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Abstract

We consider various properties of N = 1 superconformal-like trans-

formations which generalize conformal transformations to supersym-

metric and noninvertible case. Alternative tangent space reduction

in N = 1 superspace leads to some new transformations which are

similar to the anti-holomorphic ones of the complex function theory,

which gives new odd N = 1 superanalog of complex structure. They

are dual to the ordinary superconformal transformations subject to

the Berezinian addition formula presented, noninvertible, highly de-

generated and twist parity of the tangent space in the standard ba-

sis, and they also lead to some "mixed cocycle condition". A new

parametrization for the superconformal group is presented which al-

lows us to extend it to a semigroup and to unify the description of

old and new transformations. The nonlinear realization of invertible

and noninvertible N = 1 superconformal-like transformations is stud-

ied by means of the odd curve motion technique and introduced clear

diagrammatic method.
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1 Introduction

More than 25 years have passed after discovery of supersymmetry [1, 2], nev-

ertheless its inuence on abstract algebraic properties of the physical theory

was mostly symbolical. The main constructions of the theory after several

trivial and clear modi�cations were equipped by the su�x \super". Then the

building of quite supersymmetric model, excluding some negligible moments,

was copied step by step from the corresponding nonsupersymmetric version,

and the latter had to be its continuous limit in certain extent. In spite of the

great success in the �nite �eld models and superstring uni�ed theories [3, 4],

the supersymmetry by itself did not lead to signi�cant changings or gener-

alizations of the theory in abstract algebraic sense. In particular, the con-

cept of superspace allowing to unify description of the bosonic and fermionic

sectors of the theory was based on introduction of the additional nilpotent

coordinates [5, 6]. They were used on a par with the ordinary \bosonic" coor-

dinates, ignoring or avoiding in some way the fact that noninvertible objects

and zero divisors inevitably arisen among the main variables of the theory.

Therefore, a lot of mappings and functions turned out to be noninvertible,

and indeed because of this fact, however it is strange and paradoxical from

the mathematical viewpoint, they were arti�cially excluded by hand. So it

was assumed that supergroups [7] are su�cient to be a super generalization

of corresponding groups. This approach was named \factorizing by nilpo-

tents" in physics [8, 9, 10] and applied in all previous supersymmetrizing

approaches [11].

However, as a matter of fact, all transformations on a set into itself or

all maps of a topological space preserving a de�nite structure form (without

invertibility demands) indeed a semigroup1 under composition [13, 14]. The

above \factorizing" procedure in the semigroup theory is well-known and is

named a Rees factorization [13].

In this paper we propose to reconsider the above ansatz and try to \fac-

torize by non-nilpotents", i.e. to study \non-group" properties of some su-

persymmetric models. We suggest that a consistent from abstract algebraic

viewpoint way is simultaneous transition from space to superspace and from

transformation or topological groups to corresponding supersemigroups: \su-

1Moreover, in physical applications \... impossibility to restrict ourselves by only in-

vertible transformations is clear"([12], p.40)
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per" generalization of the physical theory should be accompanied by \semi"

generalization of its mathematics as a whole. Therefore, necessary super

analogs of groups are really supersemigroups, and not supergroups. Thus we

can paraphrase: super-nature implies semi-symmetry (cf. [4], p. 4).

In global sense supersymmetric theory should have semigroup structure,

while the observable sector at present energies can be satisfactorily described

by its invertible group part [3]. Nevertheless, it should not be restricted with

the investigations of the latter2, because its properties are connected with

ones of the rest (ideal) part [13, 12].

>From another side in superstring uni�ed theories [3, 4] a special class

of reduced mappings of two-dimensional (1j1) complex superspace, namely

superconformal transformations [16, 17] play main and fundamental role

[18, 19]. In the local approach to super Riemann surfaces represented as col-

lections of open superdomains the superconformal transformations are used

as gluing transition functions [16, 20]. They also can be de�ned as a result

of the special reduction of the structure supergroup [21, 22]. Here using the

invertibility weakening ansatz [23] we consider an alternative tangent space

reduction, which leads to possible extensions of N = 1 superconformal trans-

formations and to new transformations (see also [24]). We present a new

parametrization of superconformal group is which allows us to extend it to

a semigroup and to unify the description of old and new transformations.

We use the functional approach to superspace [25, 26] which admits ex-

istence of nontrivial topology in odd directions [27] and can be suitable for

physical applications.

2 Preliminaries

A (pjq)-dimensional superspace K pjq over � (in the sense of [25]) is the even

sector of the direct product �
p

0 � �
q

1, where � be a commutative Banach

Z2-graded superalgebra [7, 9] over a �eld K (where K = R; C or Qp) with

a decomposition into the direct sum: � = �0 � �1: The elements a from

�0 and �1 are homogeneous and have the �xed even and odd parity de�ned

as jaj
def
= fi 2 f0; 1g = Z2j a 2 �ig. The elements X := (x1 : : : xp) 2 �

p

0 and

� := (�1 : : : �q) 2 �
q

0 serve as coordinates in the superspace K pjq .

2For mathematical argumentation of replies to the question \why study semigroups"

see [15].
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The even homomorphism mb : � ! B , where B is a purely even algebra

over K , is called a body map [25]. If there exists an embedding n : B ,! � such

that mb � n = id, then � admits the body and soul decomposition � = B � S,

and a soul map can be de�ned as ms : � ! S. Usually the isomorphism

B �= K is implied (which is not necessary in general and can lead to very

nontrivial behavior of the body).

In case that � is a Banach algebra (with a norm jj�jj) soul elements are

quasinilpotent [28], which means 8a 2 S; lim
n!1

jjajj
1=n

= 0. But quasinilpo-

tency of the soul elements does not necessarily lead to their nilpotency

(8a 2 S9n; an = 0) for the in�nite-dimensional case [29]. In particular,

if � = � (N) is a Grassmann algebra with N anticommuting generators �i
such that �i�k = ��k�i i; k 2 N , then l1norm of an element a 2 � ; a =

P
i2N

ci�i

is de�ned by the expression jjajj :=
P
i2N

jcij.

These facts allow us to consider noninvertible morphisms on a par with

invertible ones (in some sense), which gives, in proper conditions, many in-

teresting and nontrivial results (see [23, 30]).

3 Superanalytic N = 1 transformations

Locally (1j1)-dimensional superspace C 1j1 in the coordinate language is de-

scribed by the pair Z = (z; �), where z is an even coordinate and � is an

odd one. In above de�nition of superspace there exist soul parts in the even

coordinate z = zbody + zsoul; zbody = mb (z) ; zsoul
def
= z� zbody, where mb is the

body map [25] vanishing all nilpotent generators. The body map acts on the

coordinates as follows mb (z) = zbody; mb (�) = 0. This allows one to consider

non-trivial soul topology in even directions on a par with odd ones [27].

Using holomorphy ~z = ~z (z; �) ; conditions a general superanalytic (SA)

transformation TSA : C 1j1 ! C 1j1 can be presented as(
~z = ~z (z; �) ;
~� = ~� (z; �)

(1)

which does not contain dependence of complex conjugated coordinates. Tak-

ing into account nilpotence of the odd coordinate �2 = 0 we obtain(
~z = f (z) + � � � (z) ;
~� =  (z) + � � g (z) ;

(2)
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where four component functions f (z) ; g (z) : C 1j0 ! C 1j0 and  (z) ; � (z) :

C 1j0 ! C 0j1 satisfy supersmooth conditions generalizing C1 ([25]). Here and

in the following we denote even functions and variables by Latin letters and

odd ones by Greek letters, and remind that point (�) denotes a product in

underlying Grassmann algebra.

By de�nition the odd functions  (z) ; � (z) are noninvertible. So the in-

vertibility of the whole superanalytic transformations transformation (1) is

controlled by the even functions f (z) ; g (z). Usually they are chosen invert-

ible [16]. Here we will not restrict their invertibility and consider both cases

on a par.

De�nition 1 Sets of invertible and noninvertible transformations C
1j1 !

C 1j1 (2) form a semigroup of superanalytic transformations TSA.

The invertible transformations are in its subgroup, while the noninvertible

ones are in an ideal [23, 30].

De�nition 2 Invertible SA transformations are de�ned by the conditions

mb [f (z)] 6= 0; mb [g (z)] 6= 0.

De�nition 3 Hal�nvertible SA transformations are de�ned by mb [f (z)] =

0; mb [g (z)] 6= 0.

De�nition 4 Noninvertible SA transformations are de�ned by mb [f (z)] = 0.

Remark. The hal�nvertible SA transformations can be resolved only under �

and not under z.

Obviously we can use the component functions from (2) for parametriza-

tion of the semigroup of SA transformations TSA.

De�nition 5 An element s of a superanalytic semigroup SSA is parametrized

by the four (
f �

 g

)
def
= s 2 SSA; (3)

and the action in SSA is(
f1 �1
 1 g1

)
�

(
f2 �2
 2 g2

)
=
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8>>><>>>:
f1 � f2 +  2 � �1 � f2 f 01 � f2 � �2 + g2 � �1 � f2

+�01 � f2 � �2 �  2
 1 � f2 +  2 � g1 � f2  01 � f2 � �2 + g2 � g1 � f2

+g01 � f2 � �2 �  2

9>>>=>>>; : (4)

where

f1 � f2 = f1 (f2 (z)) (5)

and the prime (0) denotes di�erentiation by argument.

The associativity in SSA

s1 � (s2 � s3) = (s1 � s2) � s3 (6)

is not trivial for (4) and needs to be proved.

Proposition 6 The multiplication law (4) is associative.

Proof. The relation (6) consists of four relations corresponding to four entries

in (3). Using (4) for 1-1 element we �nd

s1 � (s2 � s3) j1�1 = f1 � (f2 � f3 +  3 � �2 � f3)

+ ( 2 � f3 +  3 � g2 � f3) � �1 � (f2 � f3 +  3 � �2 � f3) :

Opening brackets and expanding in Taylor series and taking into account

nilpotence of entries we derive

s1 � (s2 � s3) j1�1 = f1 � f2 � f3 +  3 � �2 � f3 � f
0
1 � f2 � f3

+ 2 � f3 � �1 � f2 � f3

+ 3 � g2 � f3 � �1 � f2 � f3

+ 2 � f3 � �
0
1 � f2 � f3 �  3 � �2 � f3:

Then we group the elements in di�erent manner and obtain

s1 � (s2 � s3) j1�1 = (f1 � f2 +  2 � �1 � f2) � f3

+ 3 � (f
0
1 � f2 � �2 + �01 � f2 � �2 �  2 + g2 � �1 � f2) � f3

= (s1 � s2) � s3j1�1:

Analogous computations can be performed for other elements, which

proves the associativity of (4) and the fact that the parametrization (3) gives

actually a semigroup. 2
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Remark. The multiplication (4) contains two products: superposition (5)

and product in underlying Grassmann algebra (�). Therefore SA semigroup

belongs nor to the class of continuous functions [31, 32, 33], neither to the

class of multiplicative semigroups [34, 35].

The presence of two multiplications, zero divisors and nilpotents makes

the analysis of abstract properties of SA semigroup (and superconformal

semigroup considered below) much more complicated as against well studied

function semigroups [31, 32, 33].

Proposition 7 A two side identity in SSA is

e =

(
z 0

0 1

)
(7)

and a two side zero is the matrix (3) having zero entries.

Proof. It can be easily checked using (4). 2

Consider the homomorphism ' of SA semigroup SSA on the semigroup

of superanalytic transformations TSA, i.e. ' : SSA ! TSA.

Proposition 8 As it should be ker' = e .

In studies of supernumber systems containing zero divisors and nilpo-

tents one usually says the magic words "factorizing by nilpotents" or "mod-

ulo nilpotents" and forget about additional exotic properties arising from

thorough consideration of the latter. In function systems under study the

situation is more delicate and needs additional abstract investigations.

For instance, in SA semigroup SSA along the standard e and z we are

able to introduce element dependent "local" identities and zeroes.

De�nition 9 For a given element s of SA semigroup local left, right and

two sided identities eleft
s
; eright

s
; es 2 SSA are de�ned by

eleft
s

� s = s; (8)

s � eright
s

= s; (9)

es � s � es = s: (10)
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De�nition 10 For a given element s of SA semigroup local left, right and

two sided zeroes zleft
s
; zright

s
; zs 2 SSA are de�ned by

zleft
s

� s = zleft
s
; (11)

s � zright
s

= zright
s

; (12)

zs � s � zs = zs: (13)

The local identities and zeroes are sets of elements from SSA and can be

found from corresponding systems of functional di�erential equations, e.g.

for eleft
s

from (8) in component form we have

f1 � f2 +  2 � �1 � f2 = f2;

 1 � f2 +  2 � g1 � f2 =  2;

f 01 � f2 � �2 + �01 � f2 � �2 �  2 + g2 � �1 � f2 = �2;

 01 � f2 � �2 + g01 � f2 � �2 �  2 + g2 � g1 � f2 = g2:

(14)

Example. Let s =

(
z2 �

� z�1

)
, then eleft

s
=

(
z2 �

� z�1

)
.

To stress the di�erence from the function semigroup case we consider

the left zeroes. From the multiplication law (5) it follows that for function

semigroups the role of left zeroes play constant mappings

f0 (z) : z ! cf = const: (15)

because 8g (z) ; f0 � g = f0 (g (z)) = cf = f0. Let us take an element s0 of

SA semigroup having analogous to (15), i.e.

s0 =

(
f0 �0
 0 g0

)
: (16)

Then from (4) we have

s0 � s =

(
f0 �0
 0 g0

)
�

(
f �

 g

)
=

(
cf + c� � g c� � g

c + cg �  cg � g

)
; (17)

and so s0 � s 6= const as opposite to the function semigroup case [36, 33].

While comparing the SA multiplication (4) with matrix semigroup mul-

tiplication [37, 38], we notice that the set of lower triangle supermatrices (3),
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i.e. elements having � = 0, form a subsemigroup as usual, however the set

of upper triangle ones having  = 0 does not form any subsemigroup due to

presence of the middle term in 2-2 element of (4).

By means of SA transformations (2) one can construct a superanalytic

supermanifold MSA in the standard manner ([25, 8]). The component func-

tions play the role of gluing transition functions. Thus, let MSA = [U� ,

where U� are superdomains covering MSA. Its structure is fully determined

by four transition functions f�� (z�) ; ��� (z�) ; g�� (z�) ;  �� (z�) describing

SA transformation Z� ! Z� on the intersection U� \ U�.

Proposition 11 On triple overlaps U� \U� \U the transition functions of

SA supermanifold satisfy the consistency conditions

f� = f�� � f� +  � � ��� � f�;
�� = f 0

��
� f� � �� + g� � ��� � f� + �0

��
� f� � �� �  � ;

g� = f 0
��
� f� � �� + g� � g�� � f� + g0

��
� f� � �� �  � ;

 � =  �� � f� +  � � g�� � f�:

(18)

Proof. Immediately follows from (4). 2

3.1 Super Jacobian

Here we introduce an analog of Berezinian (super Jacobian) for noninvertible

transformations.

Let us express the SA transformation (1) in the form of composition

1)

8<: ~z = F
�
z; ~�

�
;

~� = ~�;
2)

(
z = z;
~� = ~� (z; �) ;

(19)

where F
�
z; ~�

�
= ~z (z; �). The super Jacobian of the �rst transformation is

simply J1 = @F=@z. If

�

"
@~�

@�

#
6= 0; (20)

then, taking into account that � is odd, we �nd J2 =
�
@~�=@�

��1
[7]. So the

total super Jacobian is

JSA = J1J2 =
@F

@z
�

 
@~�

@�

!�1
: (21)
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To derive J1 we can write F
�
z; ~�

�
= ~z

�
z; �

�
z; ~�

��
, then we di�erentiate

~z
�
z; �

�
z; ~�

��
as a composite function

@F

@z
=
@~z

@z
+
@~z

@�
�
@�

@~�
�
@~�

@z
: (22)

Thus we obtain the full super Jacobian

JSA =

@~z
@z
� @~�

@z
� @�
@~�
� @~z
@�

@~�
@�

(23)

without the condition of invertibility of the transformation, i.e. without the

standard requirement mb [@~z=@z] 6= 0 [9]. Nevertheless, in [7] it was shown

that the expression of kind 23 (in matrix algebra) can be extended on the

case mb [@~z=@z] = 0 (hal�nvertible in our classi�cation).

Proposition 12 Formula (23) gives a super Jacobian for invertible and

hal�nvertible SA transformations.

Proof. From (2) we obtain

@~z

@z
= f 0 (z) + � � �0 (z) ; (24)

@~�

@�
= g (z) ; (25)

and therefore

mb

"
@~z

@z

#
= mb [f

0 (z)] = mb [f (z)] ;

mb

"
@~�

@�

#
= mb [g (z)] ;

so according to the De�nitions 2 and 3 the condition (20) covers invertible

and hal�nvertible transformations. 2

Corollary 13 For invertible and hal�nvertible SA transformations we have

J
inv;halfinv

SA
= Ber

�
~Z=Z

�
(26)
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with

Ber
�
~Z=Z

�
= BerP 0

SA
; (27)

where

P 0
SA

=

 
@~z
@z

@~�
@z

@~�
@z

@~�
@�

!
: (28)

In the noninvertible case when (20) does not satis�ed we cannot use (21)

and (22), and the relation (26) is not more valid. So we are forced to extend

the de�nitions (see also [39] for Jacobians of nonsupersymmetric nilpotent

mappings). The Jacobian J1 should be found from

Jnoninv1 �
@~�

@�
=
@~z

@z
�
@~�

@�
+
@~z

@�
�
@~�

@z
; (29)

and therefore instead of (23) and (26) we have

De�nition 14 The super Jacobian of noninvertible SA transformations is

de�ned by the equation

Jnoninv
SA

�

 
@~�

@�

!2
=
@~z

@z
�
@~�

@�
+
@~z

@�
�
@~�

@z
: (30)

Here the condition (20) is not necessary more . To �nd Jnoninv1 and Jnoninv
SA

one should solve thoroughly the equations (29) and (30) (i.e. by expanding

both sides in series of Grassmann algebra generators).

In terms of the component functions the super Jacobian of hal�nvertible

SA transformations (i.e. if mb [g (z)] 6= 0) has the form

JSA =
f 0 (z)

g (z)
+
� (z) �  0 (z)

g2 (z)
+ �

 
� (z)

g (z)

!0
(31)

which coincides with the Berezinian for the invertible and hal�nvertible trans-

formations. In case of noninvertible transformations we should use the fol-

lowing equation

Jnoninv
SA

� g2 (z) = f 0 (z) � g (z) + � (z) �  0 (z)

+� (�0 (z) � g (z)� � (z) � g0 (z)) (32)

which can be solved by special methods dealing with nilpotents ([28, 39]).
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Corollary 15 For invertible SA transformations the Berezinian exists and

invertible (mb [f (z)] 6= 0; mb [g (z)] 6= 0), for hal�nvertible the Berezinian

exists and noninvertible, for noninvertible SA transformations (mb [f (z)] =

0) we are able to exploit the super Jacobian JSA only.

To classify all SA transformations we should introduce some numerical

characteristic of noninvertibility.

De�nition 16 Noninvertibility index of SA transformation is de�ned by

indJSA
def
=
n
n 2 N j Jn

SA
= 0; Jn�1

SA
6= 0

o
: (33)

Obviously that indeed the inverse variable gives numerical measure of

noninvertibility.

De�nition 17 Noninvertibility degree of SA transformation is

m
def
=

1

indJSA
: (34)

Corollary 18 Invertible SA transformations have indJSA =1 and m = 0.

We exclude from consideration the trivial case JSA = 0.

Corollary 19 The "most noninvertible" SA transformations have indJSA =

2 and m = 1=2.

3.2 Tangent superspace and its reduction

Let we consider action of noninvertible transformation in some analog of

tangent superspace and consequences following from that. Among the latter

there are new noninvertible transformations which are dual in some sense

to the superconformal ones [23, 40]. The invertible case is studied in detail

[16, 41, 4], therefore we concentrate our attention on new features connected

with noninvertibility, trying simplify the consideration for clarity.

The tangent superspace in C
1j1 is de�ned by the standard supersymmetric

basis f@; Dg, where D = @�+�@; @� = @=@�; @ = @=@z. The dual cotangent

space is spanned by 1-forms fdZ; d�g, where dZ = dz + �d� (the signs as in

[16]). In these notations the supersymmetry relations are D2 = @; dZ2 = dz.
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The semigroup of SA transformations TSA acts in tangent and cotangent

superspaces by means of the tangent space matrix PSA as 
@

D

!
= PSA

 
~@
~D

!

and �
d ~Z; d~�

�
=
�
dZ; d�

�
PSA;

where

PSA =

 
@~z � @~� � ~� @~�

D~z �D~� � ~� D~�

!
: (35)

Proposition 20 The exterior di�erential d = dZ@+d�D is invariant under

SA transformations.

Proof. We have

d =
�
dZ; d�

� @

D

!
=
�
dZ; d�

�
PSA

 
~@
~D

!

=
�
d ~Z; d~�

� ~@
~D

!
= ~d (36)

2

Remark. We note that in (36) the invertibility is not used.

Proposition 21 Ber
�
~Z=Z

�
= BerPSA.

Proof. We observe that 
@~z
@z

@~�
@z

@~�
@z

@~�
@�

!
=

 
1 0

�� 1

!
�

 
@~z � @~� � ~� @~�

D~z �D~� � ~� D~�

! 
1 0
~� 1

!
: (37)

Then from (37), (27), (28) and (35) it follows

Ber
�
~Z=Z

�
= BerP 0

SA
= Ber

  
1 0

�� 1

!
� PSA �

 
1 0
~� 1

!!

= Ber

 
1 0

�� 1

!
� BerPSA � Ber

 
1 0
~� 1

!
= BerPSA:
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2

In case of invertible SA transformations the matrix PSA de�nes the struc-

ture of a supermanifold for which these transformations play the part of

transition functions. Therefore di�erent reductions of the matrix PSA give

us various additional structures, but only one of them is usually considered

[21], because only one of them can be invertible.

Taking into account noninvertibility we analyze all of them via vanishing

every of the PSA entries in turn, which gives in general 4 possibilities:

1) D~� = 0; (38)

2) @~� = 0; (39)

3) � � D~z �D~� � ~� = 0; (40)

4) Q � @~z � @~� � ~� = 0: (41)

which are arranged according to the increasing of their nontriviality. The

�rst two cases (38) and (39) are most simple, but they have some interesting

peculiarities and will be considered separately.

4 Superconformal-like transformations

We here consider two other possible reductions (40) and (41) together.

In [24] it was shown that there exist two nontrivial reductions of any

supermatrix (not one, triangle, as in the invertible case). We apply this

result to PSA (35).

Assertion 22 The condition

mb

h
D~�
i
6= 0 (42)

coincides with hal�nvertibility of the SA transformation (3).

Proof. Indeed we observe from (37) that the Berezinian can be presented in

two additive parts

BerPA =
@~z � @~� � ~�

D~�
+

�
D~z �D~� � ~�

�
@~��

D~�
�2 =

Q

D~�
+

� � @~��
D~�
�2 : (43)
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only if mb
h
D~�

i
6= 0. Then from the component form (2) we derive D~� =

g (z)+�� (z) and so mb
h
D~�
i
= mb [g (z)], therefore �

h
D~�

i
6= 0) � [g (z)] 6= 0

which is really the hal�nvertibility condition (3). 2

Proposition 23 The Berezinian of superanalytic transformations in case

D~� 6= 0 is described by the formula

BerPSA = D

�
D~z

D~�

�
: (44)

Proof. After di�erentiating of the right hand side and using D2 = @ we derive

D

�
D~z

D~�

�
=
@~z �D~� +D~z � @~��

D~�
�2 =

@~z �D~� + ~� � @~� �D~� � ~� � @~� �D~� +D~z � @~z�
D~�

�2 =

�
@~z + ~� � @~�

�
�D~� �

�
D~z � ~� �D~�

�
� @~��

D~�
�2 =

Q �D~� �� � @~��
D~�

�2 ;

which coincides with (43). 2

Using the Berezinian addition theorem [24] we obtain the formula

BerPA = BerPS + BerPT ; (45)

where

PS
def
=

 
@~z � @~� � ~� @~�

0 D~�

!
=

 
Q @~�

0 D~�

!
; (46)

PT
def
=

 
0 @~�

D~z �D~� � ~� D~�

!
=

 
0 @~�

� D~�

!
: (47)

Denote sets of the matrices (46) and (47) by PS and PT respectively. We

stress that till now there are no conditions imposed on the transformations

and they are superanalytic (1).

Superconformal-like transformations arise when we project the Berezinian

on one of the terms in (43) or the set of superanalytic matrices PSA on PS

or PT . It is seen that there exit two kinds of superconformal-like transfor-

mations.

21



De�nition 24 Invertible, hal�nvertible and noninvertible superconformal

transformations (SCf) are de�ned by the condition

� = D~z �D~� � ~� = 0: (48)

De�nition 25 Hal�nvertible and noninvertible transformations twisting par-

ity of tangent space
3
(TPt) are de�ned by

Q = @~z � @~� � ~� = 0: (49)

If we apply the conditions (49) and (48) to the matrices PS and PT we

derive

PSCf
def
= PSj�=0 =

 
QSCf @~�

0 D~�

!
; (50)

PTPt
def
= PT jQ=0 =

 
0 @~�

�TPt D~�

!
; (51)

where QSCf = Qj�=0 and �TPt = �jQ=0.

The condition � = 0 (48) gives us in the invertible case the ordinary su-

perconformal (SCf ) transformations TSCf [16] and the reduced matrix PSCf
(50) is a result of the standard reduction of structure supergroup (see e.g.

[21]). Another condition Q = 0 (49) leads to the degenerated noninvertible

transformations TTPt twisting parity of the standard tangent space (TPt )

(see [23] and below). The alternative reduction [24] of the tangent space

supermatrix PA gives us the antitriangle supermatrix PTPt (51). The dual

role of SCf and TPt transformations is clearly seen from the Berezinian ad-

dition theorem (45 ) (see [24]) and the projections (50) and (51). Since SCf

transformations can be viewed as a superanalog of complex structure [42, 43]

, we can treat TPt transformations as another odd N = 1 superanalog of

complex structure in a certain extent.

Remark. It is more natural to call TPt transformations anti-SCf transforma-

tions due to the following analogy with the nonsupersymmetric case. For an

ordinary 2�2 matrix P =

 
a b

c d

!
we obviously have the following identity

detP = det

 
a 0

0 d

!
+ det

 
0 b

c 0

!
= detPDiag + detPAntidiag, which can

3
The reason of such name will be seen below.
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be called a "determinant addition formula". In the complex function theory

the �rst matrix describes the tangent space matrix of holomorphic mappings

and the second one|of antiholomorphic mappings. In supersymmetric case

the supermatrices PS and PT play the role similar to one of the nonsuper-

symmetric diagonal and antidiagonal matrices in ordinary theory as it is

seen from (45). Therefore, if PSCf generalizes the tangent space matrix of

holomorphic mappings, supermatrices PTPt could be considered as respective

generalization for antiholomorphic mappings.

Corollary 26 Evidently,

BerPSjQ=0 = BerPT j�=0 = Ber

 
0 @~�

0 D~�

!
= 0: (52)

Using this relation together with (50) and (51) we can project the Berezinian

addition equality (45) on the superconformal-like transformations TSCf and

TTPt as follows

BerPA =

(
BerPS + BerPT ; � = 0;

BerPS + BerPT ; Q = 0:
= (53)(

BerPSCf + 0;

0 + BerPTPt;
=

(
BerPSCf ; (SCf )

BerPTPt; (TPt )

After corresponding projections for Q and � we have

QSCf =
�
@~z � @~� � ~�

�
j�=0 =

�
D~�

�2
; (54)

�TPt =
�
D~z �D~� � ~�

�
jQ=0 = @�~z � @�~� � ~�: (55)

It is remarkable to notice the similarity of the formulas (54) and (55),

which proves us once more the duality between SCf and TPt transformations.

Using (54) one obtains [21]

PSCf =

0@ �
D~�

�2
@~�

0 D~�

1A : (56)
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If mb
h
D~�
i
6= 0 then BerPSCf can be simply determined from (56), and it

is [16]

BerPSCf = D~�: (57)

In noninvertible case mb
h
D~�

i
= 0 the Berezinian cannot be de�ned, but

we can accept (57) as a de�nition of the Jacobian of noninvertible SCf trans-

formations (see [23, 44]).

De�nition 27 The Berezinian of noninvertible SCf transformations is

BerP noninv

SCf
= D~�: (58)

>From (55) we derive

PTPt =

 
0 @~�

�TPt D~�

!
(59)

(cf. (46)). If �
h
D~�
i
6= 0 the Berezinian of PTPt can be determined as

BerPTPt =
�TPt � @~��
D~�

�2 : (60)

>From (55) it follows that D�TPt = �
�
D~�
�2

, and therefore @�TPt =

�2 �D~� � @~�, which gives

BerPTPt =
@�TPt ��TPt

2
�
D~�

�3 : (61)

Since �TPt is odd and so nilpotent, BerPTPt is also nilpotent and pure soul.

We observe that the even and odd superfunctions Q = Q (z; �) and

� = �(z; �) play an important role in possible reductions of superanalytic

structure, and therefore it is worth to study them in more detail. A general

relation between Q and � is

Q�D� =
�
D~�

�2
: (62)
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>From it and (43) we derive another useful formula for the Berezinian of

general SA transformations (if �
h
D~�

i
6= 0)

BerPSA = D~� +D

�
�

D~�

�
= D

�
~� +

�

D~�

�
(63)

in which the SCf condition � = 0 is seen manifestly.

5 Degenerated transformations

Let us consider the intersection PD = PS \PT which is a set of the degen-

erated matrices PD of the form

PD
def
=

 
0 @~�

0 D~�

!
; (64)

which depend on the odd coordinate � transformation only. The degenerated

matrix of the shape (64) can be obtained by projection from PS and PT
matrices. It means that, if the transformation of the odd sector (second line

in (2)) is given, i.e. the functions  (z) and g (z) are �xed, the conditions (49)

and (48) determine behavior of the even sector (functions f (z) and � (z)).

In this case, since the degenerated matrix PD depends on the odd sector

transformation only, we obtain

PD = PSjQ=0 = PT j�=0: (65)

If D~� = 0, then ~� = � = const and also @~� = D
�
D~�
�
= 0, therefore

the odd sector becomes degenerated being a left zero and constant mapping

similarly to 15 (such mappings form restrictive semigroups, see e.g. [45]).

Nevertheless, the whole SA transformation (2) is not a left zero due to

(17) and has the following form(
~z = f (z) + � � � (z) ;
~� = �:

(66)

These transformations are noninvertible (due to degenerated odd sector)

and form a semigroup Deg
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It is remarkable that under the degenerated (Deg) transformations de-

�ned by (65) the both cocycle relations hold valid simultaneously. Also, Deg

transformations form a subsemigroup TDeg in TSA, because of PD �PD � PD.

Moreover, TDeg is an ideal in TSA, TSCf and TTPt since PD � PA � PD,

PD � PS � PD and PD � PT � PD. The degenerated transformations are

characterized by one odd function  (z) only and by the absence of the �-

dependence of the transformation Z ! ~Z (see (55)), so that(
~zDeg = f (z) ;
~�Deg =  (z) ;

(67)

where f 0 (z) =  0 (z) (z). The multiplication in TDeg coincides with the

second row of (69).

6 Alternative parametrization

The reduction conditions (49) and (48) �x 2 of 4 component functions form

(2) in each case. Usually [16] SCf transformations TSCf are parametrized

by

 
f

 

!
, while other functions are found from (49) and (48). However,

the latter can be done for invertible transformations only. To avoid this

di�culty we introduce an alternative parametrization by the pair

 
g

 

!
,

which allows us to consider SCf and TPt transformations in a uni�ed way

and include noninvertibility. Indeed, �xing g (z) and  (z) we �nd for other

component functions of (2 ) the equations(
f 0
n
(z) =  0 (z) (z) + 1+n

2
g2 (z) ;

�0
n
(z) = g0 (z) (z) + ng (z) 0 (z) ;

(68)

where n =

(
+1; SCf,

�1; TPt,
can be treated as a projection of some "reduction

spin" switching the type of transformation. So the reduced transformation

of the even coordinate (see (2)) should contain this additional index, i.e.

z ! ~zn (at this point some additional to (45) analogy with complex structure

is transparent). Since f 0�1 (z) =  0 (z) (z) is nilpotent, TPt transformations
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are always noninvertible and high degenerated after the body mapping. The

uni�ed multiplication law is 
h

'

!
n

�

 
g

 

!
m

=

 
g � h � fm + �m �  � h

0 � fm + �m � '
0 � fm

' � fm +  � h � fm

!
; (69)

where (�) is transformation composition and (�) is function composition.

For "reduction spin" projections we have only two de�nite products (+1) �

(+1) = (+1) and (+1) � (�1) = (�1). The �rst formula is a consequence of

PS �PS � PS (see (46)), which is simple manifestation of the fact that SCf

transformations TSCf form a substructure [21], i.e. a subsemigroup TSCf of

SA semigroup TSA (in the invertible case|a subgroup [16]).

7 Nonlinear realizations of superconformal-

like transformations

The study of \nonlinear" SCf and TPt transformations is interesting and

worthwhile due to several reasons. >From one side, some of the �rst papers

on supersymmetry [1, 46] were written in terms of its nonlinear realization

(for nonsupersymmetric background of the method see [47, 48, 49]). Further,

there were hopes that in the framework of nonlinear realizations one could

solve the problems with superpartners and spontaneously supersymmetry

breaking in realistic models [50, 51]. From another side, the nonlinearly re-

alized two dimensional superconformal symmetry [52, 53] were used in the

theory of superstrings [54]. In addition to these investigations we will study

�nite transformations and include noninvertibility. We also consider the con-

nection between \linear" and \nonlinear" realizations [55, 56, 57], but from

the pure kinematical viewpoint, and give a transparent diagram presentation

for it in our special case.

7.1 The motion of odd curve in C
1j1

According to the interpretation of [58] we can study the motion of the curve

� = � (z) in C 1j1 . So that using the superanalytic transformations (2) we

obtain

~z = f (z) + � (z) � � (z) ; (70)
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~� (~z) =  (z) + � (z) � g (z) ; (71)

where the second equation reects the Einstein style of transformations. In

the next paragraph we will derive the equation (71) from the general dia-

grammatic approach.

In four dimensional case the function � (z) is usually called Akulov-Volkov

�eld [50, 58] and in physical applications it plays a role of Nambu-Goldstone

fermion [46, 59] (and therefore it is also called goldstino).

As it is seen from (71) the transformation of � (z) is highly nonlinear. The

relations of such kind always appear in nonlinear group realizations, and the

goldstino � (z) describes supersymmetry breaking [60, 61, 62].

To �nd the goldstino transformation we expand ~� (~z) in series and iterate

exploiting nilpotency

~� (f (z)) =  (z) + � (z) � g (z)� ~�0 (f (z)) � � (z) � � (z) : (72)

In case f�1 exists, we derive the �nite superanalytic transformation of

� (z)
~� =  � f�1 + � � f�1 � g � f�1 � ~�0 � � � f�1 � � � f�1 ; (73)

where f � g = f (g (z)).

It is not possible to �nd a general solution of the equation (72), and

therefore we consider some particular cases.

Example. (Global SUSY) The global supersymmetry in C 1j1 corresponds to

the following choice

f (z) = z; g (z) = 1; � (z) = ";  (z) = "; (74)

where " is a constant odd parameter. Then from (70) and (71) we have

~�Glob (z) = "+ � (z)� ~�0
Glob

(z) � � (z) � " : (75)

This equation is also di�cult to solve manifestly without any additional

requirements. But for in�nitesimal transformations we obtain

�"�Glob (z) = ~�Glob (z)� � (z) = " � [1 + � (z) � �0 (z)] (76)

which satisfy the conventional supersymmetry algebra

[�"; ��]�Glob (z) = 2"� � � (z) � �0 (z) (77)
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in accordance with [46, 59].

Remark. In �nite global case we put

~�
fin

Glob
(z) = ~�Glob (z) + � (z) ; (78)

where ~�Glob (z) is given by (76). Inserting (78) into (75) one derives the

equation for � (z) as follows

�0 (z) � " � � (z) = � (z) (79)

which can be solved by expanding on nilpotents in a given underlying super-

algebra.

Let us consider superconformal-like transformations parametrized by two

functions g (z) ;  (z) (see Section 4). Then starting from the same function

� (z) we can in general �nd ~�n (z) from (71) as two separate solutions (corre-

sponding to the \reduction spin" (68) projection n) of the following system

of equations8>><>>:
~�n
�
f (g )
n

(z)
�

=  (z) + � (z) � g (z)� ~�0
n

�
f (g )
n

(z)
�
� � (z) � �(g )

n
(z) ;

f (g )0
n

(z) =  0 (z) (z) + 1+n
2
g2 (z) ;

�(g )0
n

(z) = g0 (z) (z) + ng (z) 0 (z) ;

(80)

where prime denotes derivative by argument, n = +1 corresponds to SCf

transformations and n = �1 - to TPt transformations, and TPt are so called

noninvertible transformations twisting parity of tangent space (see (68) and

[23, 40]).

De�nition 28 We call ~�SCf (z) = ~�n=+1 (z) a SCf goldstino, and ~�TPt (z) =
~�n=�1 (z) a TPt goldstino.

As previously, it is not possible to solve the system (80) manifestly in

general case.

Remark. It is necessary to stress that equations (80) do not depend on in-

vertibility properties of superconformal-like transformations [44, 23] and only

they can be used to �nd TPt goldstino evolution (n = �1 case).
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Example. (In�nitesimal SCf) Let we parametrize in�nitesimal SCf transfor-

mations by

f (z) = z + r (z) ; g (z) = 1 +
1

2
r0 (z) ; � (z) = " (z) ;  (z) = " (z) ; (81)

where r (z) ; " (z) are in�nitesimal. Then, from (80) we obtain

�r;"�SCf (z) = " (z) � [1 + � (z) � �0 (z)] +
1

2
r0 (z) � � (z)� r (z) � �0 (z) (82)

in agreement with [53].

8 Connection between linear and nonlinear

realizations from diagrammatic viewpoint

The relationship between linear and nonlinear realizations [55, 57] plays an

important role in understanding of the spontaneously supersymmetry break-

ing mechanisms [56]. The interest to the study of N = 1 superconformal-like

transformations is stipulated for the fact that nonlinearly realized in�nitesi-

mal SCf transformations [53, 63] are widely used in superstring embeddings

[54, 64] and hierarhies [65, 66]. Here we investigate them in the noninvert-

ible �nite case and from some another kinematical viewpoint using a clear

diagrammatic approach (which is applicable to any general multidimensional

case as well).

Let us consider the following diagram

ZA

Z

~Z

ZH

A
6

G

W-Z

H

A-V

-

-

6
B

(83)

where A : Z ! ZA; G : ZA ! ~Z; B : ZH ! ~Z; H : Z ! ZH (and

Z = (z; �)) are superanalytic transformations (1). The transformation G

plays the role of the linear transformation of Wess-Zumino type and the

nonlinear transformation H (from a subgroup) is of Akulov-Volkov type,

while A and B correspond to the transformations with Goldstone �elds as

parameters (describing cosets) [49, 47].
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8.1 Global 2D supersymmetry

According to the general prescriptions [55, 48] we can take G as a global

linear supersymmetry transformation in two-dimensional case

G :

(
~z = zA + �A � ";
~� = "+ �A;

(84)

then we take H as an ordinary conformal transformation with composite

parameters to be �nd and interpret A and B as coset transformations with

the local odd parameters � (z) and ~�Glob (zH)

Example.

A :

(
zA = z + � � � (z) ;

�A = � (z) + �;
B :

(
~z = zH + �H � ~�Glob (zH) ;
~� = ~�Glob (zH) + �H ;

(85)

Indeed, the commutativity of the diagram (83) gives us the equation of

� (z) evolution similar to (71) and (75) and equations for parameters of H in

the following way.

De�nition 29 A \linear" transformation G is representable by a \nonlin-

ear" transformation H, i� the diagram (83) is commutative

G � A = B � H: (86)

Remark. In the group theory this construction is related to the induced rep-

resentation [67]. But here we, in general, do not demand invertibility of the

entries in (86) and consider �nite transformations.

Using (86) we obtain the relations

~zG�A = ~zB�H;
~�G�A = ~�B�H

(87)

which are the representability condition (86) in coordinate language (as 4

component equations after expanding in �).

In the particular case of global supersymmetry (84) the equations 87 are

zA + �A � " = zH + �H � ~�Glob (zH) ;

�A + " = ~�Glob (zH) + �H :
(88)
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After exploiting (85) we derive parameters of the conformal transforma-

tion

H :

(
zH = z + � (z) � ";

�H = �;
(89)

and the evolution equation for

~�Glob (zH) = "+ � (z) : (90)

then expanding on nilpotents

"+ � (z) = ~�Glob (z) + ~�0
Glob

(z) � � (z) � " (91)

which coincides with (75). Thus, the relations (86) and (87) are initial in

determining Goldstone �eld evolution.

8.2 The ��-rule in two dimensions

If A is invertible, the representability condition (86) becomes

G = B � H � A�1: (92)

In the global case invertibility of A is evident, then from (85) we derive

A�1 :

(
z = zA � �A � � (zA) ;
� = �� (zA) + �A [1 + � (zA) � �

0 (zA)] :
(93)

This explains nature of the well-known \�� rule" [55, 68] while comparing

super�elds of linear and nonlinear realizations [69]. The relation (92) is a

general form of the \splitting trick" [55, 56] according to which any linear

super�eld can be presented as a set of nonlinear transforming components.

The analog of this trick for a noninvertible �nite case is the representability

condition (86), and it is not solved under A. Thus, for a super�eld � (z; �)

we can write

�H� (z; �) = � (z + � (z) � "; �)� � (z; �) = " � � (z) �
@� (z; �)

@z
; (94)

where �H is in�nitesimal \nonlinear" transformation H corresponding to G.
If we use (93) and put

� (z; �) = � (zA � �A � � (zA) ;�� (zA) + �A [1 + � (zA) � �
0 (zA)])

def
= �A (zA; �A) ; (95)
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then for in�nitesimal \linear" transformation G we obtain the standard su-

persymmetry relation

�G�A (zA; �A) = � (zA + " � �A; �A + ")� �A (zA; �A) = " �QA�A (zA; �A) ;

(96)

where QA is an ordinary supertranslation (cf. [55]).

Now we are ready to prove the \reversed" splitting trick which mani-

festly follows from the representability condition (86) applied to global two

dimensional supersymmetry.

Proposition 30 Any super�eld � (z; �) transforming nonlinearly as in (94)

together with � (z) transforming as in (76) give a linearly (globally) trans-

formed super�eld (96).

Proof. We should prove that �� (z; �) = �G�A (zA; �A), where

�� (z; �)
def
= �H� (z; �) + �B� (z; �)� �A� (z; �) ;

and �H is given by (94). It follows from (85) that �B� �A describes changing

of � (z), therefore

�B� (z; �)� �A� (z; �) = �"�Glob (z) �
@� (z; �)

@�
:

So that from (76) we have

�� (z; �) = " �

 
� (z) �

@� (z; �)

@z
+ (1 + � (z) � �0 (z)) �

@� (z; �)

@�

!
:

Making change of variables (z; �)! (zA; �A) and using the relations

@� (z; �)

@z
= (1 + � � �0 (z)) �

@�A (zA; �A)

@zA
+ �0 (z) �

@�A (zA; �A)

@�A

and
@� (z; �)

@�
= �� �

@�A (zA; �A)

@zA
+
@�A (zA; �A)

@�A
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following from (85), we obtain

�� (z; �) = (� + � (z)) � " �
@�A (zA; �A)

@zA
+ " �

@�A (zA; �A)

@�A

= �GzA �
@�A (zA; �A)

@zA
+ �G�A �

@�A (zA; �A)

@�A
= �G�A (zA; �A) :

2

9 Nonlinear realization of general �nite N = 1

superconformal transformations

Let us consider the representability condition (86) for a general N = 1

superconformal-like transformations ZA ! ~Z which now play the role of

\linear" ones. According to Section 4 they can be parametrized by two func-

tions g (zA) and  (zA) and have the form

G :

(
~z = f (g )

n
(zA) + �A � �

(g )
n

(zA) ;
~� =  (zA) + �A � g (zA) ;

(97)

where
f (g )0
n

(zA) =  0 (zA) (zA) +
1+n
2
� g2 (zA) ;

�(g )0
n

(zA) = g0 (zA) (zA) + n � g (zA) 
0 (zA) ;

(98)

where n =

(
+1; SCf transformation,

�1; TPt transformation,
is a projection of "reduction spin"

switching the type of transformation (see also [40] for more details).

Then while trying to represent G in terms of nonlinear composition sim-

ilarly to the diagram (83) we face with the following restriction which is

consequence of the N = 1 superconformal-like multiplication law [40]. If T
is a superconformal-like transformation, then there are only two possibilities

in the composition z
T
! ~z

~T
! e~z
~TSCf � TSCf =

e~T SCf ;

~TTPt � TSCf =
e~T TPt:

(99)
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Therefore, we have only two possibilities to include TPt transformations

into the diagrammatic representation (83) as

GSCf � ASCf = BSCf � HSCf ; (100)

GTPt � ASCf = BTPt � HSCf : (101)

The �rst one is the nonlinear representation of N = 1 superconformal

group in analogy with the ordinary in�nitesimal invertible four-dimensional

case [55, 70] (and 86) in which ASCf and BSCf play the role of cosets.

Let us consider (100) in more detail. The exact shape of cosets ASCf and

BSCf can be taken as

ASCf :

(
zA = z + � � � (z) ;

�A = � (z) + �
q
1 + � (z) � �0 (z);

(102)

BSCf :

8<: ~z = zH + �H � ~� (zH) ;

~� = ~� (zH) + �H

q
1 + ~� (zH) � ~�0 (zH);

(103)

and for H we choose the following general parametrization

HSCf :

(
zH = p (z) ;

�H = � (z) + � � q (z)
(104)

Then, expanding the coordinate form (87) into components we obtain 4

corresponding equations for 4 unknown functions p (z) ; q (z) ; � (z) ; ~� (z)

p (z) + � (z) � ~� (p (z)) = f
(g )
+1 (z) + g (z) � � (z) �  (z) ; (105)

~� (p (z)) + � (z) �
q
1 + ~� (p (z)) � ~�0 (p (z)) =  (z) + g (z) � � (z) ; (106)

q (z) � ~� (p (z)) = � (z) � f
(g )0
+1 (z)+

g (z) �  (z) �
q
1 + � (z) � �0 (z);

(107)

q (z) �
q
1 + ~� (p (z)) � ~�0 (p (z)) = � (z) �  0 (z)+

g (z) �
q
1 + � (z) � �0 (z);

(108)

where f
(g )
+1 (z) is determined from (98).
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In case q (z) and g (z) are invertible, these equations have the following

solution for parameters of nonlinearH transformation in terms of parameters

of \linear" G transformation as

p (z) = f
(g )
+1 (z) + g (z) � � (z) �  (z) ; (109)

q (z) =
q
p0 (z); (110)

� (z) = 0; (111)

and for goldstino transformation rule

~� (p (z)) =  (z) + g (z) � � (z) ; (112)

that naturally coincides with the previous approach (72) with f (z) = f
(g )
+1 (z)

and � (z) = g (z) �  (z).
Therefore, H is the split N = 1 SCf transformation [71, 20]

HSCf :

(
zH = p (z) ;

�H = � �
q
p0 (z)

(113)

with the composite parameter p (z) from (109), which can be presented as

the following commutative diagram

ZA

Z

~Z

ZH

ASCf
6

GSCf

full

HSCf

split

-

-

6
BSCf

(114)

Thus, using the SCf goldstino �eld � (z) we have manifestly obtained a

nonlinear realization of general �nite SCf transformations.

Second relation (101) and the corresponding commutative diagram

ZA

Z

~Z

ZH

ASCf
6

GTPt

HSCf

-

-

6
BTPt

(115)
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have no such transparent meaning, because BTPt is noninvertible, and so

it cannot be a standard coset. Nevertheless, since the �nal answer for the

nonlinear transformation HSCf is known from the previous approach (80),

the noninvertible analog of coset BTPt can be found in principle from the

system of equations analogous to (105){(108).Let we write BTPt in the form

BSCf :

8<: ~z = f
(be�)
�1 (zH) + �H � �

(be�)
�1 (zH) ;

~� = ~� (zH) + �H � b (zH) ;
(116)

where

f
(be�)0
n (zH) = e�0 (zH) � e� (zH) + 1+n

2
� b2 (zH) ;

�
(be�)0
n (zH) = b0 (zH) � e� (zH) + n � b (zH) � e�0 (zH) ; (117)

and prime denotes derivative by argument. So the corresponding system of

equations now is

f
(be�)
�1 (p (z)) + � (z) � �

(be�)
�1 (p (z)) = f

(g )
+1 (z) + � (z) � �

(g )
+1 (z) ; (118)

~� (p (z)) + � (z) � b (p (z)) =  (z) + g (z) � � (z) ; (119)

� (z) � f
(be�)0
�1 (p (z)) + q (z) � �

(be�)
�1 (p (z)) = � (z) � f

(g )0
+1 (z)+

�
(g )
+1 (z) �

q
1 + � (z) � �0 (z);

(120)

� (z) � q (z) � ~�0 (p (z)) + q (z) � b (p (z)) = � (z) �  0 (z)+

g (z) �
q
1 + � (z) � �0 (z):

(121)

In case ASCf is invertible we can obtain

GTPt = BTPt � HSCf � A
�1
SCf

(122)

which gives an analog of nonlinear realization for noninvertible TPt trans-

formations.

Acknowledgments

The author is grateful to V. P. Akulov, A. Demichev, E. Ivanov, A. Kapust-

nikov, G. C. Kourinny, P. Van Nieuwenhuizen, B. V. Novikov, A. Pashnev,

J. M. Rabin, B. M. Schein, L. L. Vaksman, A. A. Voronov, for fruitful

conversations, useful comments and valuable remarks.

37



References

[1] Volkov D. V. and Akulov V. P.: On the possible universal neutrino

interaction, JETP Lett. 16 (1972), 621{624.

[2] Wess J. and Zumino B.: Supergauge transformations in four dimensions,

Nucl. Phys. B70 (1974), 39.

[3] Green M. B., Schwarz J. H., and Witten E.: Superstring Theory, Vol.

1,2, Cambridge Univ. Press, Cambridge, 1987.

[4] Kaku M.: Introduction to Superstrings, Springer-Verlag, Berlin, 1988.

[5] Gates S. J., Grisaru M. T., Rocek M., et al.: Superspace, Benjamin,

Reading, 1983.

[6] van Nieuwenhuizen P. and West P.: Principles of Supersymmetry and

Supergravity, Cambridge Univ. Press, Cambridge, 1989.

[7] Berezin F. A.: Introduction to Superanalysis, Reidel, Dordrecht, 1987.

[8] Witt B. S. D.: Supermanifolds, Cambridge Univ. Press, Cambridge,

1984.

[9] Leites D. A.: Introduction to the theory of supermanifolds, Russian

Math. Surv. 35 (1980), 1{64.

[10] Voronov T.: Geometric Integration on Supermanifolds, Gordon and

Breach, New York, 1991.

[11] Nelson P.: Lectures on supermanifolds and strings, in Particles, Strings

and Supernovae, (Jevicki A. and Tan C.-I., eds.), World Sci., Teaneck,

1989, pp. 997{1073.

[12] Ljapin E. S.: Semigroups, Amer. Math. Soc., Providence, 1968.

[13] Cli�ord A. H. and Preston G. B.: The Algebraic Theory of Semigroups,

Vol. 1, Amer. Math. Soc., Providence, 1961.

[14] Howie J. M.: An Introduction to Semigroup Theory, Academic Press,

London, 1976.

38



[15] Howie J. M.: Why study semigroups?, Math. Chronicle 16 (1987), 1{14.

[16] Crane L. and Rabin J. M.: Super Riemann surfaces: uniformization and

Teichm�uller theory, Commun. Math. Phys. 113 (1988), 601{623.

[17] Rosly A. A., Schwarz A. S., and Voronov A. A.: Geometry of supercon-

formal manifolds, Commun. Math. Phys. 119 (1988), 129{152.

[18] D'Hoker E. and Phong D. H.: A geometry of string perturbation theory,

Rev. Mod. Phys. 60 (1988), 917{1065.

[19] Rosly A. A., Schwarz A. S., and Voronov A. A.: Superconformal geom-

etry and string theory, Commun. Math. Phys. 120 (1989), 437{450.

[20] Friedan D.: Notes on string theory and two dimensional conformal �eld

theory, in Uni�ed String Theories, (Green M. and Gross D., eds.), World

Sci., Singapore, 1986, pp. 118{149.

[21] Giddings S. B. and Nelson P.: The geometry of super Riemann surfaces,

Commun. Math. Phys. 116 (1988), 607{634.

[22] Giddings S. B. and Nelson P.: Torsion constraints and super Riemann

surfaces, Phys. Rev. Lett. 59 (1987), 2619{2622.

[23] Duplij S.: On semigroup nature of superconformal symmetry, J. Math.

Phys. 32 (1991), 2959{2965.

[24] Duplij S.: On an alternative supermatrix reduction, Lett. Math. Phys.

37 (1996), 385{396.

[25] Rogers A.: A global theory of supermanifolds, J. Math. Phys. 21 (1980),

1352{1365.

[26] Vladimirov V. S. and Volovich I. V.: Superanalysis. 1. Di�erential cal-

culus, Theor. Math. Phys. 59 (1984), 3{27.

[27] Rabin J. M. and Crane L.: How di�erent are the supermanifolds of

Rogers and DeWitt?, Commun. Math. Phys. 102 (1985), 123{137.

[28] Ivashchuk V. D.: Invertibility of elements in in�nite-dimensional

Grassmann-Banach algebras, Theor. Math. Phys. 84 (1990), 13{22.

39



[29] Pestov V.: Soul expansion of G1 superfunctions, J. Math. Phys. 34

(1993), 3316{3323.

[30] Duplij S.: Some abstract properties of semigroups appearing in super-

conformal theories, Semigroup Forum 54 (1997), 253{260.

[31] Hsiang W. H.: Invertibility and monotonicity on function systems, An.

Inst. Math. Univ. Nac. Aut. Mexico 28 (1988), 27{45.

[32] Magill K. D.: Recent results and open problems in semigroups of con-

tinuous selfmaps, Russian Math. Surv. 35 (1980), 91{97.

[33] Schein B. M.: Relation algebras and function semigroups, Semigroup

Forum 1 (1970), 1{62.

[34] Gilmer R.: Multiplicative Ideal Theory, Dekker, New York, 1972.

[35] Cs�asz�ar A. and Th�ummel E.: Multiplicative semigroups of continuous

mappings, Acta Math. Hung. 56 (1990), 189{204.

[36] Magill K. D.: A survey of semigroups of continuous selfmaps, Semigroup

Forum 11 (1975), 1{189.

[37] Ponizovskii J. S.: On irreducible matrix semigroups, Semigroup Forum

24 (1982), 117{148.

[38] Putcha M. S.: Matrix semigroups, Proc. Amer. Math. Soc. 88 (1983),

386{390.

[39] Kulikov V. S.: Jacobian conjecture and nilpotent mappings, Steklov

Math. Inst. preprint, Moscow, math.AG/9803143, 1998.

[40] Duplij S.: Noninvertible N=1 superanalog of complex structure,

J. Math. Phys. 38 (1997), 1035{1040.

[41] Grosche C.: Seilberg supertrace formula for super Riemann surfaces,

analytic properties of Selberg super Zeta-functions and multiloop con-

tributions for the fermionic string, Commun. Math. Phys. 133 (1990),

433{486.

40



[42] Levin A. M.: Supersymmetric elliptic curves, Func. Anal. Appl. 21

(1987), 83{84.

[43] Schwarz A. S.: Superanalogs of symplectic and contact geometry and

their applications to quantum �eld theory, UC Davis preprint-94-06-01,

hep-th-9406120, 1994.

[44] Duplij S.: Ideal structure of superconformal semigroups, Theor. Math.

Phys. 106 (1996), 355{374.

[45] Magill K. D.: Restrictive semigroups of closed functions, Can. J. Math.

20 (1968), 1215{1229.

[46] Akulov V. P. and Volkov D. V.: Goldstone �elds with spin 1/2, Theor.

Math. Phys. 18 (1974), 35{54.

[47] Volkov D. V.: Phenomenological interaction lagrangian of Goldstone

particles, Kiev preprint ITF-69-75, 1969.

[48] Volkov D. V.: Phenomenological lagrangians, Sov. J. Particles Nucl. 4

(1973), 1{17.

[49] Coleman S., Wess J., and Zumino B.: Structure of phenomenological

lagrangians. I, Phys. Rev. 177 (1969), 2239{2247.

[50] Samuel S. and Wess J.: A super�eld formulation of the non-linear real-

ization of supersymmetry and its coupling to supergravity, Nucl. Phys.

B221 (1983), 153{177.

[51] Samuel S. andWess J.: Secret supersymmetry, Nucl. Phys.B233 (1984),

488{510.

[52] Hughes J. and Polchinski J.: Partially broken supersymmetry and su-

perstring, Nucl. Phys. B278 (1986), 147{169.

[53] Kunitomo H.: On the nonlinear realization of the superconformal sym-

metry, Phys. Lett. B343 (1995), 144{146.

[54] Berkovits N. and Vafa C.: On the uniqueness of string theory, Mod.

Phys. Lett. A9 (1994), 653{657.

41



[55] Ivanov E. A. and Kapustnikov A. A.: General relationship between

linear and nonlinear realisations of supersymmetry, J. Phys.A11 (1978),

2375{2384.

[56] Ivanov E. A. and Kapustnikov A. A.: The non-linear realisation struc-

ture of modeals with spontaneously broken supersymmetry, J. Phys.G8

(1982), 167{191.

[57] Uematsu T. and Zachos C. K.: Structure of phenomenological la-

grangians for broken supersymmetry, Nucl. Phys. B201 (1982), 250{

268.

[58] Wess J.: Nonlinear realization of supersymmetry, in Mathematical As-

pects of Superspace, (Seifert H.-J., Clarke C. J., and Rosenblum A.,

eds.), D. Reidel, Dordrecht, 1984, pp. 1{14.

[59] Pashnev A. I.: Nonlinear relization of symmetry group with spinor pa-

rameters, Theor. Math. Phys. 20 (1974), 141{144.

[60] Akulov V. P., Bandos I. A., and Zima V. G.: Nonlinear realization

of extended superconformal symmetry, Theor. Math. Phys. 56 (1983),

3{14.

[61] Kobayashi K. and Uematsu T.: Non-linear realization of superconformal

symmetry, Nucl. Phys. B263 (1986), 309{324.

[62] Zumino B.: Non-linear realization of supersymmetry in anti De Sitter

space, Nucl. Phys. B127 (1977), 189{201.

[63] McArthur I. N.: The Berkovitz-Vafa construction and nonlinear realiza-

tions, Phys. Lett. B342 (1995), 94{98.

[64] Berkovitz N. and Ohta N.: Embeddings for non-critical superstrings,

King's College preprint KCL-TH-94-6, hep-th/9405144, 1994.

[65] Kato M.: Physical spectra in string theories, Preprint University of

Tokyo, UT-Komaba/95-12, hep-th/9512201, 1995.

[66] Kunitomo H., Sakuguchi M., and Tokura A.: A hierarchy of super w

strings, Osaka preprint OU-HET 199, hep-th/9408007, 1997.

42



[67] Kirillov A. A.: Elements of the Theory of Representations, Springer-

Verlag, Berlin, 1976.

[68] Kapustnikov A. A.: Nonlinear realization of Einsteinian supergravity,

Theor. Math. Phys. 47 (1981), 198{209.

[69] Wess J.: Nonlinear realization of theN = 1 supersymmetry, in Quantum

Theory of Particles and Fields, (Jancewicz B. and Lukierski J., eds.),

World Sci., Singapore, 1983, pp. 223{234.

[70] Ivanov E. A. and Kapustnikov A. A.: Geometry of spontaneously broken

local N = 1 supersymmetry in superspace, Nucl. Phys. B333 (1990),

439{470.

[71] Cohn J. D.: N = 2 super Riemann surfaces, Nucl. Phys. B284 (1987),

349{364.

43


