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Supermatrix semigroups and their different reductions are introduced and investigated. One-parameter semigroups of antitriangle
idempotent supermatrices and corresponding superoperator semigroups are defined and their features are studied. It is shown that
t-linear idempotent superoperators and the usual exponential superoperators are mutually dual in some sense. The first one gives
an additional (odd) solution (to the standard exponential operator) of the initial Cauchy problem. The corresponding functional
equation and an analog of resolvent are found. Differential and functional equations for idempotent (super)operators are derived
for their generalt power-type dependence.
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Supermatrix groups [1, 2, 3] play indispensable role in modern supersymmetric models construction [4, 5, 6]. Further
mathematical development [7] needs thorough consideration of their inner properties and include noninvertibility in a strong
way [8, 9], i.e. by exploiting of the semigroup theory methods [10, 11, 12]. Usually matrix semigroups are defined over the
fieldK [13] (on some nonsupersymmetric generalizations ofK-representations see [14, 15]). But modern realistic super-
symmetric unified particle theories [16] are considered in superspace [17, 18]. So all variables and functions are defined
not over the fieldK, but over Grassmann-Banach superalgebras overK [19, 20, 21], they become in general noninvertible
and therefore they should be considered by the semigroup theory, which was claimed in [22, 23]. Some new semigroups
having nontrivial abstract properties were found in [24]. Also, it was shown that supermatrices of the special (antitriangle)
shape can form various strange and sandwich semigroups not known before [25, 8].

From another side operator semigroups [26] are very much important in mathematical physics [27, 28, 29] viewed as a
general theory of evolution systems [30, 31, 32]. Its development covers many new fields [33, 34, 35, 36], but one of vital for
modern theoretical physics directions — supersymmetry and related mathematical structures [37, 38]— was not considered
before in application to the general operator semigroup theory. The main difference between previous considerations is the
fact that among building blocks (e.g. elements of corresponding matrices) there exist noninvertible objects (divisors of zero
and nilpotents) which by themselves can form another semigroup. Therefore, we have to take into account this fact and
investigate properly such a possibility as well, which can be called asemigroup× semigroup method.

Here we study continuous supermatrix representations of idempotent operator semigroups previously introduced for
bands in [25, 39], then consider one-parametric semigroups (for general theory see [27, 30, 40]) of antitriangle supermatrices
and corresponding superoperator semigroups [41]. The first ones continuously represent idempotent semigroups and second
ones lead to new superoperator semigroups with nontrivial properties.

Let Λ be a commutativeZ2-graded superalgebra [1] over a fieldK (whereK = R, C orQp) with a decomposition into
the direct sum:Λ = Λ0 ⊕ Λ1. The elementsa from Λ0 andΛ1 are homogeneous and have the fixed even and odd parity

defined as|a| def= {i ∈ {0, 1} = Z2| a ∈ Λi}. The even homomorphismmb : Λ → B is called abody mapand the odd
homomorphismms : Λ → S is called asoul map[42], whereB andS are purely even and odd algebras overK andΛ =
B⊕S. It can be thought that, if we have the Grassmann algebraΛ with generatorsξi, . . . , ξn ξiξj +ξjξi = 0, 1 ≤ i, j ≤ n,
in particularξ2

i = 0 (n can be infinite, and only this case is nontrivial [43, 44] and interesting [45]), then any evenx and
oddκ elements have the expansions (which can be infinite)

x = xbody + xsoul = xbody + y12ξ1ξ2 + y13ξ1ξ3 + . . . = xbody +
∑

1≤r≤n

∑
1<i1<...<i2r≤n

yi1...i2rξi1 . . . ξi2r (1)

κ = κsoul = y1ξ1 + y2ξ2 + . . .+ y123ξ1ξ2ξ3 + . . . =
∑

1≤r≤n

∑
1<i1<...<ir≤n

yi1...i2r−1ξi1 . . . ξi2r−1 (2)

whereyi1...ir ∈ K. So we obviously havemb (x) = xbody, mb (κ) = 0 andms (x) = xsoul, ms (κ) = κsoul.
From (1)-(2) it follows

Corollary 1. The equationsx2 = 0 andxκ = 0 have nonzero nontrivial solutions (zero divisors and even nilpotents, while
odd objects are always nilpotent).

Conjecture 2. If zero divisors and nilpotents will be included in the following analysis as elements of matrices, then one
can find new and unusual properties of corresponding matrix semigroups.

From this viewpoint we consider general properties of supermatrices [1] and introduce their additional reduction [25].



IDEAL STRUCTURE OF (1 + 1)× (1 + 1)-SUPERMATRICES

Let us consider(p|q)-dimensional linear model superspaceΛp|q overΛ (in the sense of [1, 2]) as the even sector of the
direct productΛp|q = Λp0×Λq1 [42, 21]. The even morphisms Hom0

(
Λp|q,Λm|n

)
between superlinear spacesΛp|q → Λm|n

are described by means of(m+ n) × (p+ q)-supermatrices [1, 2] (for some nontrivial properties see [46, 47]). In what
follows we will treat noninvertible morphisms [48, 49] on a par with invertible ones [25].

We consider(1 + 1) × (1 + 1)-supermatrices1 describing the elements from Hom0

(
Λ1|1,Λ1|1) in the standardΛ1|1

basis [1]

M ≡
(
a α
β b

)
∈ MatΛ (1|1) (3)

wherea, b ∈ Λ0, α, β ∈ Λ1, α
2 = β2 = 0 (in the following we use Latin letters for elements fromΛ0 and Greek letters

for ones fromΛ1, and all odd elements are nilpotent of index 2).
The supertrace and Berezinian (superdeterminant) are defined by [1]

strM = a− b, (4)

BerM =
a

b
+
βα

b2
. (5)

Observe that first term corresponds to triangle supermatrices, second term - to antitriangle ones (which we use below).

For sets of matrices we use corresponding bold symbols, e.g.M
def
= {M ∈ MatΛ (1|1)}, and the set product is standard

M ·N def
= {∪MN |M,N ∈ MatΛ (1|1)}. Denote a set of invertible elements ofM by M∗, andI = M \M∗. In [1] it

was proved thatM∗ = {M ∈M|mb (a) 6= 0 ∧mb (b) 6= 0}. Consider the invertibility structure of MatΛ (1|1) in more
detail. Let us denote

M′ = {M ∈M|mb (a) 6= 0} , I′ = {M ∈M|mb (a) = 0} ,
M′′ = {M ∈M|mb (b) 6= 0} , I′′ = {M ∈M|mb (b) = 0} . (6)

ThenM = M′ ∪ I′ = M′′ ∪ I′′ andM′ ∩ I′ = ∅, M′′ ∩ I′′ = ∅, thereforeM∗ = M′ ∩M′′. The Berezinian BerM is
well-defined for the supermatrices fromM′′ only and is invertible whenM ∈M∗, but for the supermatrices fromM′ the
inverse(BerM)

−1 is well-defined and is invertible whenM ∈M∗ too [1].
Under the ordinary supermatrix multiplication the setM is a semigroup of all(1|1) supermatrices [50], and the setM∗

is a subgroup ofM. In the standard basisM∗ represents the general linear groupGLΛ (1|1) [1]. A subsetI ⊂ M is an
ideal of the semigroupM [51].

Proposition 3. 1) The setsI, I′ andI′ are isolated ideals ofM.
2) The setsM∗, M

′
andM

′′
are filters of the semigroupM.

3) The setsM′ andM′′ are subsemigroups2 of M, which areM′ = M
∗ ∪ J′ andM′′ = M

∗ ∪ J′′ with the isolated
idealsJ′ = M′ \M∗ = M′ ∩ I′′ andJ′′ = M′′ \M∗ = M′′ ∩ I′ respectively.

4) The ideal of the semigroupM is I = I′ ∪ J′ = I′′ ∪ J′′.

Proof. Let M3 = M1M2, thena3 = a1a2 + α1β2 andb3 = b1b2 + β1α2. Taking the body part we derivemb (a3) =
mb (a1)mb (a2) , andmb (b3) = mb (b1)mb (b2) . Then use the definitions. �

TWO TYPES OF SUPERMATRIX REDUCTION

From (5) we obviously have differenttwo dual typesof supermatrices [25].

Definition 4. Even-reduced supermatricesare elements from MatΛ (1|1) of the form

Meven ≡
(
a α
0 b

)
∈ RMatevenΛ (1|1) ⊂ MatΛ (1|1) . (7)

Odd-reduced supermatricesare elements from MatΛ (1|1) of the form

Modd ≡
(

0 α
β b

)
∈ RMatoddΛ (1|1) ⊂ MatΛ (1|1) . (8)

1Sometimes we restrict ourselves to this simple case for clearness taking into account that the most of properties and conclusions hold valid for general
block (p+ q)× (p+ q)-supermatrices as well.

2But notsubgroups as it was incorrectly translated in the English edition [1], see pp. 95, 103, which correspond to the original Russian edition, Moscow,
MGU, 1983, pp. 89, 93, where the setsM′ andM′′ denoted asG′Mat (1, 1|Λ) andG′′Mat (1, 1|Λ) are correctly calledsemigroups. This can partially
explain the fact, why semigroups were not intensively developed in supermathematics before, while in ordinary mathematics this question was answered
positively [52] (see also for numerous applications the references in [26, 51, 53, 11, 27, 13, 30] and even in [54]).



Conjecture 5. The odd-reduced supermatrices have a nilpotent (but nonvanishing in general case) Berezinian

BerModd =
βα

b2
6= 0, (BerModd)

2
= 0. (9)

REMARK. Indeed this property (9) prevented one in the past from the use of this type (odd-reduced) of supermatrices in
physics. All previous applications (excluding [25, 39, 55, 9]) were connected with triangle (even-reduced, similar to Borel

[56]) ones and first term in Berezinian BerMeven =
a

b
(5).

The even- and odd-reduced supermatrices aremutually dualin the sense of the Berezinian addition formula [25]

BerM = BerMeven + BerModd. (10)

Obviously, the even-reduced matricesMeven form a semigroupMeven (1|1) which is a subsemigroup ofM (1|1),
because ofMeven·Meven⊆Meven and the unity is inMeven (1|1). This trivial observation leads to general structure
(Borel) theory of ordinary matrices [56]: triangle matrices form corresponding substructures, subgroups and subsemigroups
(see for general theory e.g. [57]). It was believed before that in case of supermatrices this situation should not be changed,
because supermatrix multiplication is the same [1]. But they did not take into accountzero divisors and nilpotentsappearing
naturally and inevitably in supercase [9].

Conjecture 6. Standard (lower or upper) triangle supermatrices are not the only substructures due to unusual properties
of zero divisors and nilpotents appearing among elements (see (1)-(2) andCorollary 1).

It means that in such consideration we have additional (to triangle) class of subsemigroups. Then we can formulate the
following general

Problem 1. For a givenn,m, p, q to describe and classifyall possible substructures (subgroups andsubsemigroups) of
(m+ n)× (p+ q)-supermatrices.

An example of such new substructures areΓ-matrices considered below.

Conjecture 7. These new substructures lead to correspondingnew superoperatorswhich are represented by one-
parameter substructures of supermatrices.

We first consider possible (not triangle) subsemigroups of supermatrices.

ODD-REDUCED SUPERMATRIX SEMIGROUPS

In general, the odd-reduced matricesModd do not form a semigroup, since their multiplication is not closed in general
Modd ·Modd ⊂M. Nevertheless, some subset ofModd can forma semigroup [25]. That can happen due to the existence
of zero divisors inΛ, and so we haveModd ·Modd ∩Modd = Msmg

odd 6= ∅.

To find Msmg
odd we consider a(1 + 1) × (1 + 1) example. Letα, β ∈ Γset, whereΓset ⊂ Λ1. We denote Annα

def
=

{γ ∈ Λ1 | γ · α = 0} and AnnΓset =∩
α
∈ Γ Annα (here the intersection is crucial). Then we defineleft and right Γ-

matrices

MΓ
odd(L)

def
=

(
0 Γset

AnnΓset b

)
, MΓ

odd(R)

def
=

(
0 AnnΓset

Γset b

)
. (11)

Proposition 8. The Γ-matricesMΓ
odd(L,R) ⊂ Modd form subsemigroups ofM (1|1) under the standard supermatrix

multiplication, ifbΓ ⊆ Γ.

Definition 9. Γ-semigroupsMΓ
odd(L,R) (1|1) are subsemigroups ofM (1|1) formed by theΓ-matricesMΓ

odd(L,R) under
supermatrix multiplication.

Corollary 10. TheΓ-matrices are additional to triangle substructures of supermatrices which form semigroups.

Let us consider general square antitriangle(p+ q)× (p+ q)-supermatrices (having even parity in notations of [1]) of
the form

M
p|q
odd

def
=

(
0p×p Γp×q
∆q×p Bq×q

)
, (12)

where ordinary matrixBq×q consists of even elements and matricesΓp×q and∆q×p consist of odd elements [1, 2] (we

drop their indices below). The Berezinian ofMp|q
odd can be obtained from the general formula by reduction and in case of

invertibleB (which is implied here) is (cf. (9))

BerM
p|q
odd = −det

(
ΓB−1∆

)
detB

. (13)



Assertion 11. A set of supermatricesMp|q
odd form a semigroupMΓ

odd (p|q) of Γp|q-matrices, ifΓset∆set = 0, i.e.
antidiagonal matrices are orthogonal, andΓsetB ⊂ Γset, B∆set ⊂ ∆set.

Proof.Consider the product

M
p|q
odd1

M
p|q
odd2

=

(
Γ1∆2 Γ1B2

B1∆2 B1B2 + ∆1Γ2

)
(14)

and observe the condition of vanishing even-even block, which givesΓ1∆2 = 0, and others are obvious. �
From (14) it follows

Corollary 12. Two Γp|q-matrices satisfy the band relationM1M2 = M1, iff

Γ1B2 = Γ1, B1∆2 = ∆2, B1B2 + ∆1Γ2 = B1. (15)

Definition 13. We call a set ofΓp|q-matrices satisfying additional condition∆setΓset = 0, a set ofstrongΓp|q-matrices.

StrongΓp|q-matrices have some extra nice features and all supermatrices considered below are of this class.

Corollary 14. Idempotent strongΓp|q-matrices are defined by relations

ΓB = Γ, B∆ = ∆, B2 = B. (16)

The product ofn strongΓp|q-matricesMi has the following form

M1M2 . . .Mn =

(
0 Γ1An−1Bn

B1An−1∆n B1An−1Bn

)
, (17)

whereAn−1 = B2B3 . . . Bn−1, and its Berezinian is

Ber (M1M2 . . .Mn) = −det (Γ1An−1∆n)

det (B1An−1Bn)
. (18)

ONE-(EVEN)-PARAMETER SUPERMATRIX IDEMPOTENT SEMIGROUPS

Here we investigate one-(even)-parameter subsemigroups ofΓ-semigroups and as a particular example for clearness of
statements considerModd (1|1), where all characteristic features taking place in general(p+ q)× (p+ q) as well can be
seen. These formulas will be applied for establishing the corresponding superoperator semigroup properties.

A simplest semigroup can be constructed from antidiagonal nilpotent supermatrices of the shape

Yα (t)
def
=

(
0 αt
α 0

)
. (19)

wheret ∈ Λ1|0 is an even parameter of the Grassmann algebraΛ which continuously ”numbers” elementsYα (t) and
α ∈ Λ0|1 is a fixed odd element ofΛ which ”numbers” the setsYα =∪

t
Yα (t).

Definition 15. The supermatricesYα (t) together with a null supermatrixZ
def
=

(
0 0
0 0

)
form acontinuous null semi-

groupZα (1|1) = {Yα ∪ Z; ·} having the null multiplication

Yα (t)Yα (u) = Z. (20)

Assertion 16. For any fixedt ∈ Λ1|0 the set{Yα (t) , Z} is a 0-minimal ideal inZα (1|1).

REMARK. If we consider, for instance, a one-(even)-parameter odd-reduced supermatrix of another shapeRα (t) =(
0 α
α t

)
, then multiplication ofRα (t) is not closed sinceRα (t)Rα (u) =

(
0 αu
αt tu

)
/∈ Rα =

⋃
t

Rα (t). Note

that any other possibility except ones considered below also do not give closure of multiplication.

Thus the only nontrivial closed systems of one-(even)-parameter odd-reduced (antitriangle)(1 + 1) × (1 + 1)
supermatrices arePα =∪

t
Pα (t) where

Pα (t)
def
=

(
0 αt
α 1

)
, P 2

α (t) = Pα (t) , BerPα (t) = 0 (21)

andQα =∪
t
Qα (u) where

Qα (u)
def
=

(
0 α
αu 1

)
Q2
α (u) = Qα (u) BerQα (u) = 0. (22)

We establish multiplication properties of the idempotent noninvertible supermatricesPα (t) andQα (u).



Assertion 17. Sets of idempotent supermatricesPα andQα form left zero and right zero semigroups respectively with
multiplication

Pα (t)Pα (u) = Pα (t) , (23)

Qα (t)Qα (u) = Qα (u) . (24)

if and only ifα2 = 0.

Proof. It simply follows from supermatrix multiplication law and general previous considerations. �

Corollary 18. The setsPα andQα are rectangular bands since

Pα (t)Pα (u)Pα (t) = Pα (t) , (25)

Pα (u)Pα (t)Pα (u) = Pα (u) (26)

and

Qα (u)Qα (t)Qα (u) = Qα (u) , (27)

Qα (t)Qα (u)Qα (t) = Qα (t) (28)

with componentst = t0 + Annα andu = u0 + Annα correspondingly.

They are orthogonal in sense of
Qα (t)Pα (u) = Eα, (29)

where

Eα
def
=

(
0 α
α 1

)
, E2

α = Eα, BerEα = 0 (30)

is a right “unity” and left “zero” in the semigroupPα, because

Pα (t)Eα = Pα (t) , EαPα (t) = Eα (31)

and a left “unity” and right “zero” in the semigroupQα, because

Qα (t)Eα = Eα, EαQα (t) = Qα (t) . (32)

It is important to note thatPα (1) = Qα (1) = Eα, and soPα ∩Qα = Eα. Therefore, almost all properties ofPα and
Qα are similar, and we will consider only one of them in what follows. For generalized Green’s relations and more detail
properties of odd-reduced supermatrices of higher dimension see [39, 8, 9].

ODD-REDUCED SUPERMATRIX OPERATOR SEMIGROUPS

Let us consider a semigroupP of superoperatorsP (t) (see for general theory [27, 28, 30]) represented by the one-even-
parameter semigroupPα of odd-reduced supermatricesPα (t) (21) which act on(1|1)-dimensional superspaceR1|1 as

followsPα (t) X, whereX =

(
x
κ

)
∈ R1|1, wherex is even coordinate,κ is odd coordinate

(
κ2 = 0

)
having expansions

(1) and (2) respectively (seeCorollary 1 ). We have a representationρ : P → Pα with correspondenceP (t) → Pα (t)
or P (t) ≈ Pα (t), but (as is usually made, e.g. [30]) we identify space of superoperators with the space of corresponding
matrices3.

Definition 19. An odd-reduced “dynamical” system onR1|1 is defined by an odd-reduced supermatrix-valued function
P (·) : R+ →Modd (1|1) and “time evolution” of the stateX (0) ∈ R1|1given by the functionX (t) : R+ → R1|1, where

X (t) = P (t) X (0) (33)

and can be called as orbit ofX (0) underP (·).
REMARK. In general the definition, the continuity, the functional equation and most of conclusions below hold valid also
for t ∈ R1|0 (as e.g. in [30, p. 9]) including “nilpotent time” directions (seeCorollary 1 ).

3For convenience we preserve operator notations and use somewhere the representation sign≈ for clearness



From (23) it follows that
P (t) P (s) = P (t) , (34)

and so superoperatorsP (t) are idempotent. Also they form a rectangular band, because of

P (t) P (s) P (t) = P (t) , (35)

P (s) P (t) P (s) = P (s) . (36)

We observe that

P (0) ≈
(

0 0
α 1

)
6= I ≈

(
1 0
0 1

)
, (37)

asoppositeto the standard case [27]. A “generator”A = P′ (t) is

A ≈
(

0 α
0 0

)
, (38)

and so the standard definition of generator [27]

A = lim
t→0

P (t)− P (0)

t
. (39)

holds and for difference we have the standard relation

P (t)− P (s) = A · (t− s) . (40)

The following properties of the generatorA take place

P (t) A = Z, (41)

AP (t) = A, (42)

where “zero operator”Z is represented by the null supermatrix,A2 = Z, and therefore generatorA is a nilpotent of second
degree.

From (39) it follows that
P (t) = P (0) + A · t. (43)

Definition 20. We call operators which can be presented as a linear supermatrix function oft a t-linear superoperators.

From (43) it follows thatP (t) is at-linear superoperator.

Proposition 21. SuperoperatorsP (t) cannot be presentedas an exponent (as for the standard operator semigroupsT (t) =
eA·t [27]).

Proof. In our case

T (t) = eA·t = I + A · t ≈
(

1 αt
0 1

)
/∈ Pα. (44)

�
REMARK. Exponential superoperatorT (t) = eA·t is represented byeven-reducedsupermatricesT (·) : R+ →
Meven (1|1) [30], but idempotent superoperatorP (t) is represented byodd-reducedsupermatricesP (·) : R+ →
Modd (1|1) (seeDefinition 4).

Nevertheless, the superoperatorP (t) satisfiesthe samelinear differential equation

P′ (t) = A · P (t) (45)

as the standard exponential superoperatorT (t) (the initial value problem [30])

T′ (t) = A · T (t) . (46)

This leads to the following

Corollary 22. In case initial state does not equal unityP (0) 6= I, there exists anadditional classof solutions of the initial
value problem (45)-(46) among odd-reduced (antidiagonal) idempotentt-linear (nonexponential) superoperators.



Problem 2. To find among general(p+ q)× (m+ n)-supermatricesall possible nonexponential classeswhich solve the
initial value problem (46).

Let us compare behavior of superoperatorsP (t) andT (t). First of all, their generators coincide

P′ (0) = T′ (0) = A. (47)

But powers ofP (t) andT (t) are differentPn (t) = P (t) andTn (t) = T (nt). In their common actions the superoperator
which is from the left transfers its properties to the right hand side as follows

Tn (t) P (t) = P ((n+ 1) t) , (48)

Pn (t) T (t) = P (t) . (49)

Their commutator is nonvanishing

[T (t) P (s)] = P′ (0) t = T′ (0) t = At, (50)

which can be compared with the pure exponential commutator (for our case)[T (t) T (u)] = 0 and idempotent commutator

[P (t) P (s)] = P′ (0) (t− s) = A (t− s) . (51)

Assertion 23. All superoperatorsP (t) andT (t) commute in case of “nilpotent time” and

t ∈ Annα. (52)

REMARK. The uniqueness theorem [30, p. 3] holds valid only forT (t), because of the nonvanishing commutator
[A,P (t)] = A 6= 0.

Corollary 24. The superoperatorT (t) is an inner inverse forP (t), because of

P (t) T (t) P (t) = P (t) , (53)

but it is not an outer inverse, because
T (t) P (t) T (t) = P (2t) . (54)

Let us try to find a (possibly noninvertible) operatorU which connects exponential and idempotent superoperatorsT (t)
andP (t).

Assertion 25. The “semi-similarity” relation
T (t) U = UP (t) (55)

holds if

U ≈
(
σα σ
0 ρα

)
(56)

which is noninvertible triangle and depends from two odd constants, and the “adjoint” relation

U∗T (t) = P (t) U∗ (57)

holds if

U∗ ≈
(

0 αvt
αu v

)
(58)

which is also noninvertible antitriangle and depends from two even constants and “time”.

REMARK. Note thatU is nilpotent of third degree, sinceU2 = σρA, but the “adjoint” superoperator is not nilpotent at all
if v is not nilpotent.

Both A andZ behave as zeroes, butY (t) (see (19)) is a two-sided zero forT (t) only, since

T (t) Y (t) = Y (t) T (t) = Y (t) , (59)

while
P (t) Y (t) = Y (0) , Y (t) P (t) = At. (60)



If we addA andZ to superoperatorsP (t), then we obtain an extended odd-reduced noncommutative superoperator
semigroupPodd =

⋃
P (t)

⋃
A
⋃

Z with the following Cayley table (for convenience we addY (t) andT (t) as well)

The Cayley table of the superoperator semigroupPodd
1 \ 2 P (t) P (s) A Z Y (t) T (t) T (s)

P (t) P (t) P (t) Z Z P (t) P (t) P (t)
P (s) P (s) P (s) Z Z P (s) P (s) P (s)

A A A Z Z Z A A
Z Z Z Z Z Z Z Z

Y (t) At As Z Z Z Y (t) Y (t)
T (t) P (2t) P (t+ s) A Z Y (t) T (2t) T (t+ s)
T (s) P (t+ s) P (2s) A Z Y (t) T (t+ s) T (2s)

(61)

It is easily seen that associativity in the left upper square holds, and so the table (61) is actually represents a semigroup
of superoperatorsPodd (under supermatrix multiplication).

The analogs of the “smoothing operator”V (t) [30] are

VP (t) =

t∫
0

P (s) ds =
t

2
(P (t) + P (0)) ≈

 0 α
t2

2
αt t

 , (62)

VT (t) =

t∫
0

T (s) ds =
t

2
(T (t) + T (0)) ≈

 t α
t2

2
0 t

 . (63)

Let us consider the differential sequence of sets of superoperatorsP (t)

Sn
∂→ Sn−1

∂→ . . . S1
∂→ S0

∂→ A
∂→ Z, (64)

where∂ = d/dt and

Sn =
⋃
t

tn

n (n− 1) . . . 1
P

(
t

n+ 1

)
, (65)

and by definition

S0 =
⋃
t

P (t) , (66)

S1 =
⋃
t

VP (t) . (67)

GENERALIZED FUNCTIONAL EQUATION AND EVOLUTION

Now we construct an analog of the standard operator semigroup functional equation [27, 30]

T (t+ s) = T (t) T (s) . (68)

Using the multiplication law (34) and manifest representation (21). for the idempotent superoperatorsP (t) we can
formulate

Definition 26. Theodd-reduced idempotent superoperatorsP (t) satisfy the following generalized functional equation

P (t+ s) = P (t) P (s) + N (t, s) , (69)

where
N (t, s) = P′ (t) s.

The presence of second termN (t, s) in the right hand side of the generalized functional equation (69) can be connected
with nonautonomous and deterministic properties of systems describing by it [30]. Indeed, from (33) it follows that

X (t+ s) = P (t+ s) X (0) = P (t) P (s) X (0) + P′ (t) sX (0) (70)

= P (t) X (s) + P′ (t) sX (0) 6= P (t) X (s)



as opposite to the always implied relation for exponential superoperatorsT (t) (translational property [27, 30])

T (t) X (s) = X (t+ s) , (71)

which follows from (68). Instead of (71), using the band property (34) we obtain

P (t) X (s) = X (t) , (72)

which can be called the “moving time” property.

Problem 3. To find a “dynamical system” with time evolution satisfying the“moving time” property (72) instead of the
translational property (71).

Assertion 27. For “nilpotent time” satisfying (52) the generalized functional equation (69) coincides with the standard
functional equation (68), and therefore the idempotent operatorsP (t) describe autonomous and deterministic “dynamical”
system and satisfy the translational property (71).

Proof.Follows from (52) and (70). �

Problem 4. To findall maps P (·) : R+ →M (p|q) satisfying the generalized functional equation (69).

We turn to this problem later, and now consider some features of the Cauchy problem for idempotent superoperators.

ODD SOLUTION FOR THE CAUCHY PROBLEM

Let us consider an action (33) of superoperatorP (t) in superspaceR1|1 as X (t) = P (t) X (0), where the initial

components areX (0) =

(
x0

κ0

)
. From (33) the evolution of the components has the form

(
x (t)
κ (t)

)
=

(
ακ0t

αx0 + κ0

)
(73)

which shows that superoperatorP (t) does not lead to time dependence of odd components. Then from (73) we see that

X′ (t) =

(
ακ0

0

)
= const. (74)

This is in full agreement with an analog of the Cauchy problem for our case

X′ (t) = A · X (t) . (75)

Assertion 28. The solution of the Cauchy problem (75) is given by (33), but the idempotent superoperatorP (t) can not
be presentedin exponential form as in the standard case [27], but only in thet-linear formP (t) = P (0) + A · t 6= eA·t,
as we have already shown in (43).

This allows us to formulate

Theorem 29. In superspaceR1|1 the solution of the Cauchy initial problem with the same generatorA is two-fold and is
given bytwo different type of superoperators:

1. Exponential superoperatorT (t) represented by the even-reduced supermatrices (even solution);

2. Idempotentt-linear superoperatorP (t) represented by the odd-reduced supermatrices (odd solution).

For comparison the standard solution of the Cauchy problem (75)

X (t) = T (t) X (0)

in components is (
x (t)
κ (t)

)
=

(
x0 + ακ0t

κ0

)
, (76)

which shows that the time evolution of even coordinate is also in nilpotent even directionακ0 as in (73), but with addition
of initial (possibly nonilpotent)x0, while odd coordinate is (another) constant as well. That leads to



Assertion 30. “Even” and “odd” evolutions coincide, if even initial coordinate vanishesx0 = 0 or common starting point

is pure oddX (0) =

(
0
κ0

)
.

A very much important formula is the condition of commutativity [27]

[A,P (t)] X (t) = AX (t) =

(
ακ (t)

0

)
= 0, (77)

which satisfies, whenα · κ (t) = 0, while in the standard case the commutator[A,T (t)] X (t) = 0, i.e. vanishes without
any additional conditions [27].

SUPERANALOG OF RESOLVENT FOR EXPONENTIAL AND IDEMPOTENT SUPEROPERATORS

For resolventsRP (z) andRT (z) we use an analog of the standard formula from [27] in the form

RP (z) =

∞∫
0

e−ztP (t) dt, (78)

RT (z) =

∞∫
0

e−ztT (t) dt. (79)

Using the supermatrix representation (21) we obtain

RP (z) ≈


0

α

z2

α

z

1

z

 , (80)

RT (z) ≈


1

z

α

z2

0
1

z

 . (81)

We observe, thatRT (z) satisfies the standard resolvent relation [30]

RT (z)− RT (w) = (w − z) RT (z) RT (w) , (82)

but its analog forRP (z)

RP (z)− RP (w) = (w − z) RP (z) RP (w) +
w − z
zw2

A (83)

has additional term proportional to the generatorA.

PROPERTIES OF t-LINEAR IDEMPOTENT (SUPER)OPERATORS

Here we consider properties of generalt-linear (super)operators of the form

K (t) = K0 + K1t, (84)

whereK0 = K (0) andK1 = K′ (0) are constant (super)operators represented by(n× n) matrices or(p+ q)×.(p+ q)
supermatrices witht (“time”) independent entries. Obviously, that the generator of a generalt-linear (super)operator is

AK = K′ (0) = K1. (85)

We will find system of equations forK0 andK1 for some special cases appeared in above consideration.

Assertion 31. If a t-linear (super)operatorK (t) satisfies the band equation (34)

K (t) K (s) = K (t) , (86)

then it is idempotent and the constant component (super)operatorsK0 andK1 satisfy the system of equations

K2
0 = K0, K2

1 = Z, (87)

K1K0 = K1, K0K1 = Z, (88)

from which it follows, thatK0 is idempotent,K1 is nilpotent, andK1 is right divisor of zero and left zero forK0.



For non-supersymmetric operators we have

Corollary 32. The components oft-linear operatorK (t) have the following properties: idempotent matrixK0 is similar
to an upper triangular matrix with1 on the main diagonal and nilpotent matrixK1 is similar to an upper triangular matrix
with 0 on the main diagonal [13, 57].

Comparing with the previous particular super case (43) we haveK0 = P (0) andK1 = A = P′ (0).

REMARK. In case of(p+ q) × (p+ q) supermatrices the triangularization properties ofCorollary 32 do not hold valid
due to presence divisors of zero and nilpotents among entries (seeCorollary 1 ), and so the inner structure of the component
supermatrices satisfying (87)-(88) can be much different from the standard non-supersymmetric case [13, 57].

Let us consider the structure oft-linear operatorK (t) satisfying the generalized functional equation (69).

Assertion 33. If a t-linear (super)operatorK (t) satisfies the generalized functional equation

K (t+ s) = K (t) K (s) + K′ (t) s, (89)

then its component (super)operatorsK0 andK1 satisfy the system of equations

K2
0 = K0, K2

1 = Z, (90)

K1K0 = K1, K0K1 = Z, (91)

We observe that the systems (87)-(88) and (90)-(91) are fully identical. It is important to observe the connection of the
above properties with the differential equation fort-linear (super)operatorK (t)

K′ (t) = AK · K (t) . (92)

Using (85) we obtain the equation for components

K2
1 = Z, (93)

K1K0 = K1. (94)

That leads to the following

Theorem 34. For anyt-linear (super)operatorK (t) = K0 + K1t the next statements are equivalent:

1. K (t) is idempotent and satisfies the band equation (86);

2. K (t) satisfies the generalized functional equation (89);

3. K (t) satisfies the differential equation (92) and has idempotent time independent partK2
0 = K0 which is orthogonal to

its generatorK0A = Z.

GENERAL t-POWER-TYPE IDEMPOTENT (SUPER)OPERATORS

Let us consider idempotent (super)operators which depend from time by power-type function, and so they have the
form

K (t) =
n∑

m=0

Kmt
m, (95)

whereKm aret-independent (super)operators represented by(n× n) matrices or(p+ q)×.(p+ q) supermatrices. This
power-type dependence of is very much important for super case, when supermatrix elements take value in Grassmann
algebra, and therefore can be nilpotent (see (1)–(2) andCorollary 1 ).

We now start from the band propertyK (t) K (s) = K (t) and then find analogs of the functional equation and differential
equation for them. Expanding the band property (86) in component we obtainn-dimensional analog of (87)-(88) as

K2
0 = K0, K2

i = Z, 1 ≤ i ≤ n, (96)

KiK0 = Ki, 1 ≤ i ≤ n, K0Ki = Z, 1 ≤ i ≤ n, (97)

KiKj = Z, 1 ≤ i, j ≤ n, i 6= j. (98)

Proposition 35. Then-generalized functional equation for anyt-power-type idempotent (super)operators (95) has the
form

K (t+ s) = K (t) K (s) + Nn (t, s) , where Nn (t, s) =

n∑
m=1

n∑
l=m

Kl
l (l − 1) . . . (l −m+ 1)

m!
smtl−m. (99)



Proof. For the difference using the band property (86) we haveNn (t, s) = K (t+ s) − K (t) K (s) = K (t+ s) − K (t).

Then we expand in Taylor series aroundt and obtainNn (t, s) =
n∑

m=1
K(m) (t)

sm

m!
, whereK(m) (t) denotesn-th derivative

which is a finite series for the power-typeK (t) (95). �
The differential equation for idempotent (super)operators coincide with the standard initial value problem only for

t-linear operators. In case of the power-type operators (95) we have

Proposition 36. Then-generalized differential equation for anyt-power-type idempotent (super)operators (95) has the
form

K′ (t) = AK · K (t) + Un (t) , (100)

where

Un (t) =

 0 n = 1
n∑

m=2
mKmt

m−1 n ≥ 2
. (101)

Proof.To find the differenceUn (t) we use the expansion (95) and the band conditions for components (96)–(98).�

CONCLUSION

In general one-parametric matrix semigroups and corresponding superoperator semigroups represented by antitriangle
idempotent supermatrices and their generalization to higher dimensions(p+ q) × (m+ n) have many unusual and
nontrivial properties [8, 9, 25, 39]. Here we considered only some of them related to their connection with functional and
differential equations of corresponding superoperators. The statedProblems 1-3are worthwhile to investigate in future.
It would be also interesting to generalize the above constructions to higher dimensions, to study continuity properties of
the introduced idempotent superoperators, to consider multi-time evolution and to find the corresponding applications in
modern supersymmetric models.
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ПОЛУГРУППЫ СУПЕРМАТРИЦ И ОДНОПАРАМЕТРИЧЕСКИХ ИДЕМПОТЕНТНЫХСУПЕРОПЕРАТОРОВ
С. А. Дуплий

Физико-технический факультет, Харьковский национальный университет им. В. Н. Каразина,пл. Свободы, 4, г. Харьков, 61077,Украина
В работе рассматриваются полугруппы суперматриц и исследуются их различные редукции. Определяются однопараметри-ческие полугруппы антитреугольных суперматриц и изучаются свойства соответствующих полугрупп супероператоров. Пока-зано, что t-линейные идемпотентные супероператоры и обычные экспоненциальные супероператоры являются дуальными внекотором смысле, и первые дают дополнительное (нечетное) решение (по отношению с стандартному экспоненциальному)проблемы Коши. Найдены соответствующее функциональное уравнение и получен аналог резольвенты. Для идемпотентных
(супер)операторов с t-зависимостью степенного вида найдены дифференциальные и функциональные уравнения.
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