitutive equations. We look forward to being able to construct other relevant
examples, as well as being able to re-express our models in the language of differ-
ential forms, which turned out to be very powerful for general relativity [9–11].
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