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Abstract.  In this paper, the module-algebra structures of U,(sl(m + 1)) =
H(es, fi,kiﬂ)lgigm on the coordinate algebra of quantum vector spaces are
studied. We denote the coordinate algebra of quantum mn-dimensional vector
space by Ag(n). As our main result, first, we give a complete classification of
module-algebra structures of Ug(sl(m + 1)) on A4(3) when k; € Aut L(A44(3))
as actions on A,(3) for i =1,--- ,m and m > 2 and with the same method, on
A,4(2), all module-algebra structures of U,(sl(m + 1)) are characterized. Lastly,
the module-algebra structures of U,(sl(m + 1)) on A,(n) are obtained for any
n>4.
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1. Introduction

Quantum groups were introduced independently by Drinfeld in [7] and Jimbo in
[16] which opened the floodgates for applications of Hopf algebras to physics,
invariant theory for knots and links, and representations closely connected to Lie
theory. Some basic references for quantum groups are [20] and [12]. Moreover,
the actions of Hopf algebras [21] and their generalizations (see, e.g., [6]) play an
important role in quantum group theory [18, 19] and in its various applications
in physics [4]. However, it was long believed that the quantum plane [20] admits
only one special symmetry [22] inspired by the action of U,(sl(2)) (in other words
the U,(sl(2))-module algebra structure [18]). In [15], the coordinate algebra of
quantum n-dimensional vector space is equipped with a special U,(sl(m + 1))-
module algebra structure via a certain ¢-differential operator realization. Then it
was shown [8], that the U,(s/(2))-module algebra structure on the quantum plane
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is much richer and consists of 8 nonisomorphic cases [8, 9]. The full classification
was given in terms of a so-called weight which was introduced for this purpose. Its
introduction follows from the general form of an automorphism of the quantum
plane [1]. Some properties of the actions of commutative Hopf algebras on quantum
polynomials were studied in [2, 3]. In addition, there are also many papers studying
Hopf algebras acting on some special algebras, for example, commutative domains,
fields, filtered regular algebras and so on, see [5], [10] and [11].

Following [12], we consider here the actions of the quantum universal en-
veloping algebra U, (sl(m+1)) on the coordinate algebra of quantum n-dimensional
vector space A,(n). We use the method of weights [8, 9] to classify some actions
in terms of action matrices which are introduced. We then present the Dynkin
diagrams for the actions thus obtained and find their classical limit. A special
case discussed in this paper was included in [15].

This work is organized as follows. In Section 2, we give the necessary
preliminary information and notation, as well as proving an important lemma
about actions on generators and any elements of A,(n) . In Section 3, we study
U,(sl(2))-module algebra structures on A,(n) using the method of weights [8, 9].
The 0-th homogeneous component and 1-st homogeneous component of the action
matrix are presented. In Section 4, we study the concrete actions of U,(sl(2))
on A,(3) and characterize all module algebra structures of U,(sl(3)) on A,(3)
which make some preparations on the classification of module algebra structures
of Uy(sl(m+1)) on A,(3). In Section 5, with the results of Section 4, all module-
algebra structures of U,(sl(m + 1)) on A,(3) when m > 2 are presented. And,
with the same method, all module-algebra structures of U, (sl(m+1)) on A,(2) are
given. Section 6 is devoted to study the module-algebra structures of U,(sl(m+1))
on A,(n) for n > 4.

In this paper, all algebras, modules and vector spaces are over the field C
of complex numbers.

2. Preliminaries

Let H be a Hopf algebra whose comultiplication is A, counit is ¢ and antipode is
S and let A be a unital algebra with unit 1. We use the Sweedler notation, such

that A(R) =", h; @ h; .

Definition 2.1. By a structure of an H-module algebra on A, we mean a
homomorphism 7 : H — EndcA such that:
(1) w(h)(ab) = >, w(h;)(a)m(h;)(b) forall h€ H, a, b€ A,
(2) w(h)(1) =e(h)1 for all h € H.
The structures m;, mo are said to be isomorphic, if there exists an automor-

phism ) of A such that ¢m; (k)Y = mo(h) for all h € H.

Throughout this paper, we assume that ¢ € C\{0} and ¢ is not a root of
unity. We use the g-integers which were introduced by Heine [14] and are called
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the Heine numbers or g-deformed numbers [17] (for any integer n > 0)

=14+qg+---+qg" "

qg—1

First, we will introduce the definition of Uy (sl(m + 1)).

Definition 2.2.  The quantum universal enveloping algebra U, (sl(m+1)) (m >
1) as the algebra is generated by (e;, fi, ki, k; ') 1<i<m with the relations

kiki ' =k =1, kik; = Kk, (2.1)
k:l-ejki_l = q“”'ej, k?lf]l{fz_l = q_aijfj, (22)
ki — kit
les, f5] = %W’ (2.3)
€i6j = €j€i and foj = fjfi) lf aij = 0, (24)
lf Clij = —1,
2 -1 2 _
ejej — (q+q eieje; +eje; =0, (2.5)
fofi—a+a O fififi+ 112 =0, (2.6)
where for any i, j € {1,2,--- ,m}, a;; =2 and a;; =0, if [i — j| > 1; a;; = —1,
if |i—j] =1.

The standard Hopf algebra structure on U,(sl(m + 1)) is determined by

Ale) =1®e + e ® ky, (2.7)
Alf)=k'® fi+ fi®l, (2.8)
A(k;) =k @ k;, AR =k 0k, (2.9)
(ki) =e(k;h) =1, (2.10)
e(e;) =e(fi) =0, (2.11)
S(e:) = —eik; ', S(fi) = —kifi, (2.12)
S(ky) = k1, S(kiY) = ki, (2.13)

for i € {1,2,---,m}. We will use the notation U,(sl(m+1)) = H(e;, fi, k) 1<i<m -
Let us introduce the definition of the coordinate algebra of quantum n-
dimensional vector space (see [13, 2]).

Definition 2.3.  The coordinate algebra of quantum n-dimensional vector space,
denoted by A,(n), is a unital algebra generated by n generators z; for i €
{1,--- ,n} satisfying the relations

x;x; = qujx; for any i > j. (2.14)

The coordinate algebra of quantum n-dimensional vector space A,(n) is
also called a quantum n-space. If n =2, A,(2) is also called a quantum plane
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(see [18]). In this case, Duplij and Sinel’shchikov studied the classification of
U,(sl(2))-module algebra structures on A,(2) in [8].

Next, we consider the automorphisms of A,(n). Obviously, ¢ : A,(n) —
A,(n) is an automorphism defined as follows:

@Y T = Q;x;,

with a; € C\ {0} for ¢ € {1,--- ,n}. In addition, all such automorphisms form
a subgroup of the automorphism group of A,(n). We denote this subgroup by
Aut L(A,(n)). It should be pointed out that there are other automorphisms of
A,(3). For example, o : A,(3) — A,(3) given by

o(x1) = aqry, o(xg) = gy + Prixs, o(xs) = azrs,

with f and «; € C\{0} for ¢ € {1,2,3} is an automorphism of A,(3). Throughout
this paper, we restrict the actions of k; in U,(sl(m+1)) on A,(n) to Aut L(A,(n))
for all m and n.

Finally, we present a lemma which will be useful for checking the module-
algebra structures of U,(sl(m + 1)) on A,(n).

Lemma 2.4.  Given the module-algebra actions of the generators k;, e;, f; of
U,(sl(m + 1)) on A,(n) for i € {1,---,m}, if an element in the ideal formed
from the relations (2.1)-(2.6) of U,(sl(m + 1)) acting on the generators x; of
A,(n) produces zero for i € {1,--- ,n}, then this element acting on any v € Ay(n)
produces zero.

Proof. Here, we only prove that, if
e2eiy1(x) — (¢ + g Heeirrei(x) + eip1€?(x) = 0 and
eieir1(y) — (g +q Meeipie(y) + eipaef(y) = 0, then
e2eii1(zy) — (¢ + g Heseirei(xy) + eip1€?(xy) = 0 where
x,y are both generators of A,(n). The other relations can be proved similarly.
eieir1(vy) — (q+ ¢ Heseirrei(@y) + eied (vy)

= el (e (y) + i (@)kia1 () — (¢ + ¢ eseira (zes(y) + es(2)kiy))
+eiprei(re(y) + ei(r)ki(y))
= ei(weieir1(y) +ei(@)kieir1(y) + eia()eikiia(y) + eieipa (2)kikivi(y))
—(g+ g Nei(zeie(y) + €1 (@)kivie(y) + ei(x)eipki(y) + eivres(a)
kipaki(y) + eipa(zef(y) + ei(@)kies(y) + ex(x)eski(y) + e (2)k (y))
= (zefeir1(y) — (g + ¢ Hreesei(y) + veiel(y) + (efe (@) — (g+4q7")
+

-eiejei(T) eje?(x))k?kiﬂ(y) + (ei(x)kieieir1(y) + ei(x)ekieiri (y)
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—(g+ g ei(@)eeiki(y)) + (€ (2)kei(y) — (@ + ¢ )ef(x)
kieiki(y) + € (v)eiiki (y)) + (eir1(v)efkipa () — (g + ¢ e (2)
-eikitiei(y) + eir1(x) 1+1ef(y)) + (eieir1(z)kieikit1(y) + eieipr(v)

(y) = (¢ + ¢ Deieipa(@)kikirey) + (—(q + ¢ Heipres(x)
-eikip1ki(y) + eiprei(x)kivikiei(y) + eirei(@)kipreiki(y))
+(=(g+ g e kieirrei(y) + ex(w)erkies(y) + ex(w)esyreik(y))
= 0.

-€ikikiv1(y

Thus, the lemma holds. [ |

Therefore, by Lemma 2.4, in checking whether the relations of U, (sl(m+1)),
acting on any v € A,(n), produce zero, we only need to check whether they produce
zero when acting on the generators xy, ---, x,.

3. Properties of U,(sl(2))-module algebras on A,(n)

In this section, let us assume that U,(sl(2)) is generated by k, e, f. Then, we will
study the module-algebra structures of U,(sl(2)) on A,(n) when k € Aut L(A,(n))
and n > 3.

By the definition of module algebra, it is easy to see that any action of
U,(sl(2)) on A,(n) is determined by the following 3 x n matrix with entries from
A, (n):

s k(xy) k(za) -+ k(x,)
M= | e(x1) e(xs) -+ elz,) |, (3.15)
fla1)  f(x2) f(@n)

which is called the action matriz (see [8]). Given a U,(sl(2))-module algebra
structure on A,(n), obviously, the action of k& determines an automorphism of
A,(n). Therefore, by the assumption k& € Aut L(A,(n)), we can set

de
M, ef [ k(xy) k(xe) -+ k(xy,) } = [ 1T] Qg -+ QT } ,
where «; for i € {1,--- ,n} are non-zero complex numbers. So, every monomial
ety oapm € Ay(n) is an eigenvector for k£ and the associated eigenvalue
aytay? - is called the weight of this monomial, which will be written as
wt(xay? - xin) = o an? - alt.
Set
def | e(xy) e(za) -+ e(xy,) }
M, ™ . 3.16
VA (310

Then, we have

wt(M.) def { wt(e(ry)) wt(e(rz)) wt(e(zy,)) }

. Far Fas o oy
¢ 2oy ¢ oy o ¢ an |
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where the relation A = (a;;) > B = (b;;) means that for every pair of indices 7, j
such that both a;; and b;; are nonzero, one has a;; = b;;.
In the following, we denote the i-th homogeneous component of M, whose

elements are just the i-th homogeneous components of the corresponding entries
of M, by (M);. Set

0 0 - 0
(M)o= | a1 ay -~ ay
bi by oo by |,
Then, we obtain
0 0 - 0
wt((M)o)>a | ¢on Pag -+ oy (3.17)
¢ Pon q oy e g o |
00 - 0
x| 11 - 1
11 -1

0

An application of e and f to (2.14) gives the following equalities

zie(z;) — qoue(z))x; = quie(x;) — aje(z;)x; for i > j, (3.18)
flxi)z; — qozj_lxjf(xi) =qf(xj)zr; — ozi_lxif(a:j) for i > j. (3.19)

After projecting the equalities above to (A,(n)):, we obtain
a;j(l — goy)z; = a;(q — aj)z; for i > j;
bi(1 —qa; ')z = bj(g — oy Yy for i > j.
Therefore, for ¢ > j, we obtain
a; #0=a; =q ", a; #0= a; =q, (3.20)
b #0 = a; =g, b 0=, =q . (3.21)
Then, we have for any j € {1,--- ,n},
a; #0=ca;=q " for V i>j «ay=¢q for V i<}, (3.22)
b #0=a;=q ' for V i>j, ay=gq for ¥V i<j. (3.23)

By (3.17) and using the above equalities, we get

-2 —1 —1
a’j%0:>a1:Qa"'7aj—1ZQ7aj:q y Qi1 =¢q 0,0 =(q 7,

b 0= a1 =¢q, 0, 1=¢0;=¢ a1 =q 0, =4

So, there are 2n + 1 cases for 0-th homogeneous component of the action matrix
as follows: a; #0, a; =0 for i # j and all b, =0 for any j € {1,--- ,n}; b; #0,
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b =0 for i # j and all a; =0 for any j € {1,--- ,n}; a; =0 and b; =0 for any
jed{l,--- ,n}.

For the 1-st homogeneous component, since wt(e(z;)) = ¢*wt(x;) # wt(z;),
we have (e(x;)); = ZS# ¢ists for some ¢ € C. Similarly, we set (f(z;)); =
ZS# d;sxs for some d;, € C.

After projecting Equations (3.18)-(3.19) to (A,(n))2, we can obtain, for any

1>7,
Z(q — qay)cjsrszi + (1 — qag)ejins + Z(l — Q;)cjsiTy =
s#j 8>1
s<1
Z(C]Q — ) CisTs Ty + (g — CVj)Qﬁ? + Z(C] — Q) CisTTs,
s<j s#4
5$>7
Z(l — ¢’ disrsr; + (1 — qaj t)dyaf + Z(q — qa; ) disxz, =
s<jJ s>7
SF1
q—qo; Vdisxox; + (¢ — o Hda? + ¢ — o Ndjxixs.
4 J [ Jve ? J
s<1 §>1
oy

Therefore, we have

cjis#0 (s<i, s#j)=a;=1, ¢js=0 for all s>,
cji%0:>ai:q’1, cjs =0 for any s #1,

cjs # 0 (s >14) = a; = q 2, cjs =0 for all s <i,

s 20 (s<j)=a;=¢* cis=0 for all s> j

cij #0=a; =q, ¢;=0 for all s# j,

Cis #0 (s>, s#i)=>a;=1, ¢;=0 for all s<j,
dis # 0 (s<j):>aj:q2, dis =0 for all s> j,

dij #0=a; =q, diz =0 for all s+# j,

dis #0 (s>7j, s#i)=>a;=1, dis=0 for all s<j,
dis #0 (s<i, s#j)=a =1, dj;=0 for all s>,
dji%0=>ai:q_l, d;js =0 for all s#1,

dis #0 (s>i)=a;=q 2% djs=0 for all s<i.

Therefore, we have for any 7 € {1,--- ,n},

Cis 70 (s>7) = ag=1,,051=La1=q7% -,
a1 =q s =q L ag =1, a, =1,

cis#0 (s<j) = ar=1, a1 =10, =q,as1=¢, -,
aj_lqu,ajH:l,---,an:l,

dis 20 (s>7) = ar=1,---,a; 1=l aj,1=q7% -,
a1 =q L as=q g =1, a, =1,

dis 70 (s<j) = ar=1,- a5 1 =10, =qam1 =7,

2
Q;_1 =4(g Jaj—‘rl:]-?"' Jan:]--
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2 2 2
Since wit((Mef)1) = qq_anjl qq_QO:jZ qq_%; ; we obtain for any
jE{l,---,n},
cis 20 (s>j) = a=1,, 05 1=1La;=q¢" aj1=q7%" ",
A1 =q oy =q L ag =1, =1,
cis 0 (s<j) = =1, 05 1=10,=qam =7, ",
aj,lqu,aj:q’l,ajH:1,~~~,anzl,
dis #0 (s>7) = ar=1,---,a;1=1a; =q a1 =q %,
a1 =q s =q g =1, =1,
djis #0 (s <j) = 051:17"'agsflzlaas:%aﬁl:qa”'7
aj_1:q2,aj:q3,ozj+1:1,---,oznzl.

By the above discussion, we have only the following possibilities for the 1-st
homogeneous component: c¢;; # 0 for some ¢ # j, other ¢y equal to zero and all
ds = 0; d;j # 0 for some @ # j, other dy equal to zero and all ¢y = 0; ¢jy1,; # 0,
d;j+1 # 0 for some j € {1,--- ,n}.

Obviously, if both the 0-th homogeneous component and the 1-st homoge-
neous component of M.y are nonzero, there are no possibilities except when n = 3.
For n = 3, there are only two possibilities (aa, di3, be, ¢z € C\{0}):

0 ax O 0 00 B L, o
([0 0 O:|0’|:d13 0 OL>:>O‘1—Q»@2—C] ,o3 =q -, (3.24)

0 0 0 0 0 C31 . 9 4
(325128 5])=mmsmmmrimmrs o

Moreover, there are no possibilities when the 0-th homogeneous component
of M.y is 0 and the 1-st homogeneous component of M,y have only one nonzero
position. The reasons are the same as those in [8].

Therefore, by the above discussion, we can obtain the following theorem.

Theorem 3.1.  Given a module algebra structure of U,(sl(2)) on A,(n). The 0-
th homogeneous component and 1-st homogeneous component of the action matriz

must be one of the following cases:
Case (3.24), Case (3.25) when n = 3,

( 8 8 C(L)i 0] {8 8 8]1),a,-;«é()foranyz'e{l,--%},
(_88 1? ] [ » 8}1)7bi%OforanyiE{lw-N};

(8 8 80’8 8 d(jﬂ CjBLj 8]1):Cj+1,j7dj,j+1#0f07°
any j €{1,---,n—1},

(8 8 8_0’_8 8 8}1) for any n > 3.
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4. General structure of U,(sl(m + 1))-module algebras on A,(3)

In this section, we study the concrete actions of U,(sl(2)) on A,(3) and module

algebra structures of U,(sl(3)) on A,(3) which make some preparations on the

classification of module algebra structures of U,(sl(m + 1)) on A,(3) for m > 2.
By Theorem 3.1, we only need to consider 11 possibilities

(‘000} [000}) ([aloo} [000})
:0000’ 00 0],/ 0 00],7L000},)’
0 0 O 0 00 0 00 0 ¢ O
(Lol foaal)(8os] [a 5al)
0 00 0 0 c3 0 ay O 0 00
(ooolloa s])(o5e] [000])
0 ay O 0 00 0 0 O 0 00
(o5l ool) (o3 RN
0 0 0 c31 0 0 as 0 0O
realfies ) (ayallaa)

(_1?1 8 8] {8 8 8}1) where a; # 0, b; # 0 for i = 1,2,3, and ¢o1, dyo,

C32, d23, dlg, C31 are not zero.
For convenience, we denote these 11 kinds of cases in the above order by
(%1), -+, (%11) respectively.

Lemma 4.1.  For Case (*1), all U,(sl(2))-module algebra structures on A,(3)
are as follows

k(zq) = *x1, k(z2) = £20,  k(x3) = £a3, (4.26)
e(r1) = e(w2) = e(ws) = f(21) = f(x2) = f(23) = 0. (4.27)
Proof.  The proof is similar to that in Theorem 4.2 in [8]. n

Lemma 4.2.  For Case (x3), all U,(sl(2))-module algebra structures on A,(3)
are

k(x1) = ¢ w1, k(xo) = ¢ oy,  k(w3) = q 'as, (4.28)

e(r1) =ay, e(ry) =0, e(xz)=0, (4.29)

f(x1) = —qay'ad, (4.30)

fw2) = —qay w12y + §207] + Loy + &3, (4.31)

fxs) = —qai 'mas 4+ &uoal + (14 q + ¢*)&ades — ¢ &y, (4.32)

where a; € C\{0}, and &, &, &, & € C.

. 1
Proof.  Since wt(M,f) > [ o 3_3 3_3 } and a; = ¢7%, ap = ¢, a3 =

q~ ', we must have e(z1) = a1, e(xs) =0, e(x3) = 0. For the same reason, f(z1),
f(z2), f(x3) must be of the following forms:

(1) = w2+ Uus® 1 03 +U3T1 T2+ UsT ToT3+UsToTs +UTATS + U LT3+ U TS + UYL,
f(12) = V12129 + Vo1 T3 + V3T2T3 + V4TITS + V5T + VeTH,
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f(z3) = wiz129 + Wz 23 + wﬂﬂg + wyrizs + wsxs + wﬁng,

where these coefficients are in C. Then, we consider (3.18)-(3.19). Taking e(x1),
e(xa), e(xs), f(x1), f(xe), f(xs) into the six equalities, and comparing the
coefficients, we obtain

f('rl) = Ull'%,
f(xe) = uymqme + 03$2x§ + 715:53 + vgxg,

f(z3) = upryws + nggxg (14 q+ ¢*)vszizs — q_lvgxg.

Using ef(u) — fe(u) = +( u), for any u € {x1, 79, 73}, we get u; = —qa;*. So,

the proof is finished. [ |

Lemma 4.3.  For Case (x3), all U,(sl(2))-module algebra structures on A,(3)
are as follows

k(z1) = qr1, k(zo) = qua,  k(x3) = ¢°s, (4.33)
e(r1) = —gby w125 + mates — quoat + (1 + g + ¢*)psar a3, (4.34)
6(5(72> = —qbgll’gl’;g + MQJ:%IQ + Mgl’g + /11425?, (435)
e(rs) = —qby '3, (4.36)
f(xl) - 07 f(l'g) = 07 f(l'f%) - b37 (437)
where by € C\{0}, and py, p2, pg pg € C.
Proof. The proof is similar to that in Lemma 4.2. [ |

Lemma 4.4.  For Case (x4), to satisfy (3.18)-(3.19), the actions of k, e, f
must be of the following form

k(xl) = qry, k(@) = q_1$2, k(l‘3) = T3,

_ m+3_m _.p m+3_m_m+3
e(ry) = g U p oy Tl + E Ay} P ah ry T,
m>0,p>0 m=0
p#m~+3
m-+42 m+1
e(xe) = co1m1 + E by pT] ¥,
m>0,p>0
p#m+3
I 2 +1 2 4
E CnpT Pl + g O A
m>0,p>0 m>0
p#Em+3
m+1 m+2 p m+1 m+2 m+1
f([El) = d12I2+ E d pl’l 2 + E hml’l 2 s
m>0,p>0 m>0
pFm+1
_ m m+3
f(x2) = E mpT ' Ty T,
m>0,p>0
p#Em~+1
m, . m+2 p-‘rl m, m+2 m+2
E  GmpT T + E gmTy Ty ;
m>0,p>0 m>0

pFm+1
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. . a m 1
where co1,d12 € C\{0}, the other coefficients are in C and b:; = —%,
bmp _ P NmA3-p)g  dy . (2mAd)g  dmp . (mApt3)g dmp _ _ (m+p+3)q
Cmp (2m+2)q 7oem (2m+2)q 7 emp @t (m+1-p)g’ gmp q(2m+2)q ’
hm _ _ (2m+4)q
gm — q@2mA42)g "

In particular, there are the following U,(sl(2))-module algebra structures on

4,(3)
k(z1) = qu1, k(zo) = ¢ ‘2o, k(x3) = 3, (4.38)
e(x1) =0, e(x2) = canzr, efxs) =0, (4.39)
f(xl) = 02_11,1‘2, f(‘r2> = O’ f(ZL’3) = 07 (440)

where ¢y € C\{0}.

Proof. In this case, we get a; = q, as = ¢~1, a3 = 1. Therefore, we obtain

3 2
wt(Mey) < {qq_l q% qq_2:|. Since wt(e(r1)) = ¢, wt(e(rz)) = ¢ and

wt(e(zz)) = ¢*, using (3.18) and by some computations, we can obtain e(x),
e(rz) and e(x3) in the forms appearing in the lemma. Similarly, we also can
determine the forms of f(z1), f(x2) and f(z3) in the lemma.

Note that (4.38)-(4.40) determine the module-algebra structures of U,(sl(2))
on A,(3). n

Lemma 4.5.  For Case (x3), to satisfy (3.18)-(3.19), the actions of U,(sl(2))
on A,(3) must be of the following form

k(x ) =1z, k(z2) =qre, k(v3)=q ‘us,

g2 2 m+2
— E AmpT) T3l + E R e N

m>0,p>0 m>0
p#m+1
o 3+m m
§ bm,p% 2 T3,
m>0,p>0
p#m+1
_ m-+2 m+1 m+1 m+2 m+1
e(z3) = cgomg + E Con p T} + g Cm Ty )
m>0,p>0 m>0
pFm—+1
p+1_m_m+2 m+4 _m_ m+2
E dmpxl Ty T+ E dmxl xhxy e
m>0,p>0 m>0
p#m—+3
_ m—+1,_m-+2
f(zg) = dogxs + g Cmplixy Ay e,
m>0,p>0
p£m+3
m_.m+3 m+3,_.m_ m+3
E G pT1T5 T +§ Iy wy ey,
m>0,p>0 m>0
pF#m—+3
. . Am.,p (2m+-2),4
where csa, daz € C\{0}, other coefficients are in C and 2 = p(mopti),
dm,p — _q(2m+2)4 am _q@2m+2)q  dmp — (2m+2)4 dm.p _(2m+42)4
Cm.,p (m+p+3)q’ em (2m+4)q 7 emp P 1 (m—p+3)q’ gmp (m+p+1)q’
dm _ _ (2m+2)4

Im (2m+4)q °
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There are the following U,(sl(2))-module algebra structures on Ay(3)

k(z1) = 21, k(xo) = qwe, k(x3) = ¢ ‘a3, (4.41)
e(r1) =0, e(xe) =0, e(rs)= 3079, (4.42)
fla1) =0, flx) = cpws, f(xa) =0, (4.43)

where c3o € C\{0}.
Proof. The proof is similar to that in Lemma 4.4. [ ]

Lemma 4.6.  For Case (xg) and Case (x7), to satisfy (3.18)-(5.19), the actions
of k, e and f on A, (3) are

k(xz1) = qux, k(fﬂz):q_%m k(xs) = q 'as,
e(ry) = Uq;l—i-Z(In n+5 "H—FZUP ptd p“

n>0 >0
Z 2n+p+6_nt1_p+l
+ O-npx D 77«+ p ,
n>0,p>0
_ 2n+4 n+2 p+3 p+1
e(zy) = ag+ priag + E Pn® + E Py ot
n>0 p>0
2n-+p+5 n+2 p+1
+ E  Pnp Ty Ty,
n>0,p>0
E : Z 3 p+2
6(1‘3) — Tl’lxg + To 2n+4 n+1x 4 Ty} p+ P+
n>0 p>0
2n+p+5 _n+1_p+2
+ E T v
n>0,p>0
1 pt2
f(x1) = dizzs+ E A a2 g A2 tlgptl E X2 2gntly
p>0 n>0 n>0
2n+p+3 n+1 p+2
+ E AnpTT Ly Ty
n>0,p>0
o ~  on n+2 2n+1 n+2 2n+p+2 n+4+2 p+2
flzy) = E Upxi"y E Uny xr3+ E U p®] xh kT
n>0 n>0 n>0,p>0
_ p+3 2n_n+1 2n+1 n+1 2
f($3) = E wpxl + E wnxl Ty T3+ E W Ty xg
p>0 n>0 n>0
2n+p+2 _n+1_p+3
+ E Wy pry Py
n>0,p>0
. . 2
where ay € C\{0} and the other coefficients are in C, and % = —w =
q n
_q2(n+2)q op - _ (p+2)q Onp _ __ (n+p+3)q o _ __q [ q(n+2)q
(2n+6)q > bp " 1(4)g " pnp P~ (2n+6)g 7 T (g’ T -~ (3n+6)4 7
Tp — _q(pt+2)g  onp — _g(n+p+3)g  Ap — _ (P+3)q An (n+2)q An (n+3)q
p (P+4)q 7 Tnp _ BniptT)e’ wp q(p+1)g 7 wn qBn+2)q 7 wn ~ a(B3nt3)g’
Aup (ntpt4)q An (n+2)q An (n+3)q Anp (ntpt4)q
Wn,p q(3n+p+d)q’ vn q(2n+2)q 7 Un ?(2n4+2)g 7 vn,p qPH3(2n+2)q

In particular, there are the following U,(sl(2))-module algebra structures on
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A4(3)
k(r1) = quy, k(z2) = q 2o, K(zs) = ¢ s, (4.44)
e(r1) =0, e(xs) =as, e(x ) =0, (4.45)
f(z1) = dizzs + ay 'zy29 + Zd TP (1) = —qayta?,  (4.46)
p=0
+1),
f(x3) = —qay 'woxs — Z q§+ 3) 12l (4.47)

p=0

where n € N, d3, dAp € C for all p, ay € C\{0}.

Proof. In these two cases, we have the same values of oy, as and ag, i.e.,
3
a1 = Q7 Qg = q_27 3 = q_l, Therefore, wt(M6f> [ |: q({I q14 q€3 :| . USlng
the equalities (3.18)-(3.19) and by some computations, we can obtain that e(x;),
e(xs), e(x3), f(x1), f(za), f(x3) are of the forms in this lemma.
Moreover, using (4.44)-(4.47), it is easy to check that ef(u) — fe(u) =
l;:]q“:i (u), where u € {x1, 29, 23}. Therefore, they determine the module-algebra

structures of U,(sl(2)) on A,(3). ]

Lemma 4.7.  For Case (xg) and Case (x9), to satisfy (3.18)-(3.19), the actions
of k, e, f are of the form

k() = qr1, k(z2) = ¢*xp, K(ws) = ¢ 'us,

e(z)) = ZO‘P 719+3 p—i—ZOémxlIZLH 2m+zamx%x5n+1 2m+1

p>0 m>0 m>0

E +3 1,.2m+p+2
+ O, pxp m+ x5 p ,

p>0,m>0

6(1’2) _ ZﬂmmerQ 2m+25mxlxm+2 2m+1

m>0 m2>0

Z p+2 2 L2 2
+ 6m px 3 )
p>0,m>0

_ p+2 p+1 +1 2 +1 +1 2 +2
e(rs) = 031$1+§ VpTy +§ YTy " +§ AmT1 2y .

p=>0 m=>0 m=>0

p+2 m+l 2m+p+3
P )
p=>0,m>0

12 p+3 1_2m+4
flz) = eras+ E e + E Emryry Tyt
p>0 m>0

p+2 m+1 2m+p+5
+ g EmpT1 T3 ,

m>0,p>0

f(za) = by + OQaozl + Z 6,2 apal S 4 Z Bmx;”“ om-+4

p>0 m>0

PHLymt2 2mep
+ E O pT T3 ;

m>0,p>0
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_ p+1 P+4 m—+1 2m+5
flxzs) = 77333+§ NpTy +§ N Ty
p>0 m2>0
p+1 m+1 2m+p+6
+ 5: nmpx T3 )
m>0,p>0

where by € C\{0} and the other coefficients are in C, and % _ _dtl)y @y _

P (P+3)q 7 B
(Bm+2)g  am . Bmt3)g  amp _ _(B3mtptd), am _aBm+2)q  am _ _ aBmt3),
@m+2)q’ B,  a@2m+2)q’ Bmp  ?T22mA2)q7 M (m+2)q 7 Ym (m+3)q 7
amp . gBmtptd)g e _ 9B)g e _ (P+4d)e G _ 9BMA6)q  Emp _ (3mAp+T)g
Ymp (ptm+4)g 7 0~ (g’ 0  P(4)g ’ 0,  (2m46)g 7 Omp — qP(2mA46)g 7
£ _qfl(g) &p . _ (p+4)q @ — _(3m+6)q Emp _ __ (3m+4p+T7)4
n 97 np q(p+2)q’ mp q(m+2)q 7 Nm,p q(p+m+3)q

There are the following U,(sl(2))-module algebra structures on Ay(3)

k(z1) = qr1, k(ze) = q2:v2, k(xg) =q s, (4.48)
e(z1) = —qby 'z 29 — Z C]p+ 3 apat b e(wy) = —qby'xl, (4.49)
p=0
e(x3) = ca171 + e ' xows + i ot Pl (4.50)
p=0
f(21) =0, f(x2) =0y, flzs) =0, (4.51)

where n € N, ¢31, oy, € C for all p, by € C\{0}.
Proof. The proof is similar to that in Lemma 4.6. [ |

Lemma 4.8.  For Case (%), to satisfy (3.18)-(5.19), the actions of k, e, f
on A,(3) are

k(‘rl) = (4T, k(xQ) = gT2, kf(ZEg) = q_2$37

_ 3+2p—mn _mn_p 2+p p+1 D
e(zry) = E TnpT] xyxy + E TpT] xk,
n>0,p>0 p>0
2+2p—n>0
n#p+1

_ 2+2p—n n+1
() = E SnpT1 ) :L‘3,
n>0,p>0
2+2p—n>0
n#p+1

. 242p—n n p+l p+1 p+l p+1
e(xs) = ag + E tnpT] + g tpry ,
n>0,p>0 p>0

2p—n+1 _n _p+1 n+5,.n,.n+3
E Up pT7 Toy ~ + g UpTy "TyTg 7,

n>0,p>0 n>0

2p—n n+1 p+1
E Unply Lo Ty
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2p—n _n _p+2 n+4,_n,_n+4
E Wy pX]  TyTy ~+ E WpXy ' Tolz o,

n>0,p>0 n>0
2p—n>0
p#n+2
where a3 € C\{0} and the other coefficients are in C, and Z:Z = %,
Tap _ _ @ttt P42 Unp (04942 unp . (n4p42)g
tn,p (2p+4)g 7 (2p+4)g 7 vnp PT2(p—2-n)q’ wnyp q(2p+2)q 7
Un (2n+4)4
wn  q(2n+6)q
Specifically, there are the following U,(sl(2))-module algebra structures on
Aq(3)
k(z1) = qr1, k(x2) = quo, k(z3) = q s, (4.52)
e(x1) =0, e(x3) =0, e(xs) = as, (4.53)
flxr) = az'wixs,  f(22) = a3'maws,  f(2s) = —qaz '3, (4.54)

where a3 € C\{0}.

Proof. In this case, we have ay = ¢, ag = ¢, a3 = ¢~ 2. Therefore, wt(M.;) <

3 3 1
[ q_l q_l 4 } . Then, the proof is similar to those in the above lemmas. =

q q q

Lemma 4.9.  For Case (%11), to satisfy (3.18)-(3.19), the actions of k, e and
f on Ay (3) are

k@ ) = ¢*x1, k(x2) =q 'mo, k(x3) =q '3,

2 14 44
= E TopTh" " w2x3 p+E rpa abal T

m>0,p>0 p=0
2m—p>0
m#p+2

_ m+1_p+1_2m—p
e(rz) = § SmpTi Ty T3
m>0,p>0

2m—p>0
m#p+2

m+1 2m—p+1 p+3,.p,.p+5
g tpxl by + t:E bl
m>0,p>0 p=>0
2m—p>0
m#p+2

_ m+1 m+2—p m+1 m+1 m+1
flz1) =b1 + E U pr " ab s + g Um XY xg
m>0,p>0 m>0
2m—+2—p>0
pFmM+1

_ m _p+1 _2m—p+2
f(zo) = E Umpxl Lo T3 )
m=>0,p>0
2m—+2—p>0
pFm—+1

- e 2m—p+3 m_m-+1 m—|—2
f(xs) = E Wiy, p " THT + E Wiy Ty T
n>0,p>0 m2>0
2m+2—p>0
p£EmM+1

where by € C\{0} and the other coefficients are in C, and Z% = %,
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Tmp _ _ 4@2m+2)q 1o _ _a@2pt6)g  Ump _ (2m+4), Ump . _(2mt4),
tm,p (m+p+2)g 7 tp (2p+4)g 7 Ump g3 (m+1-p)g’ Wmp 2 (m+p+1)g’
U (2m—+4),

W, q?(2m+2)q -

There are the following U,(sl(2))-module algebra structures on Ay(3)

k(x1) = ¢y, k( 2) = q 'wy, k(x3) = q s, (4.55)
e(zy) = —qb;'a?, e(xs) = b 1Ty, e(x3) = by twyas, (4.56)
f(@) =by, f(w2) =0, [flxs) =0, (4.57)

where by € C\{0}.

Proof. The proof is similar to that in Lemma 4.8. |

Next, we begin to classify all module-algebra structures of U,(sl(3)) =
Hes, fi, ki )iz12 on A, (3) when k; € Aut L(A,(3)) for i =1,2.

For U,(sl(3)), there are two sub-Hopf algebras which are isomorphic to
U,(sl(2)). One is generated by ki, e; and f;. Denote this algebra by A. The
other one, denoted by B, is generated by ks, e; and fy. By the definition of
module algebra of one Hopf algebra, the module-algebra structures on A,(2) of
these two sub-Hopf algebras are of the kinds discussed above.

Denote 9 cases of the actions of ki, e, fi (resp. ko, ez, f2) in Lemma
4.1-Lemma 4.9 by (Al), ---, (A9) (resp. (B1), ---, (B9)). To determine
all module-algebra structures of U,(sl(3)) = H(e;, fi, ki )iz12 on A, (3) when
k; € Aut L(A4,(3)) for ¢ = 1,2, we have to find all the actions of k1, ey, f1 and
ko, e, fo which are compatible, i.e., the following equalities hold

kiea(u) = q_legkl(u), ki fa(u) = qfaki(u), (4.58)
koei(u) = q_lele(u), ko fi(u) = qfika(u), (4.59)
€1f2(u) faer(u), eafi(u) = fiea(u), (4.60)

efea(u) — (¢ + g Hereger (u) + exef(u) = (4.61)
eQel(u) (q+q Yegeres(u) + eres(u) = (4.62)
fifao(u) = (g +q ) fifafi(u) + fof P (u) = (4.63)
J3fi(u) = (g + ¢ ) fafifo(u) + f1f3(u) = (4.64)

and e; fi(u) — fie;(u) = ’Z__—:,ll(u) holds for u € {xy,z9, 23} and i € {1,2}.

Because the actions of ky, ey, fi and ko, ea, fo in U,(sl(3)) are symmetric,
we only need to check 45 cases, i.e., whether (Ai) is compatible with (Bj) for any
1 <i<j<9. We use (Az)|( ) to denote that the actions of ki, ey, f; are
those in (Ai) and the actions of ko, €5, fo are those in (Bj). Moreover, in Case
(A7)|(Bj) (j > 2), since the actions of e;, f; are not zero simultaneously for
i € {1,2}, (4.58) and (4.59) can not be satisfied simultaneously. Therefore, the
Cases (Aj)|(Bj) (7 > 2) should be excluded.

First, let us consider Case (A2)|(B5). Since ksei(z1) = kao(a1) = aq,
q terks(z1) =q tay and a; # 0, keei(x1) = ¢ teiky(z1) does not hold. Therefore,
(A2)|(B5) should be excluded. For the same reason, we exclude (A2)|(B6),
(A2)[(B8), (A2)|(B9), (A3)[(B4), (A3)|(BT), (A3)[(B8), (A3)[(B9), (A4)|(B6),
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(A4)|(BT), (A4)|(B8), (A4)|(B9), (A5)|(BT7), (A5)|(B8), (A5)[(B9), (A6)|[(BT),
(A6)|(B8), (A6)|(B9), (AT)|(BS), (AT)[(BY), (A8)[(BY).

Second, we consider (A1)[(B2). Since ki fo(2z1) = —qa;'2? and qfoki(21) =
Fq?a; 22, we have kifo(w1) # qfoki(21). Thus, (A1)[(B2) should be excluded.
Similarly, (A1)|(Bi) should be excluded for i > 3.

Therefore, we only need to consider the following cases: (Al)|(B
|(593g)7 (42)|(B4), (42)|(BT), (43)|(B5), (43)|(B6). (AD)|(B5), (A4)|(B

Lemma 4.10.  For Case (A1l)|(B1), all module-algebra structures of U,(sl(3))
on A,(3) are as follows

ki(x;) = £, ei(x;) = 0, fi(z;) =0,

forie{1,2}, j € {1,2,3}, which are pairwise non-isomorphic.

Proof. It can be seen that (4.58)-(4.64) are satisfied for any u € {x,z9,z3}
in this case. Therefore, they are module-algebra structures of U,(sl(3)) on A,(3).
Since all the automorphisms of A4,(3) commute with the actions of k; and ks, all
these module-algebra structures are pairwise non-isomorphic. |

Lemma 4.11.  For Case (A2)|(B3), all U,(sl(3))-module algebra structures on
A,(3) are as follows:

ki(zy) = q 2wy, ki(xe) = ¢ 'wg, ka(ws) = ¢ s,

k‘2($1) = qry, k2($2) = 4T3, k?2($3) = q2x3,

e1(r1) = ay, ei(r2) =0, e(x3) =0,

ex(11) = —qbz w173, ea(wy) = —qby ' wows, ex(w3) = —qbglwg,

fiz) = —qal_le, fi(za) = —qaflxlxg, fi(zs) = —qay Loy,
(1)

=0, fa(w2) =0, faolzs) = bs,

where ay, by € C\{0}.
All these structures are isomorphic to that with a; = bz = 1.

Proof. By Lemma 4.2 and Lemma 4.3, to determine the module-algebra struc-
tures of U,(sl(3)) on A,(3), we have to make (4.58)-(4.64) hold for any u €
{1, 29,23} using the actions of ki, ey, f; in Lemma 4.2 and the actions of ks,
es, fo in Lemma 4.3.

Since kiex(wy) = g leski(z1) = ¢ 3ea(xy), we have ey(w1) = —qbglxlxg,
e, 1 = po = pz = 0. Using kiea(ws) = ¢ leski(x2) = g 2ea(ws), we ob-
tain es(wy) = —qby ‘wows. Similarly, by kofi(z2) = qfika(z2) = ¢®fi(xs) and
kafi(zs) = qfika(zs) = ¢fi(ws), we get fi(ze) = —gay'zizy and fi(z3) =

—qay 'z 23. Then, it is easy to check that (4.58)-(4.59) hold for any u € {z1, 2o, 23} .
Then, we check that (4.60) holds. Obviously, e;fo(u) = faer(u) for any
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u € {x1, 19, x3}. Now, we check ey fi(z1) — fiea(z1) = 0. In fact,

eafi(w1) — frea(wy)
= ea(—qay'a}) — fi(—qbs zixs)
= —qay ' (zrea(21) + ea(w1)ka(21)) + by ' (k1 (1) fu(s) + fi(a1)as)
= (¢* +q")ay by wiay — (¢ + ¢*)ay by wiy
= 0.

Similarly, other equalities in (4.60) can be checked.
Next, we check that (4.61)-(4.64) hold for any u € {z1,x9,23}. We only
check

e%el(xl) — (g + q_l)egeleg(ml) + eleg(:ﬂl) =0.

In fact,

ezer (1) — (q+ ¢ Veaerea(1) + exed(ar)

0— (g4 q Yeser(—qbs'zi23) + erea(—qbs tw123)
= (q+q Hb3 ea(arws) — qbs e (—qbs v1xs — ¢°b3 ' ay23)
= —qlg+q Naibs’s3 + arby*(1 + ¢*)a3
= 0.

The other equalities can be checked similarly.

Finally, we claim that all the actions with nonzero a; and b3 are isomorphic
to the specific action with a; = 1, b3 = 1. The desired isomorphism is given by
Yaybs 1 T1 > A1T1, T > To, Ty — b3T3. ]

Lemma 4.12.  For Case (A2)|(B4), all U,(sl(3))-module algebra structures on
A,(3) are as follows

ki(z1) = q "1, ki(a2) = q 22, ki(x3) = q s,

ka(z1) = qu1, ko) = ¢ '@a, ko(ws) = s,

e1(ry) = a1, ei(we) =0, ey(x3) =0,

ea(r1) =0, ex(xy) = oy, ez(xs) =0,

filer) = —qay 'z}, fi(z) = —qay 'wrze,  fi(zs) = —qay ' wyas,
fo(z1) = ci'wa, fowa) =0, fo(zs) =0,

where ay, co; € C\{0}.
All these module-algebra structures are isomorphic to that with a; = co; = 1.

Proof. By the above actions of ki, e, fi and ko, ey, fo, it is easy to check
that (4.58)-(4.64) hold for any u € {1, xs,x3}. Therefore, by Lemma 4.2 and
Lemma 4.4, they determine the module-algebra structures of U,(sl(3)) on A,(3).

Next, we prove that there are no other actions except these in this lemma.

Using kies(z1) = g teski(z1) = g 3ea(w1), we can obtain ey(z1) = 0. By
Lemma 4.4, we also have ey(x9) = o121 and eg(x3) = 0. Similarly, by &y fo(xq1) =
qfoki(z1) = ¢ ' fo(w1), we get fo(x1) = digwo. Therefore, fo(xs) = fa(zs) = 0.



DupLuy, HONG, LI 345

ko—ky !

Then, using ey fo(x;) — faea(x;) = p—— (x;) for any ¢ € {1,2,3}, we obtain dy5 =
02_11- Since ko fi(72) = qfika(z2) = fi(w2) and kyfi(w3) = qfika(23) = qfi(w3), by
Lemma 4.2, we have f)(z2) = —qa; ‘w1xo + &322, fi(23) = —qa; 123,

Due to the conditions of the module algebra, it is easy to see that we have
to let f7fa(ws) — (¢ +q ") fifafi(xs) + foff(z3) = 0 hold. On the other hand, we
have

fLfa(xs) = (g + q ) fifafi(es) + fofi(xs)
= —(¢+q¢ "fifo(—qai zi23) + fofi(—qay ' z113)
= qlg+q Nay'ey fi(zaxs) — qar ! fo(fi(zr)as + ¢Pay fi(as))
= qg+q Hay e (filwa)rs + goafi(as)) + qay*(q + ¢°) fo(ais)
= (¢*+ Day'ca (—(q + ¢*)ay 'mi@aws + Ea3)
+(q* + (g + ¢*)ex' ay *mywpws

= (¢*+ 1)ay " ey &sas.

Hence, we get & = 0. Therefore, fi(z3) = —qay 'x115. Thus, there are no other
actions except those in this lemma.

Finally, we claim that all the actions with nonzero a; and ¢y, are isomorphic
to the specific action with a; = 1, ¢y = 1. The desired isomorphism is given by
wal,cm 1T 11, T > A1C21T9, T3 > I3. [ ]

Lemma 4.13.  For Case (A2)|(B7), all module-algebra structures of Uy(sl(3))
on Ay(3) are as follows

ki(zh) = q 2wy, ki(we) = ¢ 'wa, kai(zs) = q as,

ka(z1) = quy, ka(x2) = Paa, kolxs) = ¢ 'as,

e1(r1) = a1, ei(we) =0, ey(x3) =0,

ea(x1) = —qby w170, ea(my) = —qby w3, ey(w3) = cy1x1 + by woms,
filzr) = —qay a3, fi(we) = —qay'mizs,  fi(zs) = —qay ' mias + Eaxon,
fo(w1) =0, fo(w2) = by, fo(ws) =0,

where ay, bg, C31, 54 & C\{O} and C31£4 = —qbglafl .
All module-algebra structures above are isomorphic to that with a; = by =
C31 — 1 and 54 = —q.

Proof. By the above actions of ki, e, fi and ko, ey, fo, it is easy to check
that (4.58)-(4.64) hold for any u € {1, 29, 23}. Therefore, by Lemma 4.2 and
Lemma 4.7, they determine the module-algebra structures of U,(sl(3)) on A,(3).

Next, we prove that there are no other actions except those in this lemma.

By (4.58), we can immediately obtain that ey(z1) = Qo122 es(z2) = For2,
62(933) = C3171 + YoT2T3, f2(931) =0, f2(352) = by and f2($3) = 0. By Lemma
4.7, ag = EO = —q7. According to ey fa(x1) — faea(x1) = kz_kil (1), we obtain

a—q-
Yo = by'. Similarly, by (4.59), we have f(z1) = —qa; 22, fi(x2)
and fi(z3) = —qa; 'z 25 + E4ma3.

-1
—qay X123
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Next, let us consider the condition esfi(x3) — fiea(x3) = 0. Since

eafi(r3) — frea(ws)
= ey(—qai 'mas + &uaad) — fi(esizy + by 'waws)
= —qaf1($1€2($3) + ea(w1)ka(x3)) + Ea(wawser(ws) + woea(w3)ka(w3)
ea(wa)ka(ws)ka(23)) + gesray o] — by (k7 (xa) fi(s) + fi(a2)ws)
= &en (@ 4 Dazaxs + ay by (¢ + q)miwaws
= O,

we obtain &4c3 = —qa; byt

Therefore, there are no other actions except those in this lemma.

Finally, we show that all the actions with nonzero a,, c3;1, by and & are
isomorphic to the specific action with a; = by = ¢31 = 1 and £ = —¢q. The desired
isomorphism is given by g, cq; by © T1 F> @121, To > boXo, T3 — a1C3123. ]

Lemma 4.14.  For Case (A3)|(B5), all module-algebra structures of U,(sl(3))
on Ay(3) are as follows:

) =qr1, ki(x2) = qua, ki(w3) = q21’3,

) =1, ko(w2) = qua, ko(ws) = q a3,

er(r1) = —qbs'aias, ei(wa) = —qby'aows, ei(w3) = —qby a3,
) =0, ex(z2) =0, ex(x3) = caara,

):07 f1($2):0> fl(xs):b&

) =0, folzs) = s, folws) =0,

where by, ¢33 € C\{0}.
All module-algebra structures above are isomorphic to that with by = ¢33 =
1.

Proof. The proof is similar to that in Lemma 4.12. ]

Lemma 4.15.  For Case (A3)|(B6), all module-algebra structures of U,(sl(3))
on A,(3) are as follows:

=0, ey(x2) =ay, es(xs)=0,

, Ji(ze) =0, fi(ws) = bs,

(1)
(1)
e1(r1) = —qby ' w3 + aive, e1(x0) = —qby twaxs, e1(x3) = —qby a3,
(1)
(1) =0
(21) = dizas + a3 'wiwe,  folws) = —qay '3, fo(rs) = —qay wozs,

where dyz, ay, pi1, bs € C\{0} and pydizs = —qay 'b3".
All module-algebra structures above are isomorphic to that with di3 = as =
bs =1 and p = —q.
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Proof. The proof is similar to that in Lemma 4.13. [ |

Lemma 4.16.  For Case (A4)|(B5), all module-algebra structures of U,(sl(3))
on A,(3) are as follows:

kl(ﬂﬁl) =qr kl(il?z) =q 952, (5173) = 373a
k2($1) = T, kQ(IQ) = qT2, (ﬂU ) 35
e1(z1) =0, ei(z2) = ey, e(xs) =

ea(r1) =0, ex(xe) =0, eg(xs) = 032@,
fil) = cyiwa, fi(xa) =0, fi(ws) =

fo(w1) = 0, folws) = ciyas,  folrs) =

where ca1, c32 € C\{0}.
All the above module-algebra structures are isomorphic to that with coy =
C32 — 1.

Proof. By the actions of ki, e1, fi and ks, ey, fo, it is easy to check that
(4.58)-(4.64) hold for any u € {x1,xq,x3}. Therefore, by Lemma 4.4 and Lemma
4.5, they determine the module-algebra structures of U,(sl(3)) on A,(3).
Next, we prove that there are no other actions except these in this lemma.
By Lemma 4.5 and using that (4.58) holds for any u € {zy,xq,23}, we
can obtain that ey(z1) = Y., oo @nzi 25 08, ea(x2) = 0, ex(w3) = s +

> s Co i BT i fo(wn) = Y sg mmr ] P2 ay P fo(we) = doss +

m-+1 m+1 m+2 . -  m+1 m—+3
Zm>0 emm1T] Ty w7, fo(ws) = Zm>0 Gmm+12] Ty s .
2042)g  dmmi1 _ (2m42)g  dmomi
By Lemma 4.5, we know that 2= — — 4 mmtl — ¢ Immil _
y ! Cn (2n+4)q’ €m,m+1 qm(2)ll ’ 9m,m+1
2m+42 o d
it S — an — dmmi1
g = 1. Set v, = = and K, Pt

—1
Next, we consider es fo(rs) — foeo(r2) = k;:qkfl (r2) = x2. By some compu-
tations, we obtain

eafo(T2) — faea(wa)

_ 2n+4 n+l_n+2 _n+l
= C32da3T2 + E (q 1) dagvp ™ ah ™ok

n>0
2m+3 m+1 m+2 m+1 3mn+3m+3n+2 2
— E )C32KmT] + E q (1-4q)
m>0 m>0,n>0
2m—+2n+6 m+4n+2, m+n+3 m+n+2
(1—g¢ JUnkm Ty Lo T3

If there exist v,, and k,, not equal to zero, we can choose the terms with coefficients

Up, and Ky, in ex(x1), ex(r2), ea(ws), fo(w1), fo(wz), fo(ws) such that their
degrees are highest. Then, the unique monomial of the highest degree in

(eafa — faez) (x2) is

3mfne+3mf+3ne+2<1 o qQ)(l 2mf+2ne+6) mf+ne+2xmf+ne+3xmf+ne+2
2 3

q —q U Fom 1

Since the degree of this term is larger than 1, this case is impossible. Similarly, all
cases except that all v, , k,, are equal to zero should be excluded. Therefore, we
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obtain that es(x1) = 0, ex(x2) = 0, ex(x3) = 3072, fo(x1) =0, folzs) = c§21x3
and fo(x3) =0.
—1
Similarly, using (4.59), Lemma 4.4 and e; f1(u) — fie;(u) = %(u) for
any u € {x1, 9,23}, we can obtain ej(xy) = 0, ej(x2) = cowq, e1(x3) = 0,

filzr) = cai'a, fi(ze) =0, fi(zs) =0.
Therefore, there are no other actions except the ones in this lemma.
Finally, we claim that all the actions with nonzero co1, ¢32 are isomorphic
to the specific action with ¢y = ¢33 = 1. The desired isomorphism is given by
Wegr 30 © T1 F+ T1, T > Co1T2, T3 >+ C21C3273. [ ]

Lemma 4.17.  For Case (A5)|(B6), all module-algebra structures of U,(sl(3))
on A,(3) are

=1, ki(z2) = qua, ki(z3) =q '3,
qr1, ke(me) = q w2, ko(ws) = ¢ 'as,
0, er(x2) =0, ej(x3) = czxa,

=0, ex(rz) =as, ex(x3) =0,
0, fi(z2) =czas, fi(zs) =0,
a

s wimy,  fo(we) = —qay a3, fa(ws) = —qay waws,

where c32, as € C\{0}.
All module-algebra structures are isomorphic to that with as = c33 = 1.

Proof. It is easy to check that the above actions of ki, ey, fi and ko, es, fo
determine module-algebra structures of U,(sl(3)) on A,(3).

Then we will prove that there are no other actions except for those in this
lemma.

By (4.58) for any u € {1, 3, z3} and Lemma 4.6, we have

2n+5 3n+7 n+1_n+2
es(r1) = (¢ — ¢’ U$$3+Z A A i
n>0
o 4 3 3n+7 n+1 3n+6 .n+2 _n+2
ea(xs) = ag + (¢" — Duxizoxs + E (7" — " vy Py Ry
n>0
An+8 3n+6,_.n+1_n+3
ex(w3) = (¢* — Duaial + g Vv Pah ey ™,
n>0
_ 3 2p+5 3p+7 _p+3 p+2
f2(331) —9551932‘1‘((] —q 5331332353‘4' E P Mp% Ty Ty o,
p>0
_ 2 p+2 3p+8 3p+6 _p+4 p+2
falw2) = —qgas + (¢ — ¢*)eaiadaos + > ( ) A A
p>0
_ 3,.2,..2 4 +10 3p+6 _p+3 _p+3
fo(x3) = —qgaoxs + (1 — ¢)exiaias + E PR pp P
p>0

—1
Then we will consider the condition ey fo(u) — faeo(u) = k;:qkfl (u) for any
u € {1, 19,23}
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Let us assume that there exist some u or v, which are not equal to zero.
Then, we can choose the monomials in es(z1), e2(x2), es(x3) with the highest
degree. Obviously, these monomials are unique. It is also easy to see that f(z1),
f(z2), f(x3) can not be equal to zero simultaneously. Therefore, there are some
nonzero g, € or f,. Similarly, those monomials in fao(x1), fo(z2), fo(xs) with
the highest degree are chosen. Then, by some computations, we can obtain a
monomial with the highest degree, whose degree is larger than 1. Then, we get a
contradiction with egfo(z1) — faea(z1) = x1. For example, if the coefficient of the
monomials in ey(x1), ea(x2) and eg(x3) is v, and the coefficient of the monomials
in fo(r1), fa(x2), fo(ws) with the highest degree is j,,, then the monomial with
the highest degree in e fo(x1) — faea(xq) is

7n5pf+15ne+11pf+22(1 2n5+2pf+10)2 3ne+3pf+13xne+pf+4 netpitd

q —dq UneHps 21 2 L3
Therefore, all u, v, are equal to zero. Then, es(x1) =0, es(x2) = as and

ea(x3) = 0. Thus, we can obtain

eafo(r1) — faea(w1)

= gastr+(1—q~)(Lrg)easedoarst 30 T (07 7 —g " Magnal? Ty a2,

Thus, we also obtain fo(z1) = a5 'o179, fQ(IQ) = —qay 22 and fo(x3) = —qay 'Tazs.
On the other hand, by a similar discussion, from (4.59), Lemma 4.5 and

—1
e f1(u) — fien(u) = kquqk_ll (u) for any u € {x1, 29,23}, we can obtain ej(x;) =0,

e1(w2) = 0, er(w3) = caaa, fi(w1) =0, fi(w2) = czy s, fi(ws) = 0.

Therefore, there are no other actions except those in this lemma.

Finally, we claim that all module algebra structures with nonzero as, 3
are isomorphic to that with as = c3o = 1. The desired isomorphism is given by

. ||
Yag,eq0  T1 > L1, Ty > AaT2, Ty > A2C32T3.

Lemma 4.18.  For Case (A4)|(B7), all module-algebra structures of U,(sl(3))
on A,(3) are as follows

kl(%) = qy, k1($2) = q_lxz, k1(1‘3) = T3,

ko(1) = qﬂih ka(x2) = P2, ko(x3) = ¢ '3,

e1(zry) = 61@2) = cp111, e(w3) =0,

eo(1) = —qb T1T9, ey(x9) = —qby a3, es(w3) = by twaws,
filzr) = cyiwy,  fi(za) =0, fi(zs) =0,

fo(z1) =0, fo(me) = by, fo(ws) =0,
where by, co1 € C\{0}.
All module-algebra structures are isomorphic to that with by = cop = 1.

Proof. The proof is similar to that in Lemma 4.17. [ |

5. Classification of U,(sl(m + 1))-module algebra structures on
A,(3) and A,(2)

In this section, we will present the classification of U,(sl(m + 1))-module algebra
structures on A,(3) and similarly, on A4,(2) for m > 2.
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The associated classical limit actions of sl3 (which here is the Lie algebra
generated by hy, he, €1, €3, fi, fo with the relations [e1, fi] = h1, [e2, fo] = ha,
le1, fo] = lea, fi]l = 0, [hi,e1] = 2e1, [hi,e2] = —ea, [ho,e2] = 2es, [ho,e1] =
—e1, [h, fil = =2f1, [, fo] = fo, [ha, fo] = =2fa, [he, il = fi, [h,he] =
0) on Clxy,xq,x3] by differentiations are derived from the quantum actions via
substituting k1 = ¢™, ko = ¢ with a subsequent formal passage to the limit as
q— 1.

Since the actions of k1, ey, fi and kg, es, fo in Uy(sl(3)) are symmetric,
by Lemma 4.10-Lemma 4.18 and the discussion above, we obtain the following
theorem.

Theorem 5.1.  U,(sl(3)) = Hes, fi, ki )iz12-module algebra structures up to
isomorphisms on A,(3) when k; € Aut L(A4(3)) for i = 1,2 and their classical
limits, i.e., Lie algebra sls-actions by differentiations on Clxy,xs,x3] are as fol-
lows:

U,(sl(3))-module Classical limit

algebra structures slg-actions on Clxy, za, x3]

ki(zs) = £xs, kj(zs) = £, hi(xzs) =0, hj(zs) =0,

ei(xs) =0, ej(xs) =0, ei(xs) =0, ej(xs) =0,

fz(its) =0, fj(xs) =0, fz(xs) =0, fj(xs) =0,
s€{1,2,3} se€{1,2,3}

ki(xy) = q 2xy, ki(x) = q o, hi(zy) = —2301, hi(z2) = —x,
ki(x3) = g~ w3, kj(z1) = g1, hi(z3) = —x3, hj(21) = 21,
kj(x2) = qa, kj(23) = ¢°xs, hj(w2) = ($3) = 2us,

ei(x1) =1, e;(x2) =0, e;(x3) =0, | e(z1) = (:vg) =0, e;(z3) =0,
ej(x1) = —quixs, €j(x2) = —quaxs, | €;(z1) = —:Elxg, ej(xg) = —J:gxg,
ej(xs) = —qx3, fi(v1) = —qaf, ej(x3) = —3, fi(r1) = —ai,
fz(fl?z) = —qT1Z2, fz(l'z) —qrixs3, fz(fcz) = —I122, fz(fb’s) = —T1T3,
fi(z1) =0, fi(zs) =0, fy(x?)) =1 | fi(#1) =0, fi(z2) =0, fi(xs) =1
ki(zy) = q_2:c1, ki(xs) = q o, hi(z1) = —21:1, (T2) = —19,
kz(xii) =dq 1953, k?j(ﬂﬁl) = (4T, hz($3) = 3, ($1) = Ty,
kj(z2) = ¢ @a, kj(z3) = 3, h =0,

<
T~

a(xz)z—% y( 3) =
i 0, ei(x3) =0,
x1, ej(x3) =0,

)=1 )= Ty) =

(21) =0, ej(z2) = 1, ej(w3) =0, | ej(x1) = 0 61( 2) =
fz‘(l’l; —qa:f, fi(z2) = —quw122, fz(xl; = xu fi(2)
)= ) =

= —I123,

fi(x) = xy, fi(x2) =0, fi(x3) =0 | fij(z1) = 23, fi(22) =0, fj(23) =0
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kz(xl) =4, kz(fm) = (qT2, hz(xl) = I, hz‘(fUQ) = T2,
ki(x3) = ¢*xs, kj(x1) = 21, hi(z3) = 2x3, hj(z1) =0,
kj(w2) = qua, kj(w3) = ¢ s, hj(w2) = o, hj(zs) = —w3,
ei(r1) = —qr173, €i(T2) = —qrax3, | €i(71) = —x173, €;(22) = —To¥3,
ei(r3) = —qa3, ej(x1) = 0, ei(x3) = —a3, ej(x1) =0,
6]‘(1'2) = O, €j($3) = XT9, 6j<£(]2) = O, €j(ZL’3) ZT9,
fi(x1) =0, fi(ze) =0, fi(zs) =1, | filz1) =0, fi(ze) =0, fi(ws) =1,
filw1) =0, fij(x2) = x5, fixs) =0 | fij(21) =0, fj(x2) = x5, fix3) =0
ki(x1) = qr1, ki(z2) = ¢ 2o, hi(z1) = @1, hi(x2) = —2,
k‘l(l'g) = T3, kj(l'l) = T, hl(flfg) = 0, hj iL‘l) = O,
kj(l’g) = (T2, k'j(x;g) = q_ll’g, hj(&?g) = T2, hj(fl?g = —Ts3,
61‘(I1) = 0, 62‘(%2) =T, 6i<I3) = 0, ei(xl) = 0, 62‘(.732 = T, e,»(xg) = 0,
ej(z1) =0, ej(x2) =0, ej(x3) = 22, | €j(z1) =0, ej(22) =0, ej(x3) = 22,
filz1) = 22, fi(z2) =0, fi(wz) =0, | fi(z1) = 22, fi(z2) =0, fz(xi%) =0,
filw1) =0, fi(@2) = x5, fixs) =0 | fi(21) =0, fj(x2) = x5, fizx3) =0
ki(x1) = qr1, ki(z2) = ¢ 2o, hi(z1) = @1, hi(x2) = —2,
k‘l(l'g) = T3, kj(l'l) = (qry, hl(flfg) = 0, hj(l'l) =T,
kj(z2) = ¢*xa, kj(xs) = ¢ tas, hj(xa) = 219, hj(z3) = —x3,
61‘(I1) = 0, 62‘(.%2) =T, 6i<I3) = 0, ei(xl) = 0, 62‘(132> = T, ei(lL’g) = 0,
ej(11) = —qr17a, €j(12) = —qr3, | €j(11) = —1122, €j(72) = —a3,
ej(x3) = xaws, fi(x1) = 22, ej(r3) = Tax3, fz(%) T2,
filza) =0, fi(x3) =0, fi(za) =0, fi(xs) =
filw1) =0, fj(x2) =1, fi(xs) =0 | fia1) = 0 f]( 2) = fy(iCB) 0
ki(x1) = a1, ki(22) = qaa, hi(z1) = ( 2)
ki(r3) = q~ w3, kj(z1) = g1, hi(zs) = (371)
kj(x) = q 2w, kj(w3) = g~ s, hj(2) = 2 T3, y(x ) —1‘37
ei(z1) =0, ¢;(22) =0, ei(x1) =0, e;(x2) =0,
ei(x3) = T2, €;(z1) = 0 ei(x3) = T2, €j(z1) = 0,
ej(w2) =1, ej(x3) = ej(w2) =1, ej(x3) =
fi(x1) =0, fz(x2> = 953; fz($3> =0, | fi(z1) =0, fz(i’fz) = :1;3, fi(r3) =0,
fj(ivl) T1T2, f](x2) 619527 fj(ﬂﬁl) T1T2, fg(xz) x%,
fi(z3) = —qrox3 filxs) = —woxs
ki(z1) = q %21, ki(xa) = g 'ao, hi(z1) = =221, hi(z2) = —,
kz(x3) =dq 1!7037 kj(xl) =4y, hz‘(lE:s) = —I3, hj(h) = I,
ki(z2) = ¢°w2, kj(x3) = ¢ s, hj(x2) = 229, hj(x3) = —as,
ei(x1) =1, e;(xg) =0, e;(x3) =0, ei(x1) =1, e;(xg) =0, e;(x3) =0,
¢j(11) = —quim2, €j(x2) = —q3, | (1) = 2172, €;(x2) = —23,
ej(x3) = 11 + zoxs, fi(z1) = —qat, | e;(x3) = 21 + 2a13, fi(wr) = —ai,
fz‘($2) = —(qr172, fz‘(ﬁﬁz) = —T122,
fi($3) = —qr1T3 — q$29€37 fi(9€3) = —T1T3 — $29€37
fite) =0, fi(xa) =1, fi(ws) =0 | fi(21) =0, fi(x2) =1, fi(2s) =0
ki(x1) = qxy, ki(xe) = quo, hi(z1) = 1, hi(xg) = x9,
ki(z3) = ¢*xs, ki(x1) = qa, hi(z3) = 223, hj(z1) = 21,
kj(w2) = q s, kj(ws) = q s, hj(zq) = —2x9, hj(z3) = —x3,
67;(I1) = —qr1T3 — Cﬂ%xz, ei(I1) = —I1r3 — I1T2,
ei(r9) = —qrows, ei(x3) = —qu3, ei(z2) = —yz, ey(xs) = —a2,
ej(x1) =0, ej(x2) =1, ej(w3) =0, | ej(x1) =0, ¢;(22) =1, ej(x3) = 0,
filw1) =0, fi(z2) =0, fi(ws) =1, | filz1) =0, fi(z2) =0, fi(z3) =1,
fi(x1) = 23 4+ 2129, fi(w2) = —qa3, | fi(x1) = 23 4+ 2129, fg($2) = —13,
filxs) = —quazs fi(z3) = —xom3
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forany 1 =1, j=2 ori =2, j =1. Moreover, there are no isomorphisms be-
tween these nine kinds of module-algebra structures.

Remark 5.2.  Case (5) when ¢ =1, j =2 in Theorem 5.1 is the case discussed
in [15] when n = 3.

Let us denote the actions of U,(sl(2)) on A,(3) in (A1), those in (A2) and
(B3) in Lemma 4.11, those in (B4) in Lemma 4.12, those in (B5) in Lemma 4.14,
those in (B6) in Lemma 4.17 and those in (B7) in Lemma 4.18 by *1, *2, %3, x4,
x5, %6, *7 respectively. In addition, denote the actions of U,(sl(2)) on A,(3) in
(A2) and (B7) in Lemma 4.13, those in (A3) and (B6) in Lemma 4.15 by 2", 7",
%3, 6" respectively. If xs and xt are compatible, in other words, they determine
a U,(sl(3))-module algebra structure on A,(3), we use an edge connecting xs and
*t, since ki, e1, fi and ko, es, fo are symmetric in U,(sl(3)). Then, we can use
the following diagrams to denote all actions of U,(sl(3)) = H(ei, fi, ki, kj ')i=12 on
A,(3) when k; € Aut L(A,(3)) for i =1,2:

*1

*x1, 7 i (5.65)

*2, %3

*2

*3 . (5.66)

*7 x4 *H *6

Here, every two adjacent vertices corresponds to two classes of the module-algebra
structures of U,(sl(3)) on A,(3). For example, 2 %3 corresponds to the
following two kinds of module-algebra structures of U,(sl(3)) on A,(3): one has
actions of ki, ey, f; that are of type x2 and actions of k5, ey, fo that are of type
*3; the other has actions of ki, e;, fi that are of type %3 and actions of ks, es,
f2 that are of type *2.

Next, we will begin to study the module-algebra structures of Uy (sl(m +
1)) = Hei, fi, k) 1<icm on Ay(3), when k; € Aut L(A,(3)) for i =1,--- ,m and
m > 3. The corresponding Dynkin diagram of sl(m + 1) with m vertices is as
follows:

O O O (O

In Uy(sl(m+ 1)), every vertex corresponds to one Hopf subalgebra isomorphic to
U,(sl(2)) and two adjacent vertices correspond to one Hopf subalgebra isomorphic
to U,(sl(3)). Therefore, for studying the module-algebra structures of U,(sl(m +
1)) on A,(3), we have to endow every vertex in the Dynkin diagram of sl(m + 1)
an action of U,(sl(2)) on A,(3). Moreover, there are some rules which we should
obey:

1. Since every pair of adjacent vertices in the Dynkin diagram corresponds to
one Hopf subalgebra isomorphic to U,(sl(3)), by Theorem 5.1, the action of
U,(sl(2)) on A,(3) on every vertex should be one of the following 11 kinds
of possibilities: *1, %2, x3, x4, x5, x6, *7, *2', *7", x3', *6'. Moreover,
every pair of adjacent vertices should be of the types in (5.65) and (5.66).
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2. Except for x1, any type of action of U,(sl(2)) on A,(3) cannot be endowed
with two different vertices simultaneously, since the relations (2.2) acting on
x1, To, x3 to produce zero cannot be satisfied.

3. If every vertex in the Dynkin diagram of sl(m+1) is endowed with an action
of U,(sl(2)) on A,(3) which is not of Case 1, any two vertices which are
not adjacent cannot be endowed with the types which are adjacent (5.65)
and (5.66).

Theorem 5.3. If m > 4, all module-algebra structures of U, (sl(m +1)) =
H(es, fi, ki )1<icm on Ay(3) when ki € Aut L(A,(3)) for i = 1,--- ,m are as
follows

]{JZ(ZL‘l) = :l:l’l, kz(fﬁg) = :l:ZL‘Q, ]CZ([E:),) = :l:[L‘g,
ei(z1) = ei(w2) = ei(x3) = filz1) = fi(x2) = fi(ws) =0,

for any i € {1,2,--- ,m}.
For m = 3, all module-algebra structures of U,(sl(4)) = H(es, fi, ki )iz1.23
on Ay(3) when k; € Aut L(A,(3)) for i =1,2,3 are given by

(1)

k?z(l'l) = :|:(L’1, l{?z(.fg) = :tl’g, kz([Eg) = :tl'g,
ei(z1) = €;(22) = eixs) = fi(z1) = fi(x2) = fi(x3) =0,

for any i € {1,2,3}. All these module-algebra structures are not pairwise non-
1somorphic.

(2)

k; xl) qry, ki(wy) = q 'ao, ki(x3) = 13,
0, 61(1’2) =co111, ei(r3) =0,

)=
5171) e, fi(wa) =0, fi(zs) =0,

fi
ka(xl =q w1, kj(r2) =q 22, kj(xs) =q w3,
6](‘T1 = aq, 6j($2> 07 (I3> O)

2

= —qb x3,

@
»
—
8
—
I
|
=
=
8
—
8
&
Q)
»
—
8
™
SN—
|
=
S
8
%)
S
&
@
—
S
w
~

)
)
fi(z1) = —qal’lxl, fi(z2) = —qal’lxle, fi(xs) = —qa{lxlxg,
)
)
)=

where ay, by, ¢33 € C\{0} andi=1, j=2,s=3o0ri=3,j=2,s=1. Al
these module-algebra structures are isomorphic to that with a1 = b3 = co1 = 1.
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(3)
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ki(v1) = qry, ki(me) = ¢ 'aa, ki(w3) = a3,
= 07 62'(962) = C2171, €i($3) = 07
C )

7111’27 fi(za) =0, fi(ws) =

es(11) = —gby 'z, eq(w9) = —qby 'wamws, es(x3) = —qby a3,

ki(z1) = 21, kj(x2) = qua, kj(xs) = ¢ s,
ej(z1) =0, ej(xe) =0, e;(x3) = c30m2,
file) =0, fi(zs) = ciyws,  filas) =0,
ko(w1) = que,  ko(2) = que,  ko(z3) = ¢Pas,
)
)

where by, ca1, c30 € C\{0} and i=1, j=2,s=3 o0ri=3,j=2,s=1. All
these module-algebra structures are isomorphic to that with by = co; = ¢35 = 1.

(4)

ki(z1) = q 2w, ki(me) = ¢ 'we, kizs) = ¢ s,

ei(z1) = a1, ei(x2) =0, ei(r3) =0,

filz1) = —qay'ai, fi(zz) = —qay'mxs,  fi(ws) = —qay w2,
ki(r1) = qr, k(o) = qua, ky(w3) = ¢y,

ej(z1) = —qby'w1m3, e;(x2) = —qby 'wows, ej(x3) = —qb3 13,
fi(@1) =0, fi(z2) =0, fi(zs) = bs,

ks(z1) = x1, ko(w2) = qua, ks(ws) = ¢ s,

es(x1) =0, eg(xg) =0, es(x3) = caama,

fs(z1) =0, fo(za) = ey, fo(xs) =0,

where ay, by, ¢35 € C\{0} andi=1, j=2,s=3o0ri=3,5j=2,s=1. All
these module-algebra structures are isomorphic to that with a; = b3 = c3o = 1.

(5)

q ki(z2) = q 'z, ki(z3) = q s,
=ay, e;(xr2) =0, exs) =0,
= —qai'z}, fi(ws) = —qai'mas, fi(ws) = —qay mias,

= quy, kj(x) = q ', kj(x3) = xs,

where ay, co1, ¢35 € C\{0} and i =1, j=2,s=3 ori=3,j=2,s=1. All
these module-algebra structures are isomorphic to that with a; = co1 = 30 = 1.



DupLuy, HONG, LI 355

Proof. First, we consider the case when m > 5. By the above discussion, since
there are no paths in (5.66) whose length is larger than 4 and any two vertices
which are not adjacent in this path have no edge connecting them in (5.65) and
(5.66), the unique possibility of putting the actions of U,(sl(2)) on the m vertices
in the Dynkin diagram is as follows:

*1 *1 s *1 %1 .

Obviously, the above case determines the module-algebra structures of U,(sl(m +
1)) on A,(3).

Second, let us study the case when m = 3. By the above rules, and because
the Dynkin diagram of sl(4) is symmetric, we only need to check the following
cases

*7 *4 x5, *7 x4 *x2, 4 *2 *3
*4 ) *x3, 4 *D %6, 2 *3 x5,
*2 x4 x5, 3 *D *6, 1 *1 %1 .

To determine the module-algebra structures of U,(sl(4)) on A,(3), we still have
to check the following equalities

kresz(u) = eski(u), kifs(u) = fski(u), ksei(u) = eiks(u), ksfi(u) = fiks(u),
erfs(u) = fzer(u), esfi(u) = fies(u), eies(u) = esei(u), fifs(u) = fsfi(u),

for any uw € {z1,29,23}. For «7 *4
q?b3o and esky(13) = ¢ b3y, kies(x3) # eski(x3). Therefore, *7 x4 x5
is excluded. Similarly, we exclude x7 *4 *2 , 4 *D *6 , and
*3 *H %6 . Moreover, it is easy to check the five remaining cases deter-
mine the module-algebra structures of U,(sl(4)) on A,(3).

Thirdly, we consider the case when m = 4. By the discussion above, we
only need to check the cases

%5, since kies(z3) = ki(bsza) =

*7 x4 *2 *3, %7 x4 *H *3,
*7 x4 *D *6, %2 *3 *D *6 ,
*1 *1 *1 *1 .

Since the three adjacent vertices in the Dynkin diagram of sl(5) correspond to
one Hopf algebra isomorphic to U,(sl(4)), by the results of the module-algebra
structures of U,(sl(4)) on A,(3), there is only one possibility:

*1 *1 *1 «1 .

Finally, we consider the isomorphism classes. Here, we will only show
that all the module-algebra structures of U,(sl(4)) on A,(3) in Case (2) are
isomorphic to that with a; = ¢y = b3 = 1. The desired isomorphism is given by
Vay.corbs - T1 — A1T1, Ta — A1C21T2, T3 — bsxs. The other cases can be considered
similarly. [ |
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Remark 5.4. By Theorem 5.3, the classical limits of the above actions, i.e. the
Lie algebra sl,,1-actions by differentiations on C[zy, 9, z3] can also be obtained,
as before.

Finally, we present a classification of U,(sl(m + 1))-module algebra struc-
tures on A,(2).

Since all module-algebra structures of U,(sl(2)) on A,(2) are presented in
[8], using the same method as above and by some computations, we can obtain
the following theorem.

Theorem 5.5.  U,(sl(3))-module algebra structures on A,(2) up to isomor-
phisms and their classical limits are as follows:
U,(sl(3))-module Classical limit
algebra structures slg-actions on Clzy, xs]
ki(xs) = x5, kj(zs) = £, hi(xzs) =0, hj(zs) =0,
67;<LL’S) = 0, ej(xs) = 0, €i<ZL’S) = 0, Gj(l’s) = 0,
fz(-rs) =0, fj(xs) =0, fz(xs> =0, fj(xs) =0,
s e {1,2} s e {1,2}
ki(z1) = q %21, ki(xo) = ¢ 'wa, | hi(1) = =221, hy(2) = —9,
kj(x1) = qa1, kj(w2) = g~ ', hj(x1) = 1, hj(z2) = —22,
ei(x1) =1, e;(xg) =0, ei(ry) =1, 61(332) 0,
ej(z1) =0, ej(x2) = x4, e;j(z1) =0, ej (x9) = 21,
filzr) = —qai, fi(xs) = —quiza, | fi(w1) = =22, fi(zs) = —Ill’%
fi(@1) = @, fi(z2) =0 fi(x1) = @y, fy(%)
]fz(xl) = qz1, k; (132) = q Z2, hz(l‘l) = I, z( )
ki(x1) = qry, kj(22) = ¢ 2o, hj(z1) = @1, hj(z2) =
ei(11) = —qu1mo, €i(x0) = —q3, | €i(xy) = —x179, €5(x ) —:1:2,
ej(x1) =0, ej(z2) = 21, ej(x1) =0, ej(z2) = 21,
filx1) =0, fi(ze) =1, filx1) =0, fi(ze) =1,
fil@1) = xa, fi(x2) = 0 fil@1) = xa, fi(x2) = 0
ki(z1) = q %21, ki(xa) = g 'ao, hi(z1) = —2$1, i(22) = —9,
kj(x1) = qoi, kj(22) = ¢°x, hj(z1) = @1, hj(z2) = 22,
ei(x1) =1, e;(xg) =0, ei(ry) =1, €Z(ZE2) 0,
ej(z1) = —4TIT, ej(rg) = —qu3, | ej(21) = —Ti, ej(w2) = —u3,
fi(z1) = —qa3, fi(z2) = —qu129, | fi11) = —1, fi(ze) = —w129,
fi(@1) =0, fi(z2) =1 fi(x1) =0, fi(z2) =1

forany i =1, j =2 ori =2, j =1. Note that there are no isomorphisms
between these four kinds of module-algebra structures.

Moreover, for any m > 3, all module-algebra structures of U,(sl(m + 1))
on Ay(2) are as follows:

k’z(l’l) = :t[Eh kz(l’g) = :|:[E2,
ei(1) = ei(x2) = fi(z1) = fi(x2) =0,

forany i€ {1,--- ,m}.
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6. U,(sl(m + 1))-module algebra structures on A,(n) (n > 4)

In this section, we will study the module algebra structures of U,(sl(m + 1)) =
H(es, fir ki) 1<icm on Ay (n) when k; € AutL(A,(n)) for i =1,--- ,m and n > 4.

By Theorem 3.1 and with a similar discussion in Section 4, we can obtain
the following proposition.

Proposition 6.1.  For n > 4, the module-algebra structures of U,(sl(2)) on
A,(n) are as follows:

(1) k(x;) = xx4, e(x;) = f(z;) =0,
forany i € {1,--- ,n}. All these structures are pairwise nonisomorphic.

() k(@) =qu; for ¥ i<j, kw;)=q 2, k@) =q e for ¥ i)
() =0 for Voi#j, e(z;)=aj,

(z:) = a; xxj for ¥V i<j, f(z;)=—qa;'x
flz;) = qa; xsz for ¥ i > 7,

Ty
2

X 7

forany j € {1,--- ,n} and a; € C\{0}. If j is fized, then all of these structures
are isomorphic to that with a; = 1.

(3)  k(z) =qu; for V i<j, k(z;)=dqz;, k(x;,)=q 'z; for V i>j,

e(z;) = —qu_lxixj for ¥V i<j, e(z;)= —qu_1$2
e(x;) = bj_lxjxi for ¥ i>7j, f(x;)) =0 for ¥ i#j, f(z;) =10y,

forany j € {1,--- ,n} and b; € C\ {0}. If j is fized, then all of these structures
are 1somorphic to that with b; = 1.

(4)

>

() = x; for Voi<j, k(z;)=qzxj,

k(i) =q 'z, k() =z for V i>j+1,
e(z) =0 for V i#j+1, e(zjn)= i),
flzi) =0 for ¥V i#j, f(x;) = ¢l amm,

forany j € {1,---,n—1} and cj41; € C\{0}. If j is fized, then all of these
structures are isomorphic to that with cj41; =1.

Remark 6.2. In Proposition 6.1 we have presented only the simplest module-
algebra structures. It is also complicated to give the solutions of (3.18) and (3.19)
for all cases. For example, by a very complex computation, we can obtain that

. ap 0 --- 0 00 --- 0
in Case ({ 0 0 ... 0]0,{0 0 ... 0]1), all U,(sl(2))-module algebra

structures on A,(n) are given by
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1

k(z1) = ¢z, k(z)=q 'z; for V i>1,
e(r1) = a1, e(z;))=0 for V i>1,
flx1) = —qq 137%7
flza) = —qay Yryxs + Z @232%36? + Z 9951 Lo TR X] —1—622:53,
2<s<n 2<s<k<I<n
flz) = —qay'ziz; + (3)gBorriz; — Z q " (3) Vs e
2<s<i<n

2 _— _
+Q04n2m902$?+ Z Voo Ti T} — Z q H(2) s

(3)(] 2<i<t<n 2<s<i<n

2 q — 2 :
X5y + (2) Unn2X2Z; Ty + An2knL2TT;
q 2<k<i<n
+ § an2knx2xzxk § 225k LsTi Tk
2<z<k‘<n 2<s<i<k<n
—1
+ g Q220 T T L] — E ¢ (3) 205k Ts T
2<i<k<l<n 2<s<k<i<n
—1—_3
—q V22T,
where 2 < i <n,
_ —1 2
f(xn) - —th T1Tp +( 622x2$n E q qUZSZxan
2<s<n
2
+Unn2x2x E C] qa22knl‘kl‘n + E Ap2kn Lol Ty
2<k<n 2<k<n

-1 11— 3
- E 4 (3)qQ22skTs Ty, — ¢ Vana®),,
2<s<k<n

where a; € C\ {0} and V22, a2k, P22, Unn2, Qnakn € C.

Let us denote the module-algebra structures of Case (1), those in Case (2), Case
(3) and Case (4) in Proposition 6.1 by D, A;, B; and C; respectively. For
determining the module-algebra structures of U,(sl(3)) on A,(n), we only need
to check whether (4.58)-(4.64) hold for any u € {zy,---,x,}. For convenience,
we introduce a notation: if the actions of k,, ey, f; are of the type A; and the
actions of k;, e;, f; are of the type B;, they determine a module-algebra structure
of Uy(sl(3)) on Ay(n) for s=1,t=2o0r s=2,t=1, then wesay A; and B; are
compatible. By some computations, we can obtain that D and D are compatible,
A; and B; are compatible if and only if i = 1 and j = n, A; and C; are compatible
if and only if ¢+ = j, B; and C; are compatible if and only if j =i+ 1, C; and
C; are compatible if and only if ¢ = j +1 or ¢ = j — 1, and any two other cases
are not compatible. As before, we use two adjacent vertices to mean two classes
of module-algebra structures of U,(sl(3)) on A,(n).

Therefore, by the above discussion, similar to that in Section 5, we can
obtain the following proposition.
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Proposition 6.3.  Forn > 4, there are the module-algebra structures of U,(sl(3))

on Ay(n) as follows:
A HAz
ol C, .. \
B, . B
Here, every two adjacent vertices determine two classes of module-algebra struc-
tures of Uy(sl(3)) on Ay(n).

D——D , An_g An—l (667)

n—2 Bn—l

Then, for determining the module-algebra structures of U,(sl(m + 1)) on
A,(n), we have to find the pairs of vertices which are not adjacent in (6.67) and
satisfy the following relation: kie;(zs) = ejki(xs), kjei(xs) = ekj(xs), kifj(xs) =
fiki(xs), kifi(xs) = fikj(zs), eiej(ws) = ejei(ws), eifj(xs) = fiei(xs), fifi(xs) =
[ fi(zs) where one vertex corresponds to the actions of k;, e; and f; and the other
vertex corresponds to the actions of k;, e; and f;, s € {1,--- ,n}. It is easy to
check that A; and Cj satisfy the above relations if and only if ¢ < j or ¢ > j+1,
B; and Cj satisfy the above relations if and only if 7 < j or ¢ > j+ 1, C; and C}
satisfy the above relations if and only if ¢ # j+ 1 or j # i+ 1, and any other two
vertices do not satisfy the above relations.

We also use m adjacent vertices to mean two classes of the module-algebra
structures of U,(sl(m + 1)) on A,(n). For example,

Bn Al Cl e Cme

determines two classes of the module-algebra structures of U,(sl(m+1)) on A,(n)
as follows: the one is that the actions of ki, e, f; are of the type B, , those of
ko, es, fo are of the type A; and those of k;, e;, f; are of the type C;_5 for any
3 <1 < m. The other is that the actions of k;, e;, f; are of the type C,,_1_; for
any 1 <7 <m — 2, those of k,,_1, €mn_1, fm_1 are of the type A; and those of
km, €m, fm are of the type B,.

Therefore, we obtain the following theorem.

Theorem 6.4. For m > 3, n >4, the module-algebra structures of
U,(sl(m+1)) on A,(n) are as follows:

D—D——D, (6.68)
A; C; e Citm—2 , (6.69)
C; Cita e Citm—2—— Biym-1, (6.70)
C; Cit1 e Citm—1, (6.71)
A —— By —— Oy o, (6.72)
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where n+2—m > 1,

B, A ) . Cra_s (6.73)

where m —2 <n —1.

Here, every such diagram corresponds to two classes of the module-algebra
structures of Uy(sl(m + 1)) on Ay(n).

Remark 6.5. When m = n — 1 and the indexes of the vertices of the Dynkin
diagram are given 1, ---, n — 1 from the left to the right, the actions correspond
to (6.71), ie., C4 Cy Ch—1 is the case discussed in [15]. In
addition, we are sure that when m > n + 1, all the module-algebra structures of
U,(sl(m+ 1)) on A,(n) are of the type in (6.68), since there are no paths whose
length is larger than n + 1 and any two vertices which are not adjacent in this
path have no edge connecting them in (6.67). The detailed proof may be similar
to that in Section 5. Moreover, the module-algebra structures of the quantum
enveloping algebras corresponding to the other semisimple Lie algebras on A,(n)
can be considered in the same way.
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